Перегрузка трансформатора – режим, сокращающий срок эксплуатации устройства


Какие бывают трансформаторы


Виды трансформаторов
Трансформаторы различаются по техническим характеристикам и назначению, они подразделяются на несколько видов, это:

  1. Силовые – служат для преобразования электрической энергии в электрических сетях различного напряжения (0,4/10,0/35,0/110,0/220,0/500,0/1150,0 кВ) промышленной частотой 50 Гц. Устанавливаются на трансформаторных подстанциях и специально оборудованных основаниях и площадках. Различаются по конструкции системы охлаждения (масляные и сухие), количеству обмоток (2-х, 3-х и более обмоток).
  2. Сетевые – используются для электроснабжения низковольтных приборов бытовых и прочих устройств. Различаются по количеству обмоток на вторичной стороне и выдаваемому напряжению (от 1,5 до 127,0 В), первичное напряжение при этом – 220 В. Это низкочастотные трансформаторы.
  3. Автотрансформаторы – отличительной особенностью данных устройств является то, что одна обмотка является частью второй (первичная вторичной или вторичная первичной), благодаря чему появляется возможность регулировки напряжения на одной из обмоток.
  4. Трансформаторы тока – устройства, первичная обмотка которых включается в цепь питания источника электрической энергии, а к вторичной подключаются приборы, рассчитанные на токи меньших значений. Используются в системах учета и контроля электрической энергии. Выпускаются на все классы напряжений. Главной технической характеристикой является коэффициент трансформации, определяющийся как отношение тока в первичной обмотке, к току во вторичной обмотке. Различаются по классу точности, различаются по типу изоляции (масляные, литые, газовые, сухие), по принципу преобразования тока (электромагнитные, электронно-оптические, магнито-полупроводниковые), по конструкции первичной обмотки (катушечные, проходные, шинные), по условиям размещения и типу трансформируемых величин.
  5. Трансформаторы напряжения, измерительные – по принципу работы схожи с силовыми трансформаторами. Отличие в назначении – используются в системах учета и контроля качества электрической энергии.

Онлайн журнал электрика

При эксплуатации силовых трансформаторов приходится в отдельные часы суток перегружать их так, чтоб за счет недогрузки в другие часы обеспечить дневной износ изоляции обмоток от перегрева не выше того износа, который отвечает номинальному режиму работы трансформатора, так как изменение температуры изоляции на 6 °С вызывает изменение срока службы ее в два раза.

Продолжительность t раз в день допустимой периодической перегрузки трансформатора, оцениваемой коэффициентом превышения нагрузки K2, находится в зависимости от коэффициента исходной нагрузки K1 трансформатора, номинальной мощности его Sном, системы остывания, неизменной времени нагрева и эквивалентной температуры охлаждающего воздуха, соответственной данному периоду года.

Коэффициенты K1 и K2 определяют отношениями эквивалентных соответственно исходного и наибольшего токов к номинальному току трансформатора, при этом под эквивалентными величинами понимают их средние квадратические значения до пришествия большей нагрузки и за период ее максимума.

Графики нагрузочной возможности трансформаторов К2 (K1), отвечающие различной продолжительности t периодической перегрузки (рис. 1), позволяют по данному исходному состоянию трансформатора, характеризуемому коэффициентом K1 определяемому по суточному графику нагрузки I(t) за 10 ч до пришествия максимума ее, и данной длительности t периодической перегрузки отыскать допустимый коэффициент перегрузки К2 на период наибольшей нагрузки трансформатора.

Рис. 1. Графики нагрузочной возможности трехфазных трансформаторов номинальной мощностью до 1000 кВА с естественной циркуляцией воздуха и масла и неизменной времени нагрева 2,5 ч при эквивалентной температуре охлаждающего воздуха 20 °С.

Эквивалентная температура охлаждающего воздуха — постоянная температура его, при которой имеет место тот же износ изоляции обмоток трансформатора, несущего неизменную нагрузку, что и при имеющейся переменной температуре воздуха. При фактически постоянной нагрузке и отсутствии периодических дневных и сезонных колебаний эквивалентную температуру охлаждающего воздуха принимают равной 20 °С.

Если максимум среднего графика нагрузки I(t) в летнее время меньше номинальной мощности трансформатора, то в зимние месяцы допускается дополнительная 1 %-я перегрузка трансформатора на каждый процент недогрузки летом, но менее чем на 15 %, при этом суммарная нагрузка должна быть менее 150 % номинальной.

В аварийных случаях допускают краткосрочную перегрузку трансформаторов сверх номинальной, которая сопровождается завышенным износом изоляции обмоток и понижением срока службы трансформаторов (смотрите таблицу).

