Устройство и принцип действия
Транзистор — электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).
Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.
Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).
Эмиттер (от латинского «выпускать») — тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского «собиратель») служит для получения зарядов эмиттера. База является управляющим электродом.
Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения характеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току — Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).
Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.
Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине — большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.
Что это такое
Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.
2SD1710 для импульсных блоков питания
Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.
Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа.
Различные виды рассматриваемых радиоэлементов
На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.
Кремниевый биполярный транзистор 2SA1286
Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.
Вам это будет интересно Особенности осциллографа С1-67
Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах.
Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.
Схема устройства полевых радиоэлементов
Режимы работы
Транзистор биполярного типа может работать в 4 режимах:
- Активный.
- Отсечки (РО).
- Насыщения (РН).
- Барьерный (РБ).
Активный режим БТ бывает нормальным (НАР) и инверсным (ИАР).
Нормальный активный режим
При этом режиме на переходе Э-Б протекает U, которое является прямым и называется напряжением Э-Б (Uэ-б). Режим считается оптимальным и используется в большинстве схем. Переход Э осуществляет инжекцию зарядов в базовую область, которые перемещаются к коллектору. Последний ускоряет заряды, создавая эффект усиления.
Обозначение на электросхемах
У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.
Схема работы простейшего радиоэлемента
По принципу действия и строению различают следующие полупроводниковые триоды:
- Полевого типа;
- Биполярного;
- Комбинированного.
Все они обладают схожим функционалом и отличаются по технологии работы.
Полевые
Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:
- Транзисторы с PN переходом управления;
- Элементы с затвором изолированного типа;
- Такие же транзисторы другой структуры (металл-диэлектрик-проводник).
Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.
Схема элемента с затвором изолированного типа
Еще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.
Вам это будет интересно Установка импульсного разрядника УЗИП
Электронно-дырочный переход
Биполярные
Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.
Принцип работы биполярного транзистора в схеме
Комбинированные
Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:
- Биполярными с внедрёнными в их схему резисторами;
- Двумя триодами одной или нескольких структур строения в единой детали;
- Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
- Элементы, в которых полевые составляющие управляют биполярными.
Комбинированный транзистор
Схемы включения
Для корректного применения и подключения БТ нужно знать их классификацию и тип. Классификация биполярных транзисторов:
- Материал изготовления: германий, кремний и арсенидогаллий.
- Особенности изготовления.
- Рассеиваемая мощность: маломощные (до 0,25 Вт), средние (0,25-1,6 Вт), мощные (выше 1,6 Вт).
- Предельная частота: низкочастотные (до 2,7 МГц), среднечастотные (2,7-32 МГц), высокочастотные (32-310 МГц), сверхвысокочастотные (более 310 МГц).
- Функциональное назначение.
Функциональное назначение БТ делится на следующие виды:
- Усилительные низкочастотные с нормированным и ненормированным коэффициентом шума (НиННКШ).
- Усилительные высокочастотные с НиННКШ.
- Усилительные сверхвысокочастотные с НиННКШ.
- Усилительные мощные высоковольтные.
- Генераторные с высокими и сверхвысокими частотами.
- Маломощные и мощные высоковольтные переключающие.
- Импульсные мощные для работы с высокими значениями U.
Кроме того, существуют такие типы биполярных транзисторов:
- Р-n-p.
- N-p-n.
Существует 3 схемы включения биполярного транзистора, каждая из которых обладает своими достоинствами и недостатками:
- Общая Б.
- Общий Э.
- Общий К.
Схема с общим эмиттером
Очень часто транзистор характеризуют характеристиками, соответствующими схеме, представленной на рис. 1.59. Эту схему называют схемой с общий эмиттером, так как эмиттер является общим электродом для источников напряжения.
Для этой схемы входной характеристикой называют зависимость тока iб от напряжения uбэ при заданном напряжении uкэ , т. е. зависимость вида iб= f (uбэ) |u кэ = const , где f — некоторая функция.
Выходной характеристикой называют зависимость тока iк от напряжения uкэ при заданном токе iб, т. е. зависимость вида i к = f (u кэ ) |i б = const,где f — некоторая функция.
Очень важно уяснить следующих два факта.
