Схема измерения напряжения в цепи переменного тока


Как измерять напряжение?

Тусклый свет от приборов освещения или отказ стиральной машины выполнять свои функциональные обязанности свидетельствует о возможном падении питающего напряжения ниже нормы. В таких случаях необходимо произвести измерение напряжения, что позволит определить его соответствие заданному номиналу электрической сети.
Такая же процедура производится при ремонте электронных приборов, где измеряется падение напряжения на радиодеталях и отдельных участках цепи. Данная процедура выполняется довольно легко, но без понимания физики процесса и особенностей проведения замеров, человек рискует не только повредить дорогостоящее оборудование, но и получить электротравму, поэтому далее мы рассмотрим основные принципы измерения.

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы.

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

Измерение силы тока, напряжения и мощности в электрических цепях.

⇐ ПредыдущаяСтр 3 из 3

Д/З. Попов В.С. Общая электротехника с ОЭ.§8.4 — §8.8.

1.Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Рис.1.

Измерение силы тока и напряжения амперметром и вольтметром.

Вольтметр

предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением
RV
. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на
рис. 1
, это условие записывается в виде:

RV

>>
R1
.

Это условие означает, что ток: IV

=
,
протекающий через вольтметр, много меньше тока
I
=
,
который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр

предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением
RA
. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на
рис. 1.
сопротивление амперметра должно удовлетворять условию
RA
<< (r + R1 + R2),

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы – вольтметры и амперметры – бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Амперметр и вольтметр

приборы, которые могут быть устроены на базе одно итого же прибора магнитоэлектрической системы, который называют гальванометром:

Рис.2.Гальванометр.

Любой гальванометр, имеет проволочную катушку, обладающую сопротивлением

. Если к гальванометру подключить последовательно добавочное сопротивление, то его можно использовать как вольтметр, подключая его, вместе с добавочным сопротивлением, параллельно участку цепи:

Рис.3.Подключение добавочного сопротивления к гальванометру.

Rд = R

г(
n – 1
), где
n
= , отношение напряжения которое необходимо измерить к напряжению которое приходится на катушку гальванометра.

В соответствии с законами последовательного соединения и законом Ома для участка цепи имеем:

I

д =
I
г ,

= , = ,

U


U
г =
R
д , ‒ 1 = ,
n
‒ 1 = ,

Rд = R

г(
n – 1
).

Если к гальванометру подключить параллельно сопротивление (шунт), то его можно использовать как амперметр, подключая его, вместе с шунтом, параллельно участку цепи:

Рис.4.Подключение шунта к гальванометру.

U

ш =
U
г,

I

ш⋅
R
ш=
I
г ⋅
R
г , (
I

I
г )⋅
R
ш=
I
г ⋅
R
г, ( ‒1)⋅
R
ш=
I
г ⋅
R
г,

R

ш = , где
n
= , отношение cилы тока которую необходимо измерить к силе тока которая приходит через катушку гальванометра.

.

2. Измерение мощности.

Мощность в электрической цепи можно измерить помощью амперметра и вольтметра.

Зная показания амперметра и вольтметра по формуле:

P = U∙I —

определяем мощность в электрической цепи.

Мощность в электрической цепи можно определить, используя ваттметр электродинамической системы.

.

Рис.6.Схема соединения катушек Рис.7.Схема включения катушек

электродинамического ваттметра. электродинамического ваттметра.

Катушка вывод (вывод её обозначается *), которой подключается последовательно к источнику тока (генератору) называется токовой.

Катушка, которая подключается параллельно нагрузке, называется катушкой напряжения. Один из выводов этой катушки обозначается *и соединяется с выводом токовой катушки, обозначенной звёздочкой*. Шкала такого прибора проградуирована в ваттах (Вт).

⇐ Предыдущая3

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Измерение напряжения в сети

Чтобы правильно выполнить измерение напряжения необходимо четко представлять принцип и объект исследования. Поэтому следует отметить, что напряжение представляет собой такую электрическую величину, которая показывает разность заряда между двумя электрическими точками. К примеру, если в одной точке заряд составит +35 В, а в другой +310 В, то разница между этими точками составит 310 – 35 = 275 В, это и будет напряжение. Соответственно измерение напряжения может производиться только относительно чего-то, поэтому используются сразу две точки.

