Однофазная и трехфазная электрическая сеть


Сравнение AC и DC

Направление потока электрической энергии определяет постоянный и переменный ток. Разница в том, что в первом случае заряды перемещаются в одном направлении и непрерывно, а во втором — направление потока меняется через равные интервалы. Последнее сопровождается чередованием уровня напряжения и сменой полюсов на источнике с положительного на отрицательный и наоборот, что делает процессы в нагрузках более сложными, чем в случае с постоянным напряжением.
Ключевым преимуществом DC состоят в том, что его можно легко аккумулировать или создавать в портативных химических источниках. Но использование AC позволяет осуществлять передачу электрической энергии на большие расстояния намного экономичнее. Дело в том, что мощность W=I*V, передаваемая от станции, не в полном объёме доставляется до точки назначения. Часть её расходуется на нагрев линий электропередачи в размере W= I2*R.

Очевидный способ сокращения потерь — уменьшение сопротивления за счёт наращивания толщины проводов. Но для его реализации существует экономический предел: толстые проводники стоят дороже. Кроме того, массивные провода требуют дорогих несущих конструкций.

Задача имеет блестящее решение, если изменить напряжение и силу тока при сохранении мощности. Например, при увеличении V в тысячу раз и соответствующем уменьшении I, значение мощности сохраняется прежним, но потери уменьшаются в миллионы раз, поскольку они находятся в квадратичной зависимости от силы тока. Остаётся проблема преобразования напряжения до безопасных значений при распределении его к потребителям.

Это невозможно в случае с DC, но переменный ток позволяет изменять значения I и V при сохранении мощности с помощью трансформаторов. Энергетические компании используют это свойство для транспортировки электричества. Способность к трансформации и определяет главное, практически применимое отличие переменного тока от постоянного.

Трехфазные и однофазные сети. Отличия и преимущества. Недостатки

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – фаза и ноль. Возможен еще третий провод – заземление.

Если электрическая сеть трехфазная, то проводов будет 4 или 5. Три из них – это фазы, четвертый – ноль, и пятый – заземление. Также число фаз определяется и по количеству автоматических выключателей.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети

  • В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
  • Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
  • Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
  • Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности.
    Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.

Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные автоматы, в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в щите на DIN рейке. А при установке дифференциального автомата экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить кабель меньшего сечения, так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер распределительного щита, который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного счетчика, который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть электродвигатели, электрические котлы и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:

  • Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  • Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  • Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  • Необходим монтаж ограничителей напряжения в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.

Преимущества трехфазного питания для частных домов:

  • Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  • Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  • Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение сечения кабеля ввода.
  • Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м2.

Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

Механизм получения

Известно, что существует два вида переменного тока:

  1. однофазный;
  2. трехфазный.

Однофазное и трехфазное напряжение переменного тока

Стоит рассмотреть отличия в способах получения этих родов тока.

Однофазного

В 1-фазном генераторе все катушки индуцируемой обмотки подсоединены к одной линии. Питание потребителей осуществляется 2-жильным проводом (фаза и нейтраль). Напряжение в 1-фазной сети — 220 В.

Трехфазного

Индуцируемая обмотка 3-фазного генератора состоит из 3-х частей, расположенных на равном удалении друг от друга и подключенных каждая к своей линии. То есть угол между ними составляет 1200. В результате в каждой линии ток смещен по фазе относительно соседней на тот же угол.

Такая нагрузка называется симметричной и для ее подключения нейтральный провод вообще не нужен: токи каждой фазы в общих точках взаимно гасятся. Но зачастую нагрузка бывает асимметричной: помимо 3-фазных отдельными фазами запитывают 1-фазных потребителей.

Тогда токи в фазах неодинаковы и взаимного погашения не случится — нужен хотя бы 1 нейтральный провод.

Основные преимущества 3-фазного электроснабжения:

  • упрощается передача большой мощности.
  • появляется возможность создавать вращающееся магнитное поле в электродвигателях.

На промышленных электростанциях стоят только 3-фазные генераторы.

При обрыве нейтрального провода на подключенные к разным фазам 1-фазные потребители подается напряжение в 380 В, что приводит к их поломке. Потому в странах Запада нейтральным проводом оснащают каждую фазу. У нас же из-за экономии пока применяют один общий.