- Характеристики для схемы с общим эмиттером не отражают никакие новые физические эффекты по сравнению с характеристиками для схемы с общей базой и не несут никакой принципиально новой информации о свойствах транзистора. Для объяснения особенностей характеристик с общим эмиттером не нужна никакая информация кроме той, что необходима для объяснения особенностей характеристик схемы с общей базой. Тем не менее характеристики для схемы с общим эмиттером очень широко используют на практике (и приводят в справочниках), так как ими удобно пользоваться.
- При расчетах на компьютерах моделирующие программы вообще никак не учитывают то, по какой схеме включен транзистор. Программы используют математические модели транзисторов, являющиеся едиными для всевозможных схем включения. Тем не менее, очень полезно уметь определить тип схемы включения транзистора. Это облегчает понимание принципа работы схемы.
Физические процессы
Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном – обратное. Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.
Соответственно, как и раньше, темные маленькие кружки со стрелками – электроны, красные – дырки, большие кружки – положительно и отрицательно заряженные атомы доноров и акцепторов. Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.
Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода uб-э влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усиление электрических колебаний с помощью транзистора. Основные биполярные транзисторы приведены в таблице ниже.
Таблица характеристик биполярных транзисторов.
При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора.Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.
Схема работы и устройства биполярного транзистора.
Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этого возникает ток базы.
Ток база является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Именно поэтому базовую область делают очень тонкой и уменьшают в ней концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать с дырками и, повторюсь, ток базы будет незначительным.
Когда к эмиттерному переходу не приложено напряжение, можно считать, что в этом переходе тока нет. Тогда область коллекторного перехода имеет значительное сопротивление постоянному току, поскольку основные носители зарядов удаляются от этого перехода и по обе границы создаются области, обедненные этими носителями. Через коллекторный переход протекает очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей.
Будет интересно➡ Как расшифровать цветовую маркировку транзисторов?
Если же под действием входного напряжения возникает значительный ток эмиттера, то в базу со стороны эмиттера инжектируются электроны, для данной области являющиеся неосновными носителями. Они доходят до коллекторного перехода не успевая рекомбинировать с дырками при прохождении через базу.
Чем больше ток эмиттера, тем больше электронов приходит к коллектору, тем меньше становится его сопротивление, следовательно, ток коллектора увеличивается. Аналогичные явления происходят в транзисторе типа p-n-p, надо только местами поменять электроны и дырки, а также полярность источников E1 и E2.
Как устроен транзистор.
Помимо рассмотренных процессов существует еще ряд явлений. Рассмотрим модуляцию толщины базы.При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение заряда, обусловленное в основном ударной ионизацией.
Это явление и туннельный эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой пробой. Все происходит также, как у диодов, но в транзисторе при чрезмерном коллекторном токе тепловой пробой может наступить без предварительного электрического пробоя.
Тепловой пробой может наступить без повышения коллекторного напряжения до пробивного. При изменении напряжений на коллекторном и эмиттерном переходах изменяется их толщина, в результате чего изменяется толщина базы.
Особенно важно учитывать напряжение коллектор-база, поскольку при этом толщина коллектора возрастает, толщина базы уменьшается. При очень тонкой базе может возникнуть эффект смыкания (так называемый “прокол” базы) – соединение коллекторного перехода с эмиттерным. При этом область базы исчезает и транзистор перестает нормально работать.
При увеличении инжекции носителей из эмиттера в базу происходит накопление неосновных носителей заряда в базе, т. е. увеличение концентрации и суммарного заряда этих носителей. А вот при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда этих самых носителей в базе и сей процесс обозвали рассасыванием неосновных носителей зарядов в базе.
И напоследок одно правило: при эксплуатации транзисторов запрещается разрывать цепь базы, если не включено питание цепи коллектора. Надо также включать питание цепи базы, а потом цепи коллектора, но не наоборот.
Схема устройства транзистора.
Биполярные транзисторы
Биполярный транзистор – это полупроводниковый прибор, состоящий из трех чередующихся областей полупроводника с различным типом проводимости (р-п-р или п-р-п) с выводом от каждой области. Рассмотрим работу транзистора n-р-n-типа. Чередующиеся области образуют два р-п-перехода база–эмиттер (БЭ) и база–коллектор (БК).
К переходу БЭ прикладывают прямое напряжение EБЭ, под действием которого электроны n-области эмиттера устремляются в базу, создавая ток эмиттера. Концентрацию примесей в эмиттере делают во много раз больше, чем в базе, а саму базу по возможности тоньше. Поэтому лишь незначительная часть (1–5%) испущенных эмиттером электронов рекомбинирует с дырками базы.
