Регулируемый блок питания своими руками

Источники питания постоянного тока, схема которых включает выпрямитель (AC/DC преобразователь), представляют собой востребованные устройства, широко применяемые в автоматизированных испытательных системах, предназначенных для проверки электрооборудования, модулей, монтажных схем. Также их используют для электропитания различной радиоэлектронной аппаратуры, электродвигателей, заряда аккумуляторных батарей, протекания электрохимических процессов. Они преобразуют переменное напряжение электросети в стабилизированное постоянное напряжение. Многие модели предоставляют возможность регулировки выходных параметров.

Отдельный вид источников питания (ИП) составляют конверторы (DC/DC преобразователи). Они работают от сети постоянного тока. Их сфера применения включает автоматизированные системы управления техпроцессами, энергетику, транспорт, телекоммуникационные и информационные технологии, охранно-пожарные системы.

Основными техническими характеристиками источников питания постоянного тока являются:

  • Номинальное входное напряжение.
  • Номинальное выходное напряжение и диапазон его регулировки.
  • Максимальный ток нагрузки.
  • Точность стабилизации выходного напряжения.
  • КПД.

Помимо базовых характеристик, большое значение имеют и другие рабочие параметры, которые мы рассмотрим более подробно.

Шумы и пульсации

Эта характеристика источников питания постоянного тока определяет качество выходного сигнала, а также выбор между импульсным и линейным источником электропитания. Импульсные преобразователи являются по сути генераторами шумов. Устройства, использующие для управления переключением силовых ключей широтно-импульсную модуляцию, создают шумы в определенной полосе частот. Частота повторения шума зависит от частоты переключения импульсного источника питания, а амплитуда сильно зависит от топологии оборудования. Пульсации представляют собой флуктуацию выходного напряжения, которая связана с зарядом и разрядом устройства. Она может быть уменьшена с помощью увеличения входной или выходной емкости.

Для многих задач, связанных с тестированием электроаппаратуры, целесообразно использовать не импульсные, а линейные ИП. Несмотря на то, что они отличаются низкой эффективностью, габаритами и весом, выделением значительного количества тепла, их можно применять в приложениях, где не требуется высокая мощность (до 200 Вт на один канал). Линейные устройства генерируют высокочастотный шум, который можно легко отфильтровать. Также они обладают высокой скоростью реагирования на изменение нагрузки. Если же поставленная задача не выдвигает повышенных требований к уровню шума и пульсаций, лучше выбрать импульсный преобразователь. Он характеризуется высокой мощностью, компактностью, широкими диапазонами регулировки, гибкостью настроек.

Преимущества и недостатки импульсного и линейного источника света

Линейные решения дешевы и просты. Это наиболее привлекательный аспект данной технологии. Поэтому производители освещения с большим энтузиазмом используют линейные драйверы светодиодов в своих продуктах, когда это возможно. В общем, линейные драйверы светодиодов могут быть отличным решением для систем освещения, где качество света не является главным приоритетом, а стоимость осветительной продукции сильно обеспокоена.

Отсутствие электромагнитного излучения является одним из важных технических преимуществ линейных драйверов светодиодов. Эта функция решает проблемы, с которыми сталкиваются в области медицинского, авиационного и автомобильного освещения, где требования очень высоки.

Линейные драйверы светодиодов по своей сути более надежны, чем драйверы светодиодов, в которых используются электролитические конденсаторы для поглощения скачков напряжения, которые могут присутствовать в линии переменного тока. Электролитические конденсаторы склонны к преждевременному выходу из строя при высоких температурах окружающей среды, что снижает надежность схемы. Линейные драйверы светодиодов не используют это устройство накопления энергии, вместо этого они используют микросхемы твердотельных драйверов для регулирования нагрузки.

Большинство линейных светодиодных драйверов работают с устаревшими симисторными диммерами без использования дополнительных схем диммирования. Эти драйверы не содержат реактивных компонентов, таких как катушки и конденсаторы, которые создают реактивную нагрузку на резистивный диммер и, таким образом, вызывают несовместимость.

