Режимы работы транзистора: схемы, классы A, B, AB, C, D

Перед тем как подавать на вход усилителя на транзисторе сигнал, подлежащий усилению, необходимо обеспечить начальный режим работы (статический режим, режим по постоянному току, режим покоя). Начальный режим работы характеризуется постоянными токами электродов транзистора и напряжениями между этими электродами. Используют термин «начальный режим работы транзистора» и фактически равноценный ему термин «начальный режим работы усилителя».
Для определенности обратимся к схеме с общим эмиттером и соответствующим выходным характеристикам транзистора. Тогда начальный режим работы характеризуется положением так называемой начальной рабочей точки (НРТ) с координатами (Uкэн, Iкн), где Uкэн и Iкн — начальное напряжение между коллектором и эмиттером и начальный ток коллектора. Для стабильной работы усилителя стремятся не допускать изменения положения начальной рабочей точки.

Для характеристики проблемы обеспечения начального режима традиционно и вполне оправданно рассматривают следующие три схемы:

  • с фиксированным током базы;
  • с коллекторной стабилизацией;
  • с эмиттерной стабилизацией.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

На практике первую из этих схем почти никогда не используют. Из остальных двух схем предпочтение часто отдают схеме с эмиттерной стабилизацией. Рассмотрим каждую из этих схем.

Схема с фиксированным током базы

(рис. 2.14).

На подобных схемах источник напряжения Ек обычно не изображают.

В соответствии со вторым законом Кирхгофа iк· Rк + uкэ− Ек = 0 Отсюда находим ток коллектора iк: iк= − ( 1 / Rк ) · uкэ+ ( 1 / Rк ) · Ек что соответствует линейной зависимости вида у = а · х + b. Это уравнение описывает так называемую линию нагрузки (как и для схемы с диодом).

Изобразим выходные характеристики транзистора и линию нагрузки (рис. 2.15).

В соответствии со вторым законом Кирхгофа iб · Rб + uбэ − Ек = 0

Отсюда находим ток базы iб: iб = − uбэ / Rб + Ек / Rб

Будем пренебрегать напряжением uбэ так как обычно uбэ << Ек. Тогда iб = Ек / Rб

Таким образом, в рассматриваемой схеме ток iб задается величинами Ек и Rб (ток «фиксирован»). При этом iк= βст · iб + Íко

Пусть iб = iб2. Тогда HPT займет то положение, которое указано на рис. 2.15. Легко заметить, что самое нижнее возможное положение начальной рабочей точки соответствует точке Y (режим отсечки, iб = 0), а самое верхнее положение — точке Z (режим насыщения, iб > iб4).

Схему с фиксированным током базы используют редко по следующим причинам:

  • при воздействии дестабилизирующих факторов (например, температуры) изменяются величины βст и Íко, что изменяет ток Iкн и положение начальной рабочей точки.
  • для каждого значения βст необходимо подбирать соответствующее значение Rб, что нежелательно при использовании как дискретных приборов (т. е. приборов, изготовленных не по интегральной технологии), так и интегральных схем.

Статические режимы ключей на биполярных транзисторах

( 2 )

Глубина насыщения транзистора (коэффициент насыщения s) характеризуется отношением реального тока Iб к минимальному току базы, который требуется для насыщения:

( 3 )

Из (1) и (2) можно определить минимальное напряжение Uвх , которое требуется для насыщения, положив Iб = Iбн :

( 4 )

При подключении нагрузки к выходу ключа статические уровни выходного напряжения изменяются. В цифровых схемах ключ, как правило, нагружает входная цепь другого ключа такого же типа (или несколько одинаковых ключей), как показано на рис. 4. Такая нагрузка практически не влияет на режим насыщенного транзистора, так как входы внешних ключей при этом имеют потенциал, практически равный нулевому, транзисторы внешних ключей закрыты, входной ток в них отсутствует, составляющая тока нагрузки в анализируемом ключе тоже отсутствует.