Допустимые краткосрочные перегрузки трансформаторов при аварийных режимах

Трансформаторы
маслонаполненныесухие
перегрузка сверхноминального тока, %длительнось перегрузки трансформатора, мин.перегрузка сверхноминального тока, %длительнось перегрузки трансформатора, мин.
301202060
45803045
60454032
75205018
10010605
2001,5

Такие перегрузки допустимы при всех системах остывания независимо от предыдущего режима, температуры охлаждающего воздуха и места установки трансформаторов при условии, что температура масла в верхних слоях не выше 115°С. Кроме этого, для маслонаполненных трансформаторов, работающих с коэффициентом исходной нагрузки К1 < 0,93, допускается перегрузка на 40 % сверх номинального тока менее 5 суток на время максимумов нагрузки общей длительностью менее 6 ч в день при принятии всех мер для усиления остывания трансформатора.

При переменной нагрузке на подстанцию с несколькими трансформаторами нужно составить график включений и отключений параллельно работающих трансформаторов с тем, чтоб достигнуть эконом режимов их работы.

В реальных критериях приходится несколько отклоняться от расчетного режима с тем, чтоб число оперативных переключений каждого трансформатора не превышало 10 в течение суток, т. е. не приходилось бы отключать трансформаторы наименее чем на 2 — 3 ч.

При параллельной работе трансформаторов суммарная нагрузка на трансформаторную подстанцию должна обеспечить достаточную нагрузку каждому из их, о чем судят по свидетельствам соответственных амперметров, установка которых для трансформаторов номинальной мощностью 1000 кВА и выше неотклонима.

Современные трансформаторы, работающие при большой магнитной индукции, не должны находиться в эксплуатации при значимом повышении первичного напряжения, потому что это сопровождается повышением утрат электронной энергии на нагрев магнитопроводов. Долгое увеличение первичного напряжения при нагрузке трансформатора не выше номинальной допускают до 5 % напряжения данного ответвления, а при нагрузке его на 25 % номинальной мощности — до 10 %, которое может быть допущено и при нагрузке не выше номинальной продолжительностью до 6 ч в день.

Степень неравномерности нагрузки по фазам трансформатора не должна превосходить 20 %. Она определяется так:

Kн = (Iмах — Iср / Iср) х 100,

где, Iмах — ток перегруженной фазы в момент большей нагрузки трансформатора, Iср — средний ток 3-х фаз трансформатора в тот же момент.

Школа для электрика

Принцип работы

Работа трансформатора основана на принципе электромагнитной индукции, которая создается в магнитной сердечнике аппарата.

Электромагнитная индукция возникает под воздействием электрического тока проходящего в первичной обмотке устройства, и посредством ее возникает электрический ток во вторичной обмотке.


Первичная и вторичная обмотка устройства

Основные характеристики

Мощность – определяет количество мощности потребителей, которых возможно подключить к данному устройству в нормальном режиме работы;

Напряжение – определяет характеристики электрической сети, для которых предназначено устройство.

Режимы работы трансформатора

  1. Рабочий режим – когда устройство работает в соответствии с заданными техническими параметрами и в соответствии с предъявляемыми требованиями.
  2. Режим холостого хода – в данном режиме работы в первичной обмотке протекает ток холостого хода, вторичная сеть – разомкнута (нагрузка отсутствует);
  3. Режим короткого замыкания – аварийный режим работы, характеризуется замыканием вторичной обмотки накоротко.

Еще один режим, который может возникнуть в процессе эксплуатации – это режим перегрузки, характеризующийся еще не режимом короткого замыкания, но, тем не менее, параметрами, не соответствующими рабочему режиму работы.

Читайте также

2.2. Обслуживание силовых трансформаторов и автотрансформаторов

2.2. Обслуживание силовых трансформаторов и автотрансформаторов 2.2.1. Термины и определения Трансформаторы и реакторы являются одним из наиболее массовых типов продукции электромашиностроительных заводов и самым распространенным видом электрооборудования на

2.2.2 Параметры и режимы работы трансформаторов и автотрансформаторов

2.2.2 Параметры и режимы работы трансформаторов и автотрансформаторов Наиболее широкое распространение получили масляные трансформаторы. Основным преимуществом масляных трансформаторов по сравнению с сухими является защищенность их обмоток от внешних воздействий, что

2.4. Параллельная работа трансформаторов

2.4. Параллельная работа трансформаторов Параллельная работа трансформаторов (автотрансформаторов) разрешается при следующих условиях:группы соединения обмоток одинаковы. Параллельная работа трансформаторов, принадлежащих к разным группам соединения обмоток,