Проблемы дизайна

Несмотря на все преимущества, которые дает управление светодиодами с использованием линейных регуляторов, конструкция линейного драйвера светодиода или светового двигателя предполагает множество компромиссов. Красота этой технологии заключается в ее простоте. Когда требуется больше функций, требуется более высокое качество освещения или строгое соблюдение кодов обязательно, технология линейных драйверов теряет свою славу. Преимущества линейных светодиодных драйверов достигаются ценой многих жертв.

Электрическая безопасность

В импульсных источниках питания можно установить высокочастотный трансформатор с первичной и вторичной обмотками, чтобы блокировать опасно высокие напряжения. С другой стороны, линейные драйверы светодиодов имеют путь пробоя высокого напряжения через схему управления. Светодиодная лампа, мощность которой регулируется линейным драйвером светодиода, зависит от изоляционных свойств ее корпуса, что является серьезной проблемой для безопасности.

КПД и рассеивание тепла

Работа светодиодной матрицы с линейными драйверами светодиодов означает, что всегда есть падение напряжения. Большое падение напряжения означает не только низкий КПД, но и повышенную тепловую нагрузку на систему освещения, поскольку избыточная электрическая мощность рассеивается в виде тепла. В результате система светодиодного освещения, работающая в этом режиме, влечет за собой дополнительную теплоемкость для приема теплового потока от схемы драйвера.

Мерцание

В схеме линейного регулирования нагрузка, подаваемая на светодиоды, по существу является промежуточным напряжением постоянного тока, которое было бы в системе светодиодного освещения. Остаточная форма волны переменного тока может появиться на выходе в виде вариаций или пульсаций. Остаточная пульсация после каскада выпрямитель-фильтр вызывает мерцание, что значительно ухудшает качество света.

Фактор силы

Чтобы сгладить сильные пульсации тока, можно использовать большой конденсатор на первичной стороне. Однако это может снизить требования к коэффициенту мощности, поскольку реактивная мощность, потребляемая устройством накопления энергии, искажает форму волны выпрямленного тока первичной стороны. На коэффициент мощности также может влиять нерезистивное диммирование. Светодиодные лампы с номинальной мощностью более 5 Вт должны иметь минимальный коэффициент мощности 0,7, а коэффициент мощности всех светодиодных источников питания мощностью более 25 Вт должен быть более 0,9. Часто проектировщикам светильников приходится делать сложный выбор между контролем мерцания и соответствием.

Скорость изменения выходного напряжения

Это важный параметр, который имеет большое значение в сфере тестирования электроприборов. При испытаниях на аппаратуру подаются различные напряжения для проверки ее правильного функционирования в пределах рабочего диапазона. Чем быстрее источник питания реагирует на изменение настроек, тем выше производительность тестирования. В стандартных устройствах время установки выходного напряжения с точностью до 1% составляет в среднем 50-500 мс. Существуют специальные схемы регулируемых источников питания постоянного тока, которые позволяют уменьшить данный показатель до 1-4 мс.

Время реакции на изменение нагрузки

Этот параметр определяет, насколько быстро ИП реагирует на изменение нагрузки или скачки электротока. Если выходной ток быстро изменяется в широком диапазоне значений, выходное напряжение также начинает с высокой скоростью уменьшаться или увеличиваться. Время, которое необходимо устройству для стабилизации характеристик, называется временем реакции (или отклика) на изменение нагрузки. Из-за использования обратной связи в топологии для контроля выходного напряжения, импульсные ИП отличаются сравнительно медленной реакцией.

Чтобы обезопасить тестируемые устройства от сильных перегрузок, рекомендуется применять предварительную нагрузку. Она подключается параллельно с испытываемым прибором и ограничивает скачки напряжения. У современных импульсных источников питания время отклика составляет 40-80 мкс, а у линейных — до 1 мкс.

РАЗНОВИДНОСТИ ПРИБОРОВ

Основные виды блоков питания:

  • линейные;
  • импульсные.