Рис. 1. Схема измерения напряжения

Если говорить о падении напряжения на каком-либо объекте или участке цепи, то измерение напряжения проводиться относительно концов прибора или цепи, точек подключения и т.д. При этом важно учитывать, что цифровой вольтметр или мультиметр в режиме измерения считается бесконечным сопротивлением или разрывом в цепи.

Падение напряжения возможно только при условии протекания тока, поэтому подключение вольтметров последовательно с измеряемым объектом недопустимо, так как через него перестанет протекать ток. Аналоговый или электронный вольтметр должен подключаться только параллельно по отношению к измеряемому сигналу.

С практической точки зрения следует заметить, что аналоговые модели измерительных приборов имеют входное сопротивление равное 10 – 20 кОм, а современные мультиметры могут похвастаться 1МОм. Так как через сопротивление на входе в измерительное устройство может протекать ток утечки, этот делитель напряжения будет обуславливать снижение точности измерений. Поэтому чем ближе сопротивление на входе к бесконечности, тем более точный прибор вы используете.

Важно отметить, что замеры производятся под напряжением, из-за чего присутствует угроза поражения электротоком. Поэтому важно соблюдать элементарные меры предосторожности. Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения.

Постоянного тока

Рис. 2. Измерение напряжения постоянного тока

Для цепи постоянного тока расмотрим порядок измерения напряжения при помощи цифрового мультиметра. Для этого:

  1. Переведите переключатель мультиметра в положение для постоянного напряжения. На панели обозначается латинской буквой V со значком « = », знаками «+ и – », также может обозначаться аббревиатурой DC.
  2. Выберете нужный предел измерения, который будет максимально приближен к предполагаемому номиналу, но выше измеряемого.
  3. Установите щупы в соответствующие разъемы – черный к выводу COM, красный к выводу V.
  4. Приложите щупы мультиметра сразу к двум точкам – красный к плюсу, черный к минусу. Если вы заранее не знаете положение потенциалов, и показание прибора имеет отрицательное значение, нужно просто поменять полярность подключения.

На дисплее вы увидите показания вольтметра, если значение слишком малое, переключите ручку на меньший предел измерений. Прикладывая щупы, создавайте хорошее усилие, чтобы избежать большого переходного сопротивления, иначе они внесут ощутимую погрешность измерений.

Переменного тока

Рис. 3. Измерение переменного напряжения

В цепи переменного тока бытовой цепи важно учитывать ее опасность из-за номинала в 220/380 В. Поэтому при невозможности подключения мультиметра непосредственно в процессе эксплуатации, его присоединение должно выполняться при отключенном напряжении при помощи «крокодилов».

В остальном процесс измерения идентичен:

    Переключите ручку мультиметра в положение для измерения переменного напряжения. На панели оно обозначается как V со значком «

» или аббревиатурой AC.

  • Установите ручкой деление на нужный предел по принципу ближайшего большего потенциала относительно измеряемого номинала.
  • Выполните подключение щупов к соответствующим выводам: черный к выводу COM, красный к выводу V.
  • Подключите измерительный прибор к нужному устройству, заметьте, что полярность щупов здесь значения не имеет.
  • На дисплее у вас отобразится действующее значение разности потенциалов, именно оно и является основным для всех расчетов. Но, помимо этого существует и амплитудное значение, которое больше действующего на √2 раз или 1,41 раза.