2.10. Повреждения при работе трансформаторов

2.10. Повреждения при работе трансформаторов В процессе эксплуатации могут возникнуть неполадки в работе трансформаторов, с одними из которых трансформаторы могут длительно оставаться в работе, а при других требуется немедленный вывод их из работы.Причинами повреждений

5.3.3. Параллельная работа трансформаторов

5.3.3. Параллельная работа трансформаторов Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении не менее чем двух основных обмоток одного из них с таким же числом основных обмоток другого трансформатора (других

5.3.4. Режим работы автотрансформаторов

5.3.4. Режим работы автотрансформаторов Для АТ характерны следующие основные режимы работы:1. Режимы ВН — СН и СН — ВН являются чисто автотрансформаторными режимами. В этих режимах может быть передана полная номинальная мощность АТ.2. Режимы ВН — НН и НН — ВН являются

Перегрузка трансформатора, ее виды

Совокупность допустимых нагрузок и перегрузок – определяет нагрузочную способность трансформатора.

Допустимая нагрузка – нагрузка, соответствующая номинальному режиму работы, неограниченная по времени, при которой не происходит износ изоляции обмоток, вызываемый нагревом в процессе работы.

Перегрузка – режим работы, вызванный подключением мощности нагрузки больше номинальной или температуры окружающей среды больше расчетной. При перегрузке происходит ускоренный износ изоляции обмоток.

Перегрузки бывают:

  1. Систематические – вызванные суточным графиком работы. Такие режимы работы должны соответствовать допустимым коэффициентам перегрузки и времени их прохождения для каждого конкретного устройства.
  2. Аварийные – вызванные аварийными ситуациями. Перегрузки данного вида бывают:
  • Кратковременные;
  • Длительные.

Перегрузка масляных трансформаторов

Масляный трансформатор – силовой агрегат, в котором в качестве охлаждающей жидкости используется масло.

Режим работы аппаратов подобного типа регламентирован ГОСТ 14209-97 (МЭК354-91) «Руководство по нагрузке силовых масляных трансформаторов», который введен в действие в 2001 году.

Предельные значения температуры и тока для режима перегрузок:

Тип нагрузкиТрансформаторы
Распределительныесредней мощностиБольшой мощности
Систематические
Значения электрического тока (относительных единиц)1,51,51,3
Температура наиболее нагретого участка, °С140140120
Температура охлаждающего реагента (масла) в верхнем слое, °С105105105
Аварийные, продолжительные
Значения электрического тока (относительных единиц)1,81,51,3
Температура наиболее нагретого участка, °С150140130
Температура охлаждающего реагента (масла) в верхнем слое, °С115115115
Аварийные, кратковременные
Значения электрического тока (относительных единиц)2,01,81,5
Температура наиболее нагретого участка, °ССм.примечания160160
Температура охлаждающего реагента (масла) в верхнем слое, °ССм.примечания115115

*Примечания:

  • Для аварийных перегрузок, которые имеют кратковременный характер, предельные значения температуры охлаждающего реагента (масла) в верхнем слое и наиболее нагретого участка – не установлены. Причиной этого, является то, что при эксплуатации подобного типа оборудования, нет возможности осуществлять контроль продолжительности аварийной перегрузки данного типа трансформаторов.
  • При эксплуатации распределительных трансформаторов необходимо не забывать, что при температуре превышающей 140-160 °С, возможно выделение пузырьков газа, снижающих электрическую прочность изоляции.

Перегрузка трансформаторов тока

Устройство и режим работы устройств регламентированы ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия», принят Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 20 от 1 ноября 2001 г.) и введен в действие 01.01.2003 года.

Перегрузка данного типа аппаратов возникает при подключении нагрузки больше номинальной, в связи с этим, величина тока в первичной сети, увеличивается, что негативно отражается на изоляции устройства.

Коэффициент безопасности (перегрузка по первичному току) определяется заводом-изготовителем аппаратов, соответствует требованиям ГОСТ и МЭК и составляет 5 и 10.[/wpmfc_cab_sw]

Руководство по нагрузке силовых масляных трансформаторов

При выборе трансформаторов кроме их паспортных данных должны быть учтены возможные в эксплуатации кратковременные и длительные перегрузки. При проверке допустимости нагрузок и перегрузок трансформаторов применяют следующие определения [11].

Распределительный трансформатор— трехфазный трансформатор номинальной мощностью не более 2500 кВ×А или однофазный номинальной мощностью не более 833 кВ×А классов напряжения до 35 кВ включительно, то есть понижающий трансформатор с охлаждением ON и без переключения ответвлений обмоток под нагрузкой.