Преимущества и недостатки

Как и все материальное, трехфазный ток имеет свои плюсы и минусы. К положительным моментам применения систем с тремя или четырьмя проводами относится:

  • экономичность. Для передачи электроэнергии на большие расстояния используют жилы из цветных металлов, имеющих небольшие удельные сопротивления. Вольтаж делят пропорционально количеству кабелей. За счет распределения нагрузок инженеры могут уменьшить количество проводов и их сечение, что при стоимости редких материалов дает заметную экономию;
  • эффективность. Параметры мощности трехфазных трансформаторов на порядок выше однофазных при меньших размерах магнитопровода;


Трансформатор 3-фазного тока

  • простота. При одновременном подключении потребителей к трехфазной системе генерируется дополнительное электромагнитное поле. Эффект сдвига фаз позволил создать простые и надежные бесколлекторные электродвигатели, ротор которых выполнен по принципу обычной болванки и устанавливается на шариковые подшипники. Асинхронные электроприводы с короткозамкнутым ротором широко применяются в качестве силовых агрегатов. Главным преимуществом таких моторов является возможность менять направления вращения оси путем переключения на разные фазные провода;
  • вариативность. В цепях с несколькими фазами существует возможность получать разные напряжения. Пользователь сможет менять мощность нагревателя или сервопривода, переключившись с одного кабеля на другой;
  • уменьшение стробоскопического эффекта. Он достигается за счет независимого подключения разных ламп к отдельным фазам.

Вам это будет интересно Индуктивность катушки, её назначение, характеристики, формулы

Наравне с достоинствами трехфазный ток имеет свои недостатки. Они включают в себя:

  • сложность подключения. Для подведения трехфазной сети к частному или промышленному зданию необходимо получить специальное разрешение и технические условия от локальной компании по энергосбыту. Это мероприятие достаточно затратное и хлопотное. Даже при выполнении всех условий положительный результат не всегда гарантирован;
  • применения усиленных систем безопасности. В трехфазной сети подается напряжение 380 В, поэтому необходимы дополнительные устройства защиты от поражения электрическим током и короткого замыкания, которое может привести к пожару. В таких случая на входе ставят еще один трехполюсный автоматический выключатель с большими номинальными характеристиками. Он поможет избежать возгорания в случае замыкания цепи;
  • необходимость монтажа вспомогательных модулей для ограничения перенапряжения в распределительном щите. Он необходим на случай обрыва нулевого кабеля, что приведет к увеличению напряжения в одной из фаз.

Переход на трехфазный ток целесообразен для владельцев помещений, площадь которых больше 100 кв. метров. Это относится к частным домам и к производственным зданиям. Такая схема подключения позволит перераспределять равномерно нагрузку по всем потребителям и избежать скачков напряжения.

Сети переменного тока

Четырёхпроводная линия электропередачи 220/380 В, такие ЛЭП распространены в районах одноэтажной застройки, в сельской местности.Два нижних провода — сеть проводного радиовещания.

Преобразование напряжения в электрических сетях

Схема разводки трёхфазной сети в многоквартирных жилых домах.

Производители электроэнергии (ГЭС, ТЭС, ТЭЦ, атомные и другие электростанции) генерируют переменный ток промышленной частоты (в России — 50 Гц), напряжением порядка 10 — 20 кВ.

Затем электрический ток поступает на трансформаторные подстанции, которые находятся рядом с электростанциями, где происходит повышение электрического напряжения.

Переменный ток высокого напряжения передаётся потребителям по линиям электропередачи (ЛЭП). Повышение напряжения необходимо для того, чтобы уменьшить потери в проводах ЛЭП (см. Закон Джоуля — Ленца, при увеличении электрического напряжения уменьшается сила тока в электрической цепи, соответственно уменьшаются тепловые потери)

.

Самая высоковольтная в мире ЛЭП Экибастуз-Кокчетав работала под напряжением 1 миллион 150 тысяч вольт.
На другом конце линии электропередачи находится понижающая трансформаторная подстанция, где высоковольтный переменный ток понижается трансформаторами до нужного потребителю значения.