Измерение тока, напряжения, сопротивления

Измерение тока

Для измерения тока в цепи служат амперметры, включаемые последовательно в цепь, где производится определение величины тока. Чтобы ток в цепи при включении амперметра не изменился, необходимо сопротивление его обмотки делать очень малым. Для этого обмотку амперметра делают из небольшого числа витков толстой проволоки. Чтобы расширить пределы измерения амперметра, применяют шунты. Шунты представляют собой манганиновые пластины или стержни, впаянные в медные или латунные наконечники. Шунт включается в цепь последовательно. Параллельно ему включается амперметр. Ток I в цепи А разветвляется обратно пропорционально сопротивлениям обмотки амперметра ra и шунта rш: Ia/Iш= rш/ra, причем Iш=I- Ia, откуда сопротивление шунта будет rш=(Iara)/(I- Ia). Обозначим отношение тока I к току Ia через n (число n иногда называют коэффициентом шунтирования). Тогда выражение для rш можно записать так: rш=rа/(n-1). На токи до 100 А шунты помещают внутри прибора (внутренние шунты). На большие токи шунты делаются наружными и присоединяются к амперметрам при помощи проводов, сопротивление которых точно выверено, так как иначе распределение токов будет другим и измерение неправильным. Встречаются универсальные шунты на несколько пределов измерений. Приборы, которые постоянно работают со своим индивидуальным шунтом, градуируются с учетом шунта, о чем делается надпись на шкале прибора. Часто применяются также калиброванные шунты. Такой шунт можно включать с любым прибором, рассчитанным на ту же величину падения напряжения, что и данный шунт. Обычно шунты ставятся только к приборам магнитоэлектрической системы для измерений в цепях постоянного тока. Для расширения пределов измерения амперметров в цепях переменного тока применяются трансформаторы тока.
Измерение напряжения
Для измерения напряжения употребляются вольтметры. Вольтметры включаются параллельно тому участку цепи, где необходимо измерить напряжение. Чтобы прибор не потреблял большой ток и не влиял на величину напряжения цепи, обмотка его должна иметь большое сопротивление. Чем больше внутреннее сопротивление вольтметра, тем точнее он будет измерять величину напряжения. Для этого обмотка вольтметра изготовляется из большого числа витков тонкой проволоки. Для расширения пределов измерения вольтметров употребляются добавочные сопротивления, включаемые последовательно с вольтметрами. В этом случае напряжение сети распределяется между вольтметром и добавочным сопротивлением. Величину добавочного сопротивления необходимо подбирать с таким расчетом, чтобы в цепи с повышенным напряжением по обмотке вольтметра проходил тот же ток, что и при номинальном напряжении. Ток, на который рассчитана обмотка прибора, Iв=U/rв. В цепи с напряжением в n раз большим ток вольтметра с добавочным сопротивлением r должен остаться прежним: Iв=nU/(rв+ r) или U/rв=nU/(rв+ r), отсюда величина добавочного сопротивление равна r= rв(n-1). Добавочные сопротивления изготовляют из манганиновой проволоки, намотанной на гетинаксовый или фарфоровый каркас, и помещают внутри прибора или отдельно от него. Для измерения высоких напряжений переменного тока употребляются измерительные трансформаторы напряжения.

Измерение коэффициента мощности

Значение коэффициента мощности в сетях однофазного переменного тока можно определить по показаниям вольтметра, амперметра и ваттметра согласно формуле cos φ=P/UI. Теми же приборами коэффициент мощности в сетях трехфазного тока с равномерной нагрузкой можно определить по формуле cos φ=P/UI√3, где U и I – линейные напряжение и ток, а φ – угол сдвига между фазными напряжением и током. Среднее значение коэффициента мощности cos φср за определенный промежуток времени можно определить по показаниям счетчиков активной и реактивной энергии за то же время согласно формуле cos φср=Аа/√(Аа2+ Аp2), где Аа — активная энергия; Аp — реактивная энергия. Мгновенное значение коэффициента мощности на практике определяют при помощи специальных приборов – фазометров.

Измерение сопротивления мегомметром

Мегомметры служат для измерения сопротивления отдельных частей электротехнических установок по отношению к «земле» и друг относительно друга. Согласно правилам сопротивление изоляции проводов должно быть не менее чем 1000 Ом на каждый вольт рабочего напряжения. Так, например, для сети с рабочим напряжением 220 В сопротивление изоляции должно быть не менее 220 000 Ом, или 0,22 МОм. Измерение сопротивления изоляции должно производиться напряжением, по возможности равным рабочему, и во всяком случае напряжением, не меньшим 100 В. Мегомметры, показания которых зависят от напряжения, состоят из источника напряжения и измерителя. Если последовательно в цепь включить регулируемое сопротивление r, то показания измерителя (вольтметра) будут зависеть от величины этого сопротивления (при постоянном напряжении цепи). При r=0 показание вольтметра будет небольшим, при r=∞ вольтметр покажет нуль. Включая различные сопротивления, можно отградуировать шкалу измерителя непосредственно в омах (килоомах, мегаомах). В дальнейшем таким прибором можно воспользоваться для измерения сопротивлений, если применить источник энергии с напряжением, равным напряжению при градуировке.

Реальные примеры измерения напряжения

Наиболее простым примером измерения напряжения в бытовых условиях является пальчиковая батарейка. В ней вам необходимо приложить черный щуп к выводу «– », а красный к выводу « + », позицию переключателя установить на 2 В постоянного напряжения.