Трансформатор средней мощности — трехфазный трансформатор номинальной мощностью не более 100 МВ×А или однофазный номинальной мощностью не более 33,3 МВ×А

Нагрузка трансформаторов непрерывно меняется в течение суток. При этом часть суток нагрузка трансформатора может быть меньше номинальной, температура наиболее нагретой точки обмотки при этом будет меньше длительно допустимой и трансформатор будет недоиспользоваться по нагреву. Оптимальным для трансформатора должен быть такой режим, при котором износ его изоляции был бы близок к проектному.

Сроком проектного или естественного износа трансформатора, работающего в номинальном режиме, считается примерно 20 лет. Больший срок считается нецелесообразным с точки зрения морального его износа. Этот срок определяется старением изоляции. Для нормального суточного износа изоляции трансформатора с видом охлаждения М температура наиболее нагретой точки обмотки (наиболее нагретого внутреннего слоя обмотки) в длительном режиме не должна превышать 98О С. Если температуру увеличить на 6ОС, срок службы изоляции сократится почти вдвое (правило 6 градусов).

Для того чтобы фактический срок службы был ближе к естественному, трансформатор должен быть нагружен в соответствии с так называемой нагрузочной способностью. Под нагрузочной способностью трансформатора понимают такую совокупность нагрузок и перегрузок, при которых износ изоляции обмоток за время цикла не превосходит износа, соответствующего номинальному режиму работы.

Рассмотрим возможные режимы работы по ГОСТ 14209.

Режим циклических нагрузок

Режим нагрузки с циклическими изменениями (обычно цикл равен суткам), который определяют с учетом среднего значения износа за продолжительность цикла. Режим циклических нагрузок может быть режимом систематических нагрузок или режимом продолжительных аварийных перегрузок.

Режим систематических нагрузок— режим, в течение части цикла которого температура охлаждающей среды может быть более высокой и ток нагрузки превышает номинальный, однако с точки зрения термического износа такая нагрузка эквивалентна номинальной нагрузке при номинальной температуре охлаждающей среды. Это достигается за счет понижения температуры охлаждающей среды или тока нагрузки в течение остальной части цикла. Нагрузка (перегрузка) трансформатора, которая допускается его нагрузочной способностью и которая за продолжительность цикла графика нагрузки не вызывает сокращения нормируемого срока службы трансформатора (за счет пониженного износа в часы пониженной нагрузки) называется систематической. Режим, в течение части цикла которого температура охлаждающей среды может быть более высокой и ток нагрузки превышает номинальный, однако с точки зрения термического износа такая нагрузка за время цикла (сутки) эквивалентна номинальной нагрузке, называют режимом систематических нагрузок.

При планировании нагрузок этот принцип может быть распространен на длительные периоды, в течение которых циклы со скоростью относительного износа изоляции более единицы компенсируются циклами со скоростью износа менее единицы.

Режим продолжительных аварийных перегрузок —режим нагрузки, возникающий в результате продолжительного выхода из строя некоторых элементов сети, которые могут быть восстановлены только после достижения постоянного значения превышения температуры трансформатора. Допустимая продолжительность такой нагрузки больше тепловой постоянной времени трансформатора. Предполагается, что такой режим будет возникать редко, однако может длиться в течение недель или даже месяцев и вызывать значительный термический износ. Тем не менее, такая нагрузка не должна быть причиной аварии вследствие термического повреждения или снижения электрической прочности изоляции трансформатора.

Режим кратковременных аварийных перегрузок —режим чрезвычайно высокой нагрузки, вызванный непредвиденными воздействиями, которые приводят к значительным нарушениям нормальной работы сети. При этом температура наиболее нагретой точки проводников достигает опасных значений и в некоторых случаях происходит временное снижение электрической прочности изоляции. Допустимая продолжительность такой нагрузки меньше тепловой постоянной времени трансформатора и зависит от достигнутой температуры до перегрузки; обычно продолжительность перегрузкисоставляет менее получаса. Их необходимо по возможности быстрее снизить или на короткое время отключить трансформатор во избежание его повреждения.

В ПУЭ [1] введены определения двух длительных режимов потребителя: нормального и послеаварийного. Нормальный режим потребителя электрической энергии – это режим, при котором обеспечиваются заданные значения параметров его работы. Послеаварийный режим– это режим, в котором находится потребитель электрической энергии в результате нарушения в системе его электроснабжения до установления нормального режима после ликвидации отказа. Если послеаварийный режим потребителя обусловлен выходом из строя одного из трансформаторов, то его продолжительность будет определяться временем ремонта или замены поврежденного трансформатора.

Проведем параллель между режимами потребителя и режимами нагрузок трансформатора.

Режим систематических нагрузок трансформатора возникает в нормальном режиме схемы электроснабжения потребителя при условии, что в какие-то интервалы времени суток ток нагрузки трансформатора превышает номинальный.