В состав устройств первого типа непременно входят трансформатор, конвертирующий исходное напряжение в более низкое, и выпрямитель, преобразующий переменный ток стандартной частоты (в России — около 50 герц) в постоянный, требуемый для работы бытовой или промышленной техники.

Дополнительными составляющими являются фильтр, предназначенный для нивелирования всплесков и провалов напряжения, стабилизатор, высокочастотный фильтр и защита от коротких замыканий.

Все эти компоненты позволяют получить на выходе идеально ровный сигнал, что особенно важно для чувствительных электроприборов: чем «чище» подаваемый на них ток, тем дольше они могут прослужить.

Плюсы линейных приборов:

  • простота устройства и ремонта;
  • повышенная надёжность;
  • минимальный, вплоть до нулевого, процент помех и колебаний в выходном сигнале;
  • доступность — трансформаторные устройства стоят сравнительно недорого.

Минусы линейных преобразователей:

  • габаритность — занимают как минимум в два раза больше места, чем импульсные;
  • массивность — характеристики используемых составляющих не позволяют сделать трансформаторные блоки лёгкими;
  • невысокий КПД — потери энергии в сети с подключённым устройством составляют не менее 15%.

В импульсных, или инверторных блоках питания происходят более сложные преобразования: сначала переменный ток преобразуется в постоянный, а затем формируются импульсы высокой частоты, подаваемые, через малогабаритный высокочастотный трансформатор, на выпрямитель и фильтр ВЧ, затем выход.

Таким образом, устройства гарантируют более качественный переменный ток с отсутствием недопустимых перепадов, а преобразование его в постоянный осуществляется уже в «принимающих» приборах.

Основными элементами импульсных приборов являются:

  • малогабаритные первичные преобразователи переменного напряжения в постоянное;
  • стабилизаторы, работающие по принципу отрицательной обратной связи и гарантирующие «ровный» результирующий сигнал;
  • низкочастотные фильтры, обеспечивающие отсутствие помех на выходе.

К дополнительным компонентам относятся иные или дублирующие фильтры, защита от короткого замыкания и нулевой нагрузки, а также трансформаторы выходного переменного сигнала в постоянный.

Плюсы импульсных устройств:

  • небольшие габариты — такие устройства как минимум в два раза меньше линейных;
  • небольшая масса — весят инверторные блоки сравнительно немного;
  • высокий КПД — потери при включении оборудования в сеть лежат в диапазоне 2…10%.

Минусы импульсных приборов:

  • сложность устройства и ремонта;
  • большая, по сравнению с линейными блоками, стоимость;
  • высокочастотные помехи, отрицательно сказывающиеся на работе чувствительных приборов.

В настоящее время и линейное, и импульсное оборудование оснащено стабилизаторами, позволяющими получить на выходе ровный, без резких скачков, сигнал. Стабилизированный блок питания продлевает срок службы бытовой и промышленной техники, а также, даже без использования дополнительной защиты, снижает риск короткого замыкания в сети.

Не следует путать такие устройства с бытовыми стабилизаторами напряжения 220 Вольт.

Возможность параллельного и последовательного подключения ИП

Параллельное подключение источников электропитания обеспечивает увеличение выходного электротока. Многие ИП оснащены специализированной параллельной шиной управления. Она позволяет создавать единую конфигурацию из нескольких источников. Система автоматически определяет, какие устройства являются ведущими, а какие ведомыми.

Последовательное подключение источников питания используется, если необходимо увеличение напряжения. При этом оно не должно превышать электрическую прочность изоляции выходных клемм.

Современные источники питания

Различные электронные устройства давно и прочно вошли в нашу жизнь. Приборы самой широкой сферы применения и степени сложности выводят нашу жизнь на совершенно новый уровень комфорта и возможностей. Однако для того, чтобы какое-либо оборудование функционировало, оно должно иметь доступ к электроэнергии. Для этого необходимы источники питания – устройства, отвечающие за подачу электропитания.