Рис. 4. Пример измерения напряжения на батарейке

Если показания для батарейки 1,5 В будут в пределах от 1,6 до 1,2 В, то такой источник питания считается пригодным для всего оборудования, в случае снижения значений до 1 – 0,7 В, от батарейки будут запускаться импульсные устройства, к примеру, часы. Если вольтметр покажет 0,6 В и менее, разряд достиг критического значения.

При измерении разности потенциалов в бытовой сети, вам следует коснуться щупами контактов розетки. Так как изолированная часть щупа имеет ограничительное кольцо, за которым расположен длинный стержень, вы можете безопасно проникнуть в розетку, не рискуя прикоснуться к токоведущим элементам. Допустимыми считаются отклонения от номинала на 10%, то есть от 198 до 142 В.

Также можно замерить разность потенциалов на выходе автомобильного аккумулятора или на другом элементе цепи электрической проводки. Для этого черный щуп мультиметра устанавливается на «– » клемму аккумулятора, а красный на « + » клемму.

Если аккумулятор заряжен, то показания вольтметра должны находиться в пределах от 12 до 14 В, но встречаются модели и с большим разбросом. Такое измерение позволяет диагностировать различные причины неполадок.

Измерение тока, напряжения и мощности

Измерение тока. Для измерения тока используются амперметры. Амперметр включается в цепь таким образом, чтобы через него проходил весь измеряемый ток, т.е. последовательно. Поэтому его сопротивление должно быть малым по сравнению с сопротивлением цепи.

Для измерения постоянного тока используются приборы магнитоэлектрической системы, реже приборы электромагнитной системы. Для измерения переменного тока частотой 50 Гц в основном применяют приборы электромагнитной системы. Сопротивление этих приборов лежит в пределах от долей ома до нескольких ом.

Для расширения пределов измерения амперметров в цепях постоянного тока используют шунты. Их сопротивления подсчитывают по формуле:

где I

ан — номинальное значение тока амперметра;
R
а — внутреннее сопротивление амперметра;
I
ш — ток, проходящий через шунт.

Для расширения пределов измерения амперметров в цепях переменного тока используют измерительные трансформаторы тока.

Измерение напряжения. Для измерения напряжения используют вольтметры.

Вольтметры включаются параллельно участку электрической цепи, на котором измеряют напряжение. Вольтметр должен иметь большое сопротивление по сравнению с сопротивлением соответствующего участка цепи. В цепях постоянного тока используют вольтметры магнитоэлектрической системы, но обычно с добавочным сопротивлением.

Для расширения пределов измерений вольтметров в цепях постоянного тока до 4500 В служат добавочные резисторы (сопротивления). Их сопротивление определяют по формуле:

где U

н — номинальное напряжение прибора;
U
max — максимальное измеряемое напряжение;
RV
— сопротивление вольтметра.

В цепях переменного тока используют вольтметры электромагнитной и электродинамической системы.

Измерение мощности. Мощность в электрической цепи синусоидального тока определяется по формуле:

P=U I ·

cos(
Ð
)
,
где U

и
I
— действующие значения напряжения и тока; j =
Ð
— угол разности начальных напряжения и тока (угол сдвига фаз).

Для измерения мощности в электрических цепях необходимо измерить напряжение, ток и угол сдвига фазы. Для этого используется прибор — ваттметр с двумя катушками. Это приборы электродинамической и ферродинамической измерительных систем. Катушка напряжения включается параллельно участку цепи, подобно вольтметру, ее зажимы на лицевой стороне ваттметра обозначены буквой U.

Токовая катушка включается в цепь последовательно, подобно амперметру, ее зажимы обозначены буквой
I
(рисунок 1.4.).

Рисунок 1.4 — Схема включения ваттметра

На ваттметре начало токовой катушки и катушки напряжения отмечены звездочками, это генераторные зажимы. При измерении активной мощности эти зажимы включаются со стороны источника энергии. Такие же особенности имеет и так же включается в сеть фазометр — прибор, предназначенный для измерения угла сдвига фаз j. Он позволяет непосредственно определить по шкале угол j и cos j.

Цена деления многопредельного ваттметра определяется по формуле:

где U

п
, I
п— предельные значения напряжения и тока, указанные на соответствующих зажимах прибора;
n
— число делений шкалы.

Активная мощность, измеряемая ваттметром,

где W

изм — число делений шкалы, указываемое стрелкой прибора.