Режим продолжительных аварийных перегрузок трансформатора возникает в послеаварийном режиме системы электроснабжения потребителя, когда один из трансформаторов находится в ремонте, а второй воспринял на себя его нагрузку, при условии, что температура наиболее нагретой части обмотки и температура масла превысили нормально допустимые значения, но остаются меньше предельно допустимых значений. При этом нет опасности термического повреждения или снижения электрической прочности изоляции трансформатора, но имеет место повышенный термический износ трансформатора. Поэтому величина и длительность продолжительных аварийных перегрузок трансформатора в послеаварийном режиме потребителя должны быть ограничены, например, за счет разгрузки трансформатора путем отключения части электроприемников на все время ремонта или только в часы суточного максимума нагрузки трансформатора. Таким образом, в общем случае режим продолжительных аварийных перегрузок трансформатора возникает в послеаварийном режиме системы электроснабжения потребителя после разгрузки трансформатора путем отключения части электроприемников.

Режим кратковременных аварийных перегрузок возникает вследствие увеличения мощности нагрузки трансформатора вследствие срабатывания АВР при аварийном отключении одного из трансформаторов в интервале времени от срабатывания АВР до разгрузки трансформатора при условии, что температура наиболее нагретой части обмотки или температура масла превысили предельно допустимые значения. В режиме реального времени режим кратковременных аварийных перегрузок является промежуточным режимом между нормальным и послеаварийным режимами потребителя.

Выбор числа трансформаторов рассмотрен в подразделе 7.2 настоящего пособия, выбор типа и исполнения трансформаторов — в подразделе 7.3, выбор мощности трансформаторов и проверка на допустимые перегрузки рассмотрены в подразделе 7.4.

Нагрузочная способность трансформатора – это свойство трансформатора нести нагрузку сверх номинальной при определенных условиях эксплуатации (предшествующей нагрузке трансформатора, температуре охлаждающей среды) называют нагрузочной способностью [12].

Режим допустимых систематических нагрузок. Режим систематических перегрузок допустим неограниченное время, если:

— износ изоляции за время цикла не превышает номинального (НРАСЧ < 24 часов);

— температура верхних слоев масла QМ <950С;

— температура верхней наиболее нагретой точки обмотки QННТ <1400С;

— наибольший ток нагрузки не более 1,5 IНОМ (КЗ.М<1.5).

Режим допустимых продолжительных аварийных перегрузок.Если износ изоляции за сутки НРАСЧ > 24 часов. то режим перегрузки относят к аварийным, Режим аварийных перегрузок допустим. если

–если продолжительность его за время цикла не превышает расчетную допустимую (ТПЕР<�ТДОП);

— температура верхних слоев масла QМ <1150С;

— температура верхней наиболее нагретой точки обмотки QННТ <1600С;

— наибольший ток нагрузки не более 2.0 (IНОМ (КЗ.М<2,0).

Режим допустимых кратковременных аварийных перегрузок – нормируется ПТЭЭП.

2.1.21. В аварийных режимах допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды в следующих пределах:
Масляные трансформаторы:

перегрузка по току, % 30 45 60 75 100 длительность перегрузки, мин. 10

Сухие трансформаторы:

перегрузка по току, % 20 30 40 50 60 длительность перегрузки, мин. 60 45 32 18 5.

Ограничения тока и температуры при нагрузках, превышающих номинальную по ГОСТ

При нагрузке, превышающей номинальную, в ГОСТ 14209 [11] рекомендуется не превышать предельные значения тока и температуры, приведенные в таблице.

Предельные значения температуры и тока для режимов нагрузки, превышающей номинальную

Тип нагрузкиТрансформаторы
распределительныесредней мощности
Режим систематических нагрузок
Ток, отн. ед.1,51,5
Температура наиболее нагретой точки обмотки, °С
Температура масла в верхних слоях, °С
Режим продолжительных аварийных перегрузок
Ток, отн. ед.1,81,5
Температура наиболее нагретой точки обмотки, °С
Температура масла в верхних слоях, °С
Режим кратковременных аварийных перегрузок
Ток, отн. ед.2,01,8
Температура наиболее нагретой точки обмотки, °С
Температура масла в верхних слоях, °С

Не следует превышать приведенные в таблице 6.3 предельные значения тока нагрузки, температуры наиболее нагретой точки обмоток и температуры масла в верхних слоях. Для распределительных трансформаторов мощностью не более 2500 кВ×А для режимов кратковременных аварийных перегрузок предельные значения температуры масла в верхних слоях и наиболее нагретой точки не установлены, так как на практике невозможно контролировать продолжительность аварийной перегрузки распределительных трансформаторов. Следует иметь в виду, что при температуре наиболее нагретой точки, превышающей 140-160 °С, возможно выделение пузырьков газа, снижающих электрическую прочность изоляции трансформатора.