При этом практически все виды источников питания отвечают за выполнение трех основных функций:

  • преобразования электроэнергии
  • стабилизации
  • регулировки.


Виды источников питания
Все источники питания можно разделить на две группы: первичные и вторичные.

  • Первичные занимаются превращением разнообразных видов энергии в электрическую. К примеру, существуют аккумуляторы, которые химическую энергию преобразовывают в электричество.
  • Вторичные не отвечают за генерирование электроэнергии. Они занимаются лишь изменением ее характеристик, необходимых конкретному оборудованию. В частности, меняются показатели тока, напряжения, пульсации напряжения и пр.

Среди различных видов ИП, относящихся к категории вторичных, особенно востребованы блоки питания.

Какие бывают блоки питания

Блоки питания (или вторичные источники электропитания) представляют собой устройства, обеспечивающие электроприборы необходимой им электрической энергией посредством преобразования энергии, полученной от других источников. При этом энергия должна соответствовать ряду параметров, вроде тока, напряжения и пр.

Блоки питания могут быть:

  • встроенными в общую схему
  • использоваться в виде модуля
  • размещаться в отдельном помещении.

Существует два основных вида конструкций источников питания: импульсные и трансформаторные, они же сетевые.

Преимуществом импульсных блоков питания является надежность, наличие цепей защиты от форс-мажорных ситуаций, широкий диапазон частоты и питающего напряжения, меньшей, чем у сетевых моделей стоимостью, высоким КПД и меньшим весом.

Преимуществом сетевых БП считается доступная база элементов, простота конструкции, отсутствие, в отличие от импульсных моделей, создаваемых радиопомех, надежность.

Среди разновидностей ИП особенного внимания заслуживают источники бесперебойного питания, пользующиеся огромной популярностью, как в промышленной, так и бытовой сфере.

Особенности источников бесперебойного питания

Источники бесперебойного питания, они же ИБП, представляют собой электронное автоматическое устройство, оснащенное аккумулятором. ИБП обеспечивают бесперебойную подачу электрического питания для компьютера и его комплектующих, в течение краткого периода времени.

ИБП необходим для того, чтобы в случае внезапного падения или обрыва входного питающего напряжения, иметь возможность сохранить необходимые данные и корректно завершить работу ПК.

Следует помнить, что источники бесперебойного питания не подходят для постоянной, или хотя бы длительной подачи электроэнергии на компьютер. ИБП, они же UPS (Uninterruptible Power Supply), являются лишь вспомогательным оборудованием. Для того, чтобы обеспечить ПК долгосрочной подачей энергии, можно использовать устройства наподобие генераторов или источников резервного питания (ИРП).

Какие бывают UPS

Среди разнообразия ИБП, представленных на рынке, лишь три типа устройств действительно являются разновидностями источников бесперебойного питания:

  • UPS Line-Interactive
  • UPS On-Line
  • UPS Off-Line.

Все прочие подобные устройства на самом деле являются только их производными.

Подводя итоги

Источники питания давно стали необходимо частью нашей жизни. Они востребованы как в промышленной сфере, так и бытовой, ведь именно на электричестве работает большая часть используемых человеком приборов. Безусловно, блоки питания, равно как и источники бесперебойного питания, являются одним из важнейших изобретений в истории человечества, решают многие проблемы, связанные с подачей электроэнергии.

Цифровое программирование

Многие источники питания поддерживают возможность цифрового программирования для режимов стабилизации напряжения (CV) или тока (CC). Устройства работают в режиме стабилизации напряжения при условии, что ток нагрузки меньше установленного значения. После достижения электротоком порогового значения ИП переходит в режим стабилизации тока. Выходное напряжение может ограничиваться, чтобы исключить перегрузку по мощности. Настройка осуществляется через панель управления устройства или с компьютера через интерфейсы USB, LAN, GPIB.

Программирование предоставляет расширенные возможности по управлению. Например, можно формировать последовательность изменений напряжения и тока, генерирование пилообразных и других сигналов для тестирования предохранителей и различных электроприборов.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]