Таким же образом определяется цена деления амперметра и вольтметра, если шкала прибора не проградуирована в единицах измерения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Измерение тока и напряжения

Измерения в цепях постоянного тока

Измерения постоянного тока и напряжения производятся с помощью приборов магнитоэлектрической, электромагнитной, электродинамической систем, напряжение измеряется также электростатическими и электронными вольтметрами. Кроме этого, для более точных измерений используются компенсаторы постоянного тока.

Магнитоэлектрические измерительные механизмы непосредственно являются микро- и миллиамперметрами или милливольтметрами, а в сочетании с шунтами и добавочными сопротивлениями – соответственно амперметрами и вольтметрами.

Для измерения и обнаружения малых токов (10-11 — 10-5 А) и напряжений (меньших 10-4 В) применяют гальванометры – высокочувствительные измерительные механизмы обычно магнитоэлектрической системы. В отличие от приборов, шкалы которых градуируются в измеряемых величинах, гальванометры имеют неименованную шкалу, цена деления которой указывается в паспортных данных прибора или определяется экспериментально.

Измерение постоянных токов и напряжений можно производить с помощью амперметров и вольтметров электромагнитной и электродинамических систем. Они применяются в основном для измерений в цепях переменного тока.

Электростатические измерительные механизмы являются электростатическими вольтметрами, так как они могут непосредственно измерять напряжение. Диапазон измеряемых ими напряжений находится в пределах от десятка вольт до сотен киловольт. Для измерения напряжений до 3 кВ используют измерительные механизмы с изменяющейся активностью поверхности электродов. Изготавливают вольтметры однопредельными и многопредельными, переносными (до 30 кВ) и стационарными (для измерения высоких напряжений, свыше 30 кВ).

Класс точности современных электростатических вольтметров достигает 0,1 и даже 0,05 (С-71), однако чаще всего изготавливают приборы классов 1,5; 2 и 2.5. Для уменьшения влияния внешних электростатических полей применяют электростатическое экранирование. Пределы измерений расширяют с помощью резисторных делителей напряжения.

Основными достоинствами электростатических вольтметров являются: очень малое собственное потребление мощности (большое входное сопротивление, 1010 Ом), способность измерять постоянные и переменные напряжения, возможность непосредственно измерять большие напряжения. К недостаткам относятся малая чувствительность и неравномерность шкалы.

Измерение постоянных напряжений от долей вольта до нескольких киловольт может осуществляться с помощью электронных вольтметров, которые содержат измерительный механизм и ламповый или транзисторный усилитель постоянного тока. Существует несколько разновидностей электронных вольтметров постоянного тока, однако все они характеризуются структурной схемой, показанной на рисунке 6.1 рис. 6.1.

Рис. 6.1.
Структурная схема электронного вольтметра постоянного напряжения: а) со стрелочным отсчетом; б) с цифровым отсчетом

Входное устройство (делитель напряжения), на которое подается напряжение UX , позволяет изменять пределы измерения и обеспечивает высокое входное сопротивление прибора.

В качестве измерительного механизма используют обычно магнитоэлектрический микроамперметр с пределами измерения 50 500 мкА.

Усилители постоянного тока предназначаются для повышения чувствительности прибора, увеличения мощности измеряемого сигнала до уровня, при котором обеспечивается требуемое отклонение указателя измерительного механизма. Усилители имеют высокое входное и малое выходное сопротивление. Это обеспечивает согласование входного сопротивления вольтметра (10 — 20 МОм) с малым внутренним сопротивлением микроамперметра. Наиболее часто усилители выполняются в виде мостовых схем с обратной связью.

Электронные вольтметры со стрелочным отсчетом имеют следующие особенности: большое входное сопротивление и, следовательно, малое потребление мощности от объекта измерения; высокую чувствительность при большом диапазоне измерения; способность выдерживать перегрузки; сравнительно небольшую скорость измерений (из-за инерционности магнитоэлектрического измерительного механизма); необходимость питания (от сети или батареи); большие погрешности (основная приведенная погрешность 2 — 3 %).

В настоящее время, конечно, большее распространение получили цифровые вольтметры – приборы с цифровым отсчетным устройством и аналого-цифровым преобразователем, в котором напряжение (или другие физические величины; частота, сдвиг фаз и т.д.) автоматически преобразуются в цифровой код. Такие приборы имеют ряд преимуществ перед стрелочными: обладают широким диапазоном измеряемых напряжений (от 1 мВ до 1000 В), быстродействием, позволяют проводить измерения с малыми погрешностями (0,01 — 0,005), так как принцип действия большинства приборов основан на методе сравнения, а цифровой отсчет исключает погрешность считывания. Цифровые вольтметры позволяют также вводить данные измерений непосредственно в вычислительные машины, что позволяет в дальнейшем обрабатывать полученные данные более оперативно.