13. Последовательность и предварительное определение мощности силовых трансформаторов.

Выбор оптимальной мощности трансформаторов должен производиться в соответствии с величиной и характером электрических нагрузок. При этом должны быть учтены как экономические требования (в нормальном режиме), так и возможные в эксплуатации кратковременные и длительные перегрузки.

Различают выбор мощности распределительных трансформаторов и трансформаторов ГПП.

Выбор мощности распределительных трансформаторов должен производиться на основании технико-экономических расчетов. Предварительный выбор мощности производится либо по удельной плотности нагрузки, либо по рекомендуемым коэффициентам загрузки..

Определение мощности трансформаторов по удельной плотности нагрузок производится для цехов при известной плотности нагрузки в кВА/(квадратный метр). При плотности нагрузки менее 0,2 кВА/м2 целесообразно применять трансформаторы мощностью 1000 кВА и менее. При плотности нагрузки 0,2 кВА/м2 и более целесообразно применять трансформаторы мощностью 1600-2500 кВА.

Определение мощности трансформаторов по коэффициенту загрузки производится при отсутствии данных об удельной плотности нагрузок. В том числе, как для цехов, так и для промысловых объектов, При этом для трансформаторов распределительных подстанций следует, как правило, принимать следующие коэффициенты загрузки:

— для объектов с преобладающей нагрузкой I категории при двухтрансформаторных подстанциях — 0,65-0,7;

— для цехов с преобладающей нагрузкой II категории при однотрансформаторных подстанциях с взаимным резервированием трансформаторов — 0,7-0,8;

— для цехов с преобладающей нагрузкой II категории при возможности использования централизованного резерва трансформаторов и для цехов с нагрузками III категории — 0,9-0,95.

Предварительный выбор мощности трансформаторов ГПП и ПГВ следует производить в соответствии с нормами технологического проектирования понижающих подстанций с высшим напряжением 35-750 кВ. При этом при выходе из работы одного трансформатора оставшийся в работе трансформатор должен обеспечивать работу предприятия на время замены выбывшего трансформатора с учетом возможного ограничения нагрузки без ущерба для основной деятельности предприятия и с использованием допустимой перегрузки трансформатора.

Наивыгоднейшая мощность трансформатора соответствует минимуму приведенных затрат, которые учитывают капитальные затраты на строительство и монтаж трансформаторных подстанций (включая стоимость трансформаторов) и текущие затраты, связанные с эксплуатацией, в том числе и стоимость потерь электроэнергии в трансформаторах.

С другой стороны известно, что минимальные потери мощности в трансформаторе имеет место при коэффициенте загрузки

,

где РО

и
РК
— паспортные значения потерь мощности в стали (потери холостого хода) и в обмотках (нагрузочные потери). Для понижающих силовых трансформаторов, применяющихся в электрических сетях промышленных предприятий, значения

находятся в интервале 0,36 — 0,59. Однако при такой низкой загрузке трансформаторов возрастает установленная мощность трансформатора, а следовательно и доля капитальных затрат на трансформаторы. Поэтому оптимальный коэффициент загрузки трансформаторов
b
, учитывающий не только потери мощности в трансформаторе, ни и потери мощности в питающей сети, капитальные затраты на строительство и монтаж трансформаторных подстанций, как правило выше, чем

. На стадии проектирования рекомендуется для трансформаторов ГПП
b
= 0,65-7 [13].

При этом номинальная мощность трансформаторов распределительных подстанций и трансформаторов ГПП определяется по выражению

, (6.1)

где ST

— полная расчетная мощность нагрузки, передаваемая через
N
трансформаторов, на пятый год эксплуатации.

Для ГППв качестве ST

рекомендуется принимать
расчетную(максимальную) мощность
(

) получасового максимума, а для всех остальных трансформаторов, в том числе для распределительных подстанций, — среднюю мощность
SСМ
за наиболее нагруженную смену.

При температуре охлаждающей среды, отличающейся от стандартной (20оС), при выборе номинальной мощности трансформатора должна быть учтена температура охлаждающей среды. Температура охлаждающей среды влияет на тепловой режим трансформатора, а, следовательно, и на допустимый коэффициент нагрузки. Если температура охлаждающей среды отличается от стандартной, а нагрузка трансформатора в течение некоторого времени значительно не изменяется, то при расчете допустимой нагрузки трансформатора в ГОСТ 14209 [11] рекомендуется пересчитать допустимый ток (мощность) нагрузки. При этом значение приемлемого коэффициента нагрузки b

в формуле (6.1) можно умножить на коэффициент учета температуры. Значения этого коэффициента для продолжительного режима приведены в таблице 6.1 для различных температур охлаждающей среды [11].