Нагрузка, подключаемая по схеме рис.4, влияет на режим закрытого транзистора. В этом случае на выходе анализируемого ключа высокий уровень напряжения – внешние ключи открыты. Внешнюю цепь нагрузки можно заменить эквивалентным резистором нагрузки Rн, включенным между коллектором и эмиттером закрытого транзистора. Ток нагрузки (вытекающий из ключа), который протекает через резистор Rк, понижает уровень выходного напряжения в анализируемом ключе. Он теперь равен

( 5 )

Для интегральных логических элементов, в которых используются биполярные насыщенные транзисторы, характерна схема ключа (инвертора) с управляющим (коммутирующим) входным транзистором (рис.2). В элементах ТТЛ для расширения логических возможностей входной транзистор Т1 делается многоэмиттерным (в таком случае схема реализует логическую операцию И-НЕ).

Управляющее напряжение в ключе рис.2 однополярное (положительное). При условии, что напряжение есть выходное напряжение другого ключа такого же типа, оно может изменяться от до В ключе рис.2 в отличие от ключа рис.1 токи выходного транзистора Т2 в статических состояниях от напряжения практически не зависят.

При транзистор Т1 находится в насыщенном состоянии, т.к. оба его перехода смещены в прямом направлении (потенциал базы транзистора Т1 выше потенциала его эмиттера и коллектора, т.к. , а ). Для насыщенного транзистора Т1 имеем , тогда <, поэтому транзистор Т2 закрыт и Ток базы транзистора Т2 при этом отсутствует. Вытекающий ток замыкается через источник управляющего напряжения и задается резистором :

Перейти на страницу: 2

Другое по теме:

Проектирование цифровой радиорелейной линии Одним из основных видов современной связи являются радиорелейные линии (РРЛ) прямой видимости, которые используются для передачи сигналов многоканальных телефонных сообщений, радиовещания и телевидения, телеграфных и фототелеграфных сигналов, пе …

Схема с коллекторной стабилизацией

(рис. 2.16).

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Эта схема обеспечивает лучшую стабильность начального режима. В схеме имеет место отрицательная обратная связь по напряжению (выход схемы — коллектор транзистора соединен со входом схемы — базой транзистора с помощью сопротивления Rб.). Рассмотрим ее проявление на следующем примере.

Пусть по каким-либо причинам (например, из-за повышения температуры) ток iк начал увеличиваться. Это приведет к увеличению напряжения uRк, уменьшению напряжения uкэ и уменьшению тока iб ( iб = uкэ/ Rб), что будет препятствовать значительному увеличению тока iк, т. е. будет осуществляться стабилизация тока коллектора.

Схема с эмиттерной стабилизацией

В зарубежной литературе такую схему называют схемой с Н-смещением (конфигурация схемы соответствует букве Н). Основная идея, реализованная в схеме, состоит в том, чтобы зафиксировать ток iэ и через это ток iк ( iк = iэ ). С указанной целью в цепь эмиттера включают резистор Rэ и создают на нем практически постоянное напряжение uRэ. При этом оказывается, что iэ= uRэ/ Rэ= const. Для создания требуемого напряжения uR используют делитель напряжения на резисторах R1 и R2. Сопротивления R1и R2 выбирают настолько малыми, что величина тока iб практически не влияет на величину напряжения uR2. При этом uR2= Eк · [ R2/ ( R1+ R2)] В соответствии со вторым законом Кирхгофа uRэ= uR2– uб

При воздействии дестабилизирующих факторов величина uбэ изменяется мало, поэтому мало изменяется и величина uRэ. На практике обычно напряжение uRэ составляет небольшую долю напряжения Ек.

Различают следующие режимы работы транзистора (классы работы): А, АВ, В, С и D.

Рассматриваемые RС-усилители обычно работают в режиме А.

  1. В режиме «А» ток коллектора всегда больше нуля (iк > 0). При этом он увеличивается или уменьшается в зависимости от входного сигнала.
  2. В режиме «В» Iкн = 0, поэтому ток коллектора может только увеличиваться. При синусоидальном входном сигнале в цепи коллектора протекают положительные полуволны тока.
  3. Режим «АВ» является промежуточным между режимами А и В.
  4. В режиме «С» на вход транзистора подается начальное запирающее напряжение, поэтому в цепи коллектора в каждый период входного сигнала ток протекает в течение времени меньшего, чем половина периода.
  5. Режимом «D» называют ключевой режим работы (транзистор находится или в режиме насыщения, или в режиме отсечки).