К недостаткам можно отнести сложность устройства, меньшую надежность и высокую стоимость.

Существуют различные принципы построения цифровых вольтметров постоянного тока:

  • По типу используемых элементов в схемах они делятся на:
  • электромеханические;
  • электронные;

  • комбинированные.
  • По способу аналого-цифровых преобразований подразделяются на приборы с:
    • пространственным кодированием;
    • промежуточным преобразованием (в интервал времени, частоту, фазу и т.д.);

  • уравновешенным образцовым напряжением (наиболее точные).
  • Обобщенная структурная схема электронного цифрового вольтметра представлена на рисунке 6.2 рис. 6.2.

    Рис. 6.2.
    Обобщенная структура схема электронного цифрового вольтметра

    Входное устройство представляет собой высокоомное сопротивление (порядка 10 МОм) или катодный (эмиттерный) повторитель с калиброванным делителем.

    Сравнивающее устройство (нуль-орган) служит для сравнения измеряемого и образцового напряжения.

    Управляющие устройства состоят из генератора импульсов, задающего циклы измерения и управляющего работой логических схем.

    Преобразователь напряжения в код создает образцовое напряжение UОБР , которое подается в сравнивающее устройство.

    Электронный ключ представляет собой устройство, которое включает или переключает выходное напряжение под действием одного или нескольких входных напряжений, называемых управляющими.

    Электронные счетчики осуществляют отсчет измеряемого напряжения в цифровом коде (обычно в двоичной системе).

    § 70. Измерение переменных тока и напряжения

    Включение амперметра в цепь измеряемого переменного тока последовательно с нагрузкой эквивалентно включению в цепь его индуктивности и емкостей (емкости между каждым из зажимов прибора и корпусом, а также между зажимами прибора). Обычно эти емкости и индуктивность невелики и оказывают влияние только на высоких частотах. При значительном увеличении частоты растет индуктивное сопротивление, снижаются емкостные сопротивления и некоторая часть тока минует прибор, что вызывает появление частотной погрешности.

    Поэтому каждый прибор может применяться в определенном частотном диапазоне, в котором частотная погрешность не превышает указанной в паспорте. На более высоких частотах погрешность измерения будет больше нормы.

    Включение прибора в цепь изменяет сопротивление и настройку цепи. Во избежание резонансных явлений, вызванных собственными индуктивностями и емкостями прибора, на высоких частотах нужно применять приборы с малыми индуктивностями и емкостями.

    Для измерения в цепях переменного тока используют выпрямительные детекторные приборы, представляющие собой соединение магнитоэлектрического индикатора и диода. Измеряемое переменное напряжение выпрямляется диодом, и в цепи индикатора протекает постоянный ток, вызывающий отклонение стрелки. Применяют однополупериодные и двухполупериодные схемы соединения диодов и магнитоэлектрического индикатора, чаще всего мостовые двухполупериодные схемы, их используют при измерениях на низких частотах.

    Измерение тока, напряжения, мощности учебно-методический материал на тему

    Измерение тока, напряжения, мощности.

    ИЗМЕРЕНИЕ ТОКА, НАПРЯЖЕНИЯ, МОЩНОСТИ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

    Напряжение и ток в цепях постоянного тока измеряют приборами магнитоэлектрической системы. Чтобы стрелка таких приборов отклонялась в нужную сторону, ток от положительного полюса источника питания должен попадать на зажим «+» амперметра.

    Простейшим способом измерения постоянного тока является непосредственное прямое включение амперметра. При этом необходимо соблюдать три условия:

    • предел измерения амперметра должен быть больше или равен максимальному рабочему току цепи;
    • испытательное напряжение амперметра должно быть больше напряжения сети Ua > Uс,
    • сопротивление амперметра должно быть больше сопротивления приемника RA > Rnp.

    Для расширения пределов измерения постоянного тока применяют измерительные шунты, которые характеризуются номинальным первичным током Iш, падением напряжения Um, создаваемым между их измерительными зажимами при этом токе, и классом точности. Стандартные токоизмерительные шунты рассчитаны на падение напряжения 45 и 75 мВ.