Таблица 6.1

Допустимые коэффициенты нагрузки для продолжительного режима при различных температурах охлаждающей среды

(охлаждение типа М. Д . ONAN, ON, OF

и
OD
)

Температура охлаждающей средыСТрансформаторы
распределительныесредней и большой мощности
ONAN (М)ONAN (М )ONAF (Д)
-251,371,331,33
-201,331,301,30
-101,251,221,22
1,171,151,15
1,091,081,08
1,001,001,00
0,910,920,92
0,810,820,82

В процессе работы нагрузка трансформатора может изменяться и в отдельные моменты времени может превышать номинальную. Для учета возможных в эксплуатации кратковременных и длительных перегрузок номинальную мощность трансформаторов целесообразно выбирать в следующей последовательности. Сначала предварительно рассчитывают целесообразную мощность трансформатора по (6.1) исходя из рекомендуемых коэффициентов нагрузки в нормальном режиме и намечают два варианта с номинальными мощностями (из стандартного ряда), ближайшими к рассчитанному значению. В общем случае целесообразно принимать ближайшую большую и ближайшую меньшую номинальные мощности. Однако, если расчетное значение номинальной мощности оказалось вблизи одного из стандартных значений, то может оказаться целесообразным принять стандартные значения номинальной мощности в обоих вариантах либо в большую, либо в меньшую сторону.

Выбранные трансформаторы проверяют:

— на допустимую систематическую нагрузку в нормальном режиме схемы электроснабжения;

— на допустимую кратковременную аварийную перегрузку (при срабатывании АВР) без учета разгрузки трансформатора;

— на допустимую продолжительную аварийную перегрузку в послеаварийном режиме схемы электроснабжения с учетом разгрузки трансформатора оперативным персоналом путем отключения части неответственных электроприемников (потребителей), если такое отключение возможно и допустимо для данного потребителя.

Допустимые систематические и аварийные перегрузки для масляных трансформаторов мощностью до 100 МВ·А включительно – установлены в ГОСТ 14209-97 [11], а для сухих трансформаторов и трансформаторов с негорючим жидким диэлектриком — в стандартах или технических условиях на конкретные группы или типы трансформаторов.

Режим допустимых систематических нагрузок. Режим систематических перегрузок допустим неограниченное время, если:

— износ изоляции за время цикла не превышает номинального (НРАСЧ < 24 часов);

— температура верхних слоев масла QМ <950С;

— температура верхней наиболее нагретой точки обмотки QННТ <1400С;

— наибольший ток нагрузки не более 1,5 IНОМ (КЗ.М<1.5).

Режим допустимых продолжительных аварийных перегрузок.Если износ изоляции за сутки НРАСЧ > 24 часов. то режим перегрузки относят к аварийным, Режим аварийных перегрузок допустим. если

–если продолжительность его за время цикла не превышает расчетную допустимую (ТПЕР<�ТДОП);

— температура верхних слоев масла QМ <1150С;

— температура верхней наиболее нагретой точки обмотки QННТ <1600С;

— наибольший ток нагрузки не более 2.0 (IНОМ (КЗ.М<2,0).

Режим допустимых кратковременных аварийных перегрузок – нормируется ПТЭЭП.

2.1.21. В аварийных режимах допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды в следующих пределах:
Масляные трансформаторы:

перегрузка по току, % 30 45 60 75 100 длительность перегрузки, мин. 10

Сухие трансформаторы:

перегрузка по току, % 20 30 40 50 60 длительность перегрузки, мин. 60 45 32 18 5.

Если трансформаторы в обоих вариантах проходят все проверки, то проводят технико-экономические расчеты и окончательное решение принимают на основе сопоставления вариантов по приведенным затратам.

14. Преобразование реальных суточных графиков нагрузки в эквивалентные им двухступенчатые прямоугольные графики

Для определения допустимости того или иного режима работы трансформатора необходимо строить кривые нагрева и оценивать его тепловой режим за время цикла. В инженерной практике и при проектировании кривые теплового нагрева не строят. Тепловой режим и износ изоляции трансформатора определяют косвенно по коэффициентам эквивалентного графика нагрузки.