В подавляющем большинстве случаев по линиям электропередачи передаётся трёхфазный ток, однако существуют линии электропередачи постоянного тока, например высоковольтная линия постоянного тока Волгоград-Донбасс

,
высоковольтная линия постоянного тока Экибастуз-Центр
,
материковая Южная Корея — остров Чеджудо
и другие. Использование постоянного тока позволяет увеличить передаваемую электрическую мощность, передавать электроэнергию между энергосистемами, использующими переменный ток разной частоты, например, 50 и 60 герц, а также не синхронизировать соседние энергосистемы, как это сделано на границе Ленинградской области с Финляндией
(см. вставка постоянного тока Выборг — Финляндия)
.

В России в электрических сетях общего назначения используется трёхфазный ток с межфазным напряжением 380 Вольт.

Качество электрической энергии — её электрическое напряжение и частота должны строго соблюдаться.

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод)

линии электропередачи (воздушные или кабельные ЛЭП) с межфазным напряжением 380 вольт (с 2003 года 400 Вольт по ГОСТ 29322-2014). В отдельную квартиру (или в сельский дом) подводится фазовый провод и нулевой провод, электрическое напряжение между «фазой» и «нулём» составляет 220 вольт (с 2003 года 230 Вольт по ГОСТ 29322-2014). Определить, где какой провод можно с помощью индикатора фазы.
Например, в первую квартиру подводится фаза «A», во вторую квартиру — фаза «B», в третью квартиру — фаза «C» и так далее…

Чем трехфазное напряжение отличается от однофазного

Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Почему обычно три фазы, а не четыре

Таким вопросом задаются практически все начинающие электрики. По сути, количество фаз не ограничено. Их может быть 1, 2, 3, 4 и даже 10. Однако широкое применение получили трехфазные системы. Это связано с тем, что такой цепи достаточно для решения большинства задач.

Вам это будет интересно Розетка с таймером: инструкция по применению и принцип работы

Такие системы в большей степени используют для силовых установок на производстве. Вращение ротора составляет 360 градусов, а сдвиг по фазам составляет 120 градусов. Его вполне достаточно, чтобы раскрутить якорь до нужных оборотов и получить с двигателя нужную мощность. Увеличение количества фаз лишь повысит стоимость самой установки, поскольку потребует установки дополнительных катушек и подведения лишних кабелей.

Важно! Добавление фаз к существующим трем не повышает КПД агрегата, не увеличивает его мощность. С точки зрения рациональности, это лишь добавляет стоимость установок при сохранении прежних параметров работы.

Электрификация железных дорог на переменном токе

Российский пассажирский электровоз переменного тока ЭП1П, выпускается на Новочеркасском электровозостроительном заводе.

В России и в республиках бывшего СССР около половины всех железных дорог электрифицировано на однофазном переменном токе частотой 50 Гц. Напряжение ~ 25 кВ (обычно до 27,5 кВ, с учётом потерь)

подаётся на контактный провод, вторым (обратным) проводом служат рельсы. Также проводится электрификация по системе
2 × 25 кВ(два по двадцать пять киловольт)
, когда на отдельный питающий провод подаётся напряжение ~ 50 кВ
(обычно до 55 кВ, с учётом потерь)
, а на контактный провод от автотрансформаторов подаётся половинное напряжение от 50 кВ
(то есть 25 кВ)
. Электровозы и электропоезда переменного тока при работе на участках 2 × 25 кВ в переделке не нуждаются.


Проводится политика на дальнейшее расширение полигона тяги переменного тока как за счёт вновь электрифицируемых участков, так и за счёт перевода некоторых линий с постоянного тока на переменный ток. Переведены в 1990-е — 2000-е годы:

— на Восточно-Сибирской железной дороге: участок Слюдянка — Иркутск — Зима; — на Октябрьской железной дороге: участок Лоухи — Мурманск; — на Приволжской железной дороге: Саратовский и Волгоградский железнодорожные узлы; — на Северо-Кавказской железной дороге: участки Минеральные Воды — Кисловодск и Бештау — Железноводск.

Следует отметить, что также выпускаются двухсистемные электровозы, способные работать как на переменном, так и на постоянном токе (см. ВЛ61Д, ВЛ82 и ВЛ82М, ЭП10, ЭП20).

Генерация и трансформация

Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.

Описанный условный генератор при постоянной угловой скорости вращения вала производит синусоидальный AC с формой волны, ничем не отличающейся от поставляемого в бытовой сети. Реальные генераторы устроены значительно сложнее, но работают на том же принципах электромагнитной индукции.

Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами

Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества

Любой трансформатор состоит из следующих элементов:

  • первичной и вторичных обмоток;
  • сердечника.

Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.

Преимущества и недостатки однофазных средств для маникюра

Преимущества

однофазных косметических препаратов неоспоримы:

  1. Вместо базы, гель-лака и финишного препарата нужно купить только однофазный гель. Это дает возможность значительно сэкономить на стоимости маникюра.
  2. Более жидкая консистенция, что облегчает процесс равномерного распределения средства по ногтевой пластине. В отличие от трехфазных систем, которые, имея более густую и вязкую текстуру, требуют более кропотливого нанесения, а также тщательного выравнивания.
  3. Более подходят для использования людьми без опыта, чем трехфазные системы.
  4. Несмотря на то, что применение однофазного препарата предполагает послойное нанесение, общая толщина всех слоев меньше, чем при использовании трехфазных систем. Это способствует тому, что нагрузка на ногтевые пластины снижается, они лучше переносят покрытие гель-лаком.
  5. В составе однофазных средств нет агрессивных компонентов, поэтому они идеально подходят для применения людьми с чувствительной кожей рук.
  6. При использовании препаратов такого типа ногтевые пластины дышат, так как покрытие получается негерметичным.

Несмотря на все плюсы инновационного однофазного геля, он имеет и недостатки:

  1. Из-за того, что в процессе выполнения маникюра не наносится обособленный глянцевый слой, выполняющий защитные функции, срок ношения однофазного геля на ногтях меньше, чем в случае с трехфазными средствами.
  2. Преимущество средства – его жидкая консистенция, является одновременно недостатком, который создает трудности начинающим мастерам и простым пользователям. Однофазный препарат сильно растекается по поверхности ногтевой пластины, его сложно контролировать. Поэтому нередко полимер попадает и на кутикулу, и под боковые валики. Отдельная проблема – формирование точки апекса или так называемой «точки стресса» — наивысшей точки искусственного ноготка, на которую приходится наибольшая нагрузка.
  3. Также использование однофазного средства для ногтей ограничивает фантазию мастера и не дает возможности для выполнения некоторых дизайнов. К примеру, не получится воплотить идею маникюра, если она предполагает использование объемных фигур, наклеек.

Виды электрогенераторов

Генераторы переменного тока делятся на два вида:

  1. синхронные. Частота индуцируемой ЭДС соответствует частоте вращения ротора;
  2. асинхронные. Между частотами вращения и наводимой ЭДС существует разница, именуемая скольжением. Устроены проще синхронных и проявляют устойчивость к перегрузкам и коротким замыканиям, потому нашли применение в транспорте. Для питания потребителей, чувствительных к частоте тока, не подходят.

По способу питания обмотки индуктора (электромагнита) электрогенераторы делятся на 4 вида:

  1. запитанные от стороннего источника;
  2. устройства с самовозбуждением на обмотку подается часть вырабатываемого генератором электротока, преобразованная выпрямителем в постоянный. Такой генератор нуждается в стороннем источнике только во время запуска. В этом качестве применяется аккумулятор;
  3. устройства с дополнительным маломощным генератором, установленным на одном валу с основным. Этот дополнительный генератор и питает обмотку индуктора. Сторонний источник для старта нужен только ему, соответственно, требования к аккумулятору виду малой мощности снижаются;
  4. генераторы с постоянным магнитом. Обмотки нет, питание не требуется. Недостатки конструкции упоминались выше.

Принцип получения переменного тока

Преобразование механической энергии в электрическую происходит за счет электромагнитной индукции. Это явление состоит в следующем: если магнитный поток (МП), пересекающий проводник, изменить, в дальнейшем возникнет электродвижущая сила (ЭДС). Добиться изменения МП можно путем перемещения проводника в магнитном поле.

Электродвижущая сила источника тока

ЭДС при этом равна Е = B * L * V * sin α, где:

  • B — индукция МП, Гн;
  • L — длина проводника, м;
  • V — скорость движения сердечника относительно поля, м/с;
  • α — угол между вектором скорости проводника и силовыми линиями поля.

Направление ЭДС определяют по правилу правой руки: если расположить ее так, чтобы силовые линии поля входили в ладонь, а отогнутый под прямым углом большой палец указывал направление движения проводника, 4 соединенных пальца укажут направление ЭДС.