    Чем меньше номинальный ток шунта, тем больше его внутреннее сопротивление. При подключении нескольких приборов параллельно шунту может возникнуть погрешность, превышающая допустимую для его класса точности. Поэтому при токах шунта в несколько десятков ампер к нему подключают один измерительный прибор.

    Напряжение в цепях постоянного тока может измеряться приборами различных систем. При использовании вольтметров PV магнитоэлектрической системы следует соблюдать полярность включения (рис. 1, а). Для расширения пределов измерения вольтметров применяют добавочные резисторы (рис. 1, б). В этом случае предел измерения:

    Рис 1. Схемы включения вольтметров в цепи постоянного тока: а — непосредственное включение, б — с добавочным резистором где UPVx — расширенный предел вольтметра; RД — сопротивление добавочного резистора; K — коэффициент, показывающий, во сколько раз увеличивается предел измерения напряжения прибора при использовании добавочного резистора. Выпускаются различные шунты и добавочные резисторы для расширения пределов измерения приборов постоянного тока. Переменные напряжение и ток можно измерять приборами любой системы, за исключением магнитоэлектрической. При измерении больших токов в низковольтных установках, а также напряжений и токов в высоковольтных установках применяют приборы электромагнитной системы, включаемые через специальные трансформаторы тока и напряжения. В практике наладочных работ используют различные измерительные трансформаторы, при этом следует помнить, что они вносят в результат измерений дополнительную погрешность. Чтобы погрешность не превышала допустимой, определенной классом точности применяемого измерительного трансформатора, его вторичную обмотку необходимо включать на номинальное сопротивление. Номинальным сопротивлением вторичной обмотки цепи трансформатора тока является то наибольшее, а трансформатора напряжения — то наименьшее сопротивление, на которое можно включить эту обмотку, не превысив погрешность выше допустимой. Схемы включения вольтметров с добавочными резисторами в цепях постоянного тока и однофазных сетях переменного тока одинаковы (рис. 1,6). Схемы включения амперметров и вольтметров при использовании измерительных трансформаторов показаны на рис. 2, а, б. Рис 2. Схемы включения измерительных приборов переменного тока:а — с трансформатором тока, б — с трансформатором напряжения. В цепи однофазного переменного тока мощность измеряют непосредственно с помощью электродинамического ваттметра или косвенно методом амперметра и вольтметра. Схема включения приборов показана на рис. 3.

    Зная напряжение U, приложенное к нагрузке, силу тока I, проходящего по ней, и угол ϕ сдвига между током и напряжением, можно определить активную, реактивную и полную мощность: Р = UI cosϕ; Q = UI sinϕ; S = UI. Угол ϕ или cosϕ определяют с помощью фазометра. При отсутствии фазометра полную мощность находят по показаниям вольтметра и амперметра: S = UI. С помощью ваттметра измеряют активную мощность, отсюда: cosϕ = Р/S; ϕ = arccosP/S; Q = UI sinϕ . При включении вольтметра в измеряемую цепь учитывают полярность его выводов (начала токовой обмотки и обмотки напряжения).

    Рис. 3. Схема включения приборов для измерения мощности: Rн — резистор нагрузки, Rд — добавочный резистор к обмотке напряжения ваттметра.

    При равномерной нагрузке мощность в трехфазной сети можно измерить одним ваттметром. Схемы измерения для трехфазной четырехпроводной и трехпроводной сетей показаны на рис. 4, а, б. Когда нулевая точка сети недоступна, создается искусственная нулевая точка, при этом сопротивления должны быть равны: Rдa = Rдд = Rдс. Мощность определяют суммированием показаний всех трех ваттметров.

    Рис. 4. Схемы включения ваттметров для измерения активной мощности трехфазного тока: а — непосредственное, б — с добавочным резистором.

    Рис. 5. Схемы включения двух ваттметров для измерения мощности трехфазного тока.

    Для измерения мощности цепи трехфазного тока чаще всего используют два ваттметра как при симметричной, так и несимметричной загрузке фаз. Три равноценных варианта включения ваттметров при измерении активной мощности показаны на рис. 15.

    Активную мощность определяют как сумму показаний двух ваттметров. Реактивную мощность в трехфазной цепи при равномерной загрузке всех трех фаз можно измерить с помощью одного ваттметра (рис. 6, а). Для получения полной реактивной мощности показания одного ваттметра умножают на 3. При равномерной и неравномерной нагрузке реактивную мощность в трех- и четырехпроводной сети определяют с помощью трех ваттметров (рис. 6,6).