При этом для проверки трансформаторов на перегрузку необходимо преобразовать реальный суточный график нагрузки в эквивалентный двухступенчатый. Форма двухступенчатого графика нагрузки приведена на рисунке 6.1. Реальный суточный график нагрузки и двухступенчатый должны быть эквивалентны по потерям мощности в трансформаторе. В этом случаи они будут эквивалентны и по температуре нагрева трансформатора, а следовательно и по скорости износа изоляции. На рисунке 6.1 К

1 и
К
2 – это две ступени нагрузки, причем
К
1 – это начальная или предварительная нагрузка
, К
2

максимум нагрузки. Продолжительность максимума нагрузки —
t
(или h) часов.

Рисунок 6.1 — Эквивалентный двухступенчатый график нагрузки

Применяются как точные методы преобразования, так и приближенные.

Уточненный метод. Преобразование исходного суточного графика нагрузки трансформатора в эквивалентный по потерям двухступенчатый прямоугольный график с представлением нагрузки в долях номинального тока (или номинальной мощности) выполняют в следующей последовательности.

Сначала график нагрузки представляют в относительных единицах: в долях номинального тока (или номинальной мощности)

На полученном графике нагрузки трансформатора проводят линию номинального тока l

н, (или номинальной мощности). При построении в относительных единицах эта линия соответствует
К
= 1 (рисунок 6.2).

В точках А

и
Б
пересечения номинальной линии с кривой исходного графика нагрузки выделяется участок перегрузки продолжительностью h

.

Оставшуюся часть исходного графика с меньшей нагрузкой разбивают на т

интервалов длительностью D
t
(как правило D
t
= 30 мин.) и определяют начальную нагрузку
К1
эквивалентного графика

(7.2)

где S1, S2, Sm

средние значения нагрузки на соответствующих интервалах Dt.

Участок перегрузки h’

на исходном графике нагрузки разбить на
р
интервалов Dh и определяется предварительное превышение перегрузки эквивалентного графика нагрузки

(7.3)

где , ,

средние значения нагрузки на соответствующих интервалах Dh.

Сравнивают значение с максимальным коэффициентом нагрузки Kmax

исходного графика: если , следует принять
K
2 = ; если же , следует принять
K
2
=
0,9
Кmax
, а продолжительность
h
перегрузки эквивалентного графика нагрузки рассчитать по формуле

(7.4)

Если исходный суточный график нагрузки трансформатора содержит два близких по значению максимума различной продолжительности, значения h

и
К
2 определяются по максимуму большей продолжительности, а значение
К
1

как среднеквадратичное значение остальной нагрузки.

Если исходный суточный график нагрузки трансформатора содержит несколько последовательных близких максимумов, значения К

2 и
h
определяются из охвата всех максимумов, а значение K1 — как среднеквадратичное значение оставшейся нагрузки.

1

исходный график нагрузки,

2

эквивалентный прямоугольный график нагрузки

Рисунок 7.2 — Преобразование исходного графика нагрузки трансформатора в эквивалентный двухступенчатый прямоугольный

Упрощенные методы преобразования реального графика нагрузки в эквивалентный двухступенчатый

В Упрощенных методах преобразования реального графика нагрузки в эквивалентный двухступенчатый коэффициент К2 максимума нагрузки принимается равным максимальному коэффициенту нагрузки реального графика, а длительность перегрузки и начальная нагрузка определяются графоаналитическим способом.

График нагрузки с одним максимумом.В этом случае значение t

следует определять, как показано на рисунке 6.2. Проводится горизонтальная прямая К2 , соответствующая максимальной нагрузке. Проводится (подбирается) прямая К1 и выбирается интервал времени t, так, чтобы между реальным графиком и эквивалентным двухступенчатым, выполнялись условия равенства площадей: 1=2+3+4 и a+b=c+d.

Выполнение первого из этих условий означает, что значение К1

определяют как среднее значение нагрузки для участка графика нагрузки без максимума. Выполнение второго из этих условий означает, что площадь прямоугольника со сторонами К1, t равна площади под максимумом реального графика нагрузки.

Рисунок 6.2 График нагрузки с одним максимумом

Защита от перегрузки

Для создания безопасных и надежных условий работы всех элементов электрических сетей и устройств, предусматриваются разнообразные системы защиты от не стандартных ситуаций, к которым относятся и режимы перегрузок.

Защита от перегрузок бывает основана на использовании:

  • Предохранителей и автоматических выключателей;
  • Релейной защиты (максимальная токовая защита; защита по току отсечки; защита от токов нулевой последовательности; дифференциальная токовая защита.)
  • Газовой защиты;
  • Пожарной защиты;
  • Системой использования специальных программ и автоматизации процессов.

Требования к условиям защиты различных типов трансформаторов регламентированы Правилами устройства электроустановок (ПУЭ) глава3.1 «Защита электрических сетей до 1 кВ» и глава 3.2 «Релейная защита».

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]