Большая же часть электронов, миновав узкую (доли микрона) область базы, “собирается” коллекторным напряжением Ек, представляющим обратное напряжение для перехода БК, и, устремляясь к плюсу внешнего источника Eк, создает коллекторный ток, протекающий по нагрузке Rн. Электроны, рекомбинировавшие с дырками базы, составляют ток базы IБ.
Ток коллектора, таким образом, определяется током эмиттера за вычетом тока базы. Аналогично работает транзистор р-n-р-типа, отличаясь лишь тем, что его эмиттер испускает в базу не электроны, а дырки, поэтому полярности прикладываемых к нему прямого UЭБ и обратного Ек напряжений должны быть противоположны транзистору п-р-п-типа.
Важное по теме. Как прозвонить транзистор.
На условном обозначении транзисторов стрелка ставится на эмиттере и направлена всегда от р-области к n-области. На рис. 1.8, б приведено условное обозначение транзистора п-р-п, а на рис. 1.9, б – р-п-р. Кружок вокруг транзистора означает, что транзистор изготовлен в самостоятельном корпусе, а отсутствие кружка – что транзистор выполнен заодно с другими элементами на пластинке полупроводника интегральной микросхемы.
Будет интересно➡ Что такое Диод Зенера
Стрелку эмиттера удобно рассматривать как указатель полярности прямого напряжения, приложенного между базой и эмиттером, которое “открывает” (подобно выпрямительному диоду) транзистор. При использовании транзистора в электронных устройствах нужны два вывода для входного сигнала и два – для выходного.
Так как у транзистора всего лишь три вывода, один из них должен быть общим, принадлежащим одновременно и к входной, и к выходной цепи. Возможны три варианта схем включения транзисторов – с общей базой, общим эмиттером и с общим коллектором.
Переход в биполярном транзисторе.
Схема с общей базой
Схема включения транзистора с общей базой (ОБ) показана на рис. 1.10. Входным сигналом для схемы с ОБ является напряжение, поданное между эмиттером и базой UBX = = UЭБ; выходным – напряжение, выделяемое на нагрузке Uвых = IкRн; входным током – ток эмиттера Iвх = IЭ; выходным током – ток коллектора Iвых = Iк.
Входное напряжение UЭБ является управляющим для транзистора, поэтому небольшое его изменение (па доли вольт) приводит к изменению тока эмиттера в очень широких пределах – практически от нуля до максимального. Максимальный ток определяется назначением транзистора (маломощные, средней мощности и большой мощности) и соответствующей конструкцией.
Так как напряжение UΚБ является обратным, величина напряжения внешнего источника Ек может в десятки раз превышать значение напряжения UЭБ. Падение напряжения, выделяемого на нагрузке, будет тем больше, чем больше ток коллектора, при этом на самом транзисторе будет падать лишь небольшое напряжение UКБ, которое будет тем меньше, чем больше ток коллектора.
Таким образом, изменение на доли вольт входного напряжения приводит к изменению напряжения на нагрузке, чуть меньшего, чем напряжение Ек. Это положение определяет усилительные свойства транзистора.
Для оценки работы транзистора и его усилительных свойств в различных схемах включения рассматривают приращения входных и вызванные ими приращения выходных величин. Рассматривая транзистор как усилитель, принято характеризовать его свойства коэффициентами усиления и значением входного сопротивления. Различают три вида коэффициентов усиления:
- • коэффициент усиления по току КI = ΔIвых /ΔIвх;
- • коэффициент усиления по напряжению КU = ΔUвых/ΔUвх;
- • коэффициент усиления по мощности КР = КI • КU.
Отношение изменения входного напряжения к изменению входного тока: Rвх = ΔUвх/ΔIвх. Входное сопротивление любого усилителя приводит к искажению входного сигнала. Любой реальный источник сигнала обладает некоторым внутренним сопротивлением, и при подключении его к усилителю образуется делитель напряжения, состоящий из внутреннего сопротивления источника и входного сопротивления усилителя.
Поэтому чем выше входное сопротивление усилителя, тем большая часть сигнала будет выделяться на этом сопротивлении и усиливаться и тем меньшая его часть будет падать на внутреннем сопротивлении самого источника. Таким образом, КРБ тоже определяется соотношением сопротивлений. Так как коэффициент усиления схемы с ОБ по току КIБ оказывается меньше единицы, она применения не нашла.
Размеры биполярного транзистора.