    Рис 6. Схемы измерения реактивной мощности в трехфазной сети: а — с помощью одного ваттметра, б — с помощью трех ваттметров. Для измерения мощности в трехфазных цепях с симметричной нагрузкой используют ваттметровые токоизмерительные клещи (рис. 7). Чаще всего их применяют для определения нагрузки трехфазных двигателей М напряжением 380 и 660 В с доступной нейтралью (рис. 7). В процессе измерения охватывают клещами один из подводящих проводов, причем зажим напряжения, отмеченный звездочкой, соединяют с этим проводом, а зажим «220 В» (в цепи 660 В зажим «380 В») — с нейтралью статорной обмотки. Если показания прибора отрицательные, клещи при охвате провода следует повернуть на 180° либо поменять местами провода цепи напряжения.

    Рис. 7. Измерение мощности трехфазного двигателя с помощью ваттметровых измерительных клещей. В сетях переменного тока учет вырабатываемой и потребляемой электроэнергии осуществляется с помощью счетчиков индукционной системы, которые изготовляют в одно- и трехфазном исполнении. Последние бывают двух модификаций — для трех- и четырехпроводной сети. Для учета расхода активной и реактивной энергии выпускаются специальные счетчики. Для измерения в трехфазных сетях активной энергии служат счетчики САЗ, СА4, СА4У, реактивной энергии — СРЗ, СР4, СР4У (цифра 3 в обозначении типа счетчика указывает, что он предназначен для трехпроводной сети, 4 — для четырехпроводной). Счетчики СА4У и СР4У выпускаются только для включения с измерительными трансформаторами тока и напряжения, счетчики остальных типов — для прямого включения и с трансформаторами.

    Для учета энергии в цепях однофазного тока используют счетчики СО.

    Счетчики активной энергии изготовляют классов точности 1,0; 2,0; 2,5, счетчики реактивной энергии—2,0; 2,5; 4,0. Класс точности счетчиков и измерительных трансформаторов, предназначенных для цепей коммерческого и технического учета, должен соответствовать требованиям ПУЭ. Схемы внутренних соединений трехфазных счетчиков приведены на рис. 8,а — д. Индексами Г и Н обозначены выводы обмоток счетчиков, подключаемые соответственно к питающей стороне схемы и нагрузке.Рис. 8. Схемы внутренних соединений трехфазных счетчиков: а — активной энергии типа САЗ и САЗУ, б — реактивной энергии типа СРЗ и СРЗУ, в — активной энергии типа СА4 и СА4У, г — реактивной энергии типа СР4 и СР4У с дополнительной последовательной обмоткой, д — реактивной энергии типа СР4 И676 и СР4У-И676, 1 – 10 – номера зажимов.

    Схемы включения трехпроводных счетчиков активной энергии типа САЗ и САЗУ и счетчиков реактивной энергии тина СРЗ и СРЗУ приведены на рис. 9, а — в, а схемы включения четырехпроводных счетчиков активной энергии СА4 и СА4У и реактивной энергии СР4 и СР4У — на рис. 10, а — г.

    Рис. 9.Схемы включения счетчика активной энергии типа САЗ и САЗУ и счётчика реактивной энергии типа СРЗ, СРЗУ: а — непосредственное включение, б — с трансформаторами тока, в — с трансформаторами тока и напряжения.Рис. 10. Схемы включения счетчика активной энергии типа СА4 и СА4У и счетчика реактивной энергии типа СР4, СР4У, СР4-И676 и СР4У-И676: а — непосредственное включение, б — с трансформаторами тока, в — с трансформаторами тока и напряжения в трехпроводной цепи, г — с трансформаторами тока и напряжения и четырехпроводной цепи (в реактивных счетчиках зажимы 10 отсутствуют).

    Иногда при наладочных работах счетчики используют для измерения мощности. Рассмотрим пример определения мощности, потребляемой двигателем, с помощью трехфазного счетчика. Отсчитываем число оборотов диска за промежуток времени t (обычно достаточно 20—40 с, отсчитанных по секундомеру); нагрузка двигателя за этот промежуток не должна меняться. Если на табличке счетчика, например типа САЗУ, указано 1 кВт . ч = n оборотов диска, то мощность, кВт: где Kтт и Kтн — соответственно коэффициенты трансформации трансформаторов тока и напряжения.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]