Структура биполярного транзистора

Транзисторы подразделяют на два основных класса: биполярные и полевые.

Биполярным транзистором

называют полупроводниковый прибор с двумя взаимодейст-вующими электрическими переходами и тремя (или более) выводами, усилительные свойства которого обусловлены явлениями инжекции и экстракции неосновных носителей заряда.

Имеется две разновидности биполярных транзисторов: бездрейфовые (диффузионные) и дрей-фовые – они отличаются принципом работы. Рассмотрим бездрейфовые биполярные транзисторы.

Конструктивно биполярный транзистор представляет собой пластину монокристалла полупроводника с электропроводностью р- или n-типа, по обеим сторонам которой вплавлены (или внесены другим образом) полупроводники, обладающие другим типом электропроводности. На границе раздела областей с разным типом электропроводности образуются p-n- или n-p-переходы. Каждая из областей, называемых эмиттером 1, коллектором 2 и базой 3, снабжается омическим контактом, от которого делается вывод Э, К и Б, соответственно (рис. 1.25). База биполярного транзистора

– средняя область в p-n-p- (или n-p-n-) структуре, характеризуется наименьшей концентрацией примесей, посредством омического контакта соединена с выводом, называемым базой (Б).
Эмиттер
– крайняя область в p-n-p- (или n-p-n-) структуре биполярного транзистора, используемая для инжекции (впрыскивания) носителей в область базы, посредством омического контакта соединена с выводом, называемым эмиттер (Э).
Коллектор
– крайняя область в p-n-p- (или n-p-n-) структуре
биполярного транзистора
, используемая для экстракции (втягивания) носителей из области базы; посредством омического контакта соединена с выводом, называемым коллектор (К). Транзистор укрепляют на кристаллодержателе и помещают в герметизированный корпус, в дно которого через стеклянные изоляторы проходят выводы. Корпус может быть металлическим, пластмассовым или стеклянным.

Рис. 1.25. Биполярный транзистор

При рассмотрении процессов, происходящих в транзисторе, его удобно представлять плоскос-тными структурными схемами. Изображенный на рис. 1.25 транзистор в виде структурной схемы показан на рис. 1.26, а. Он имеет структуру p-n-р. На рис. 1.26, б показан транзистор с другим чередованием областей (n-p-n), на рис. 1.26, в, г – соответствующие структурным схемам условные обозначения транзисторов. Разницы в принципе работы транзисторов обеих структур нет, но полярность подключения выводов к источнику питания противоположная. Так как транзистор – симметричная структура, то любая крайняя область могла бы быть как эмиттером, так и коллектором. Однако в реальных конструкциях исходя из обеспечения лучшей работы транзистора область коллектора делается большей по размерам, чем область эмиттера. Из тех же соображений активная толщина базы делается небольшой (меньше диффузионной длины неосновных носителей). Выводы от каждой из областей называются так же, как и области: эмиттерный, базовый, коллекторный. Переход эмиттер-база называется эмиттерным, коллектор-база – коллекторным. Назначение эмиттера – инжекция (вспрыскивание) в область базы не основных для нее носителей заряда, для чего область эмиттера выполняют более насыщенной основными носителями (более низкоомной), чем область базы. Назначение коллектора – экстракция (втягивание) носителей из базы, в которой различают три области: активную (между эмиттером и коллектором, через нее приходят носители заряда в активном режиме работы тран-зистора), пассивную (между эмиттером и выводом базы) и периферическую (за выводом базы).

Транзисторы классифицируют по различным признакам: по мощности – малой, средней, большой; по диапазону рабочих частот – низких, средних, высоких; по методу изготовления – сплавные, микросплавные, диффузионные, планарные, мезаструктуры.

Рис. 1.26. Плоскостные структурные схемы и условные обозначения транзисторов

  • Назад
  • Вперёд
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]