Получение переменного тока

Генерация тока основана на явлении электромагнитной индукции, которое открыл Майкл Фарадей. Суть его такова: в проводнике, находящемся в магнитном поле с изменяющимися характеристиками, возникает электродвижущая сила (ЭДС).

Под параметрами магнитного поля подразумевают:

  • плотность силовых линий;
  • угол их направления по отношению к проводнику.

Обеспечить изменение показателей магнитного поля можно несколькими способами:

  1. перемещать (вращать) проводник в поле постоянного магнита;
  2. вращать постоянный магнит вокруг проводника;
  3. поместить токопроводящий элемент в поле электромагнита (намотанный в виде катушки провод) с протекающим по нему переменным током.

В электрогенераторах применяют два первых метода, последний — в трансформаторах тока. Приведение в движение магнита или проводника требует затрат механической энергии. Она и преобразуется генератором в электрическую. Направление ЭДС определяется правилом правой руки.

При таком ее положении, когда силовые линии поля входят в ладонь, а отведенный в сторону большой палец совпадает с вектором движения проводника, прочие пальцы указывают на направление ЭДС. Простейший генератор переменного тока — вращающаяся между постоянными магнитами проволочная рамка, подключенная к электроцепи.


Контакт между подвижной рамкой и неподвижными проводящими элементами цепи — скользящий: на концах рамки прикрепляют кольца, на концах цепи — графитовые щетки (обладают низким коэффициентом трения), прижатые к этим кольцам.

Вращающуюся часть генератора или электродвигателя, в нашем примере это рамка, называют ротором. Неподвижную — статором.

Наводимая в рамке ЭДС определяется формулой: E = B*S*ω*sinα, где В — магнитная индукция, S — площадь рамки, ω — угловая частота, А — угол поворота рамки.

Изменяется только угол α, следовательно, график изменения ЭДС имеет вид синусоиды. Поскольку ток, в соответствии с законом Ома, равен отношению ЭДС к сопротивлению нагрузки (I = E/R), он также является синусоидальным.

Синусоидальность переменных ЭДС и тока означает, что они периодически меняют не только величину, но и направление на противоположное.

Принципиальные схемы генераторов переменного тока

Трехфазный ток

> Теория > Трехфазный ток

Большинство генераторов переменного тока, а также линий, передающих электроэнергию, используют трехфазные системы. Передача тока осуществляется по трем линиям (или четырем) вместо двух. Трехфазный ток представляет собой систему переменного электротока, где значения токов и напряжений меняются по синусоидальному закону. Частота синусоидальных колебаний тока в России и Европе – 50 Гц.

Схемы трехфазных цепей

В схемной конфигурации «звезда» имеется три фазных провода. Если нулевые точки системы питания и приемника соединены, то получается четырехпроводная «звезда».

В схеме различаются межфазное напряжение, находящееся между проводниками фазы (его еще именуют линейным), и фазное – между отдельными проводниками фазы и N-проводником.

Что такое фазное напряжение, наиболее наглядно определяется с помощью построения векторов – это три симметричных вектора U(А), U(В) и U(С). Здесь же видно, что такое линейное напряжение:

  • U(АВ) = U(А) – U(В);
  • U(ВС) = U(В) – U(С);
  • U(СА) = U(С) – U(А).

Важно! Векторные построения дают представления о сдвиге между согласующимися фазным и межфазным напряжением – 30°.

Следовательно, линейное напряжение для звездной схемы с равномерными нагрузками можно рассчитать так:

Uab = 2 x Ua x cos 30° = 2 x Ua x √3/2 = √3 x Ua.

Аналогично находятся другие показатели фазного напряжения.

Линейное и фазное напряжение, если суммировать векторные величины всех фаз, равны нулю:

  • U(А) + U(В) + U(С) = 0;
  • U(АВ) + U(ВС) + U(СА) = 0.

Если к «звезде» подсоединяется электроприемник с сопротивлением, идентичным в каждой фазе:

Za = Zb = Zc,

то можно произвести расчет линейного и фазного токов:

  • Ia = Ua/Za;
  • Ib = Ub/Zb;
  • Ic = Uc/Zc.

Построение векторов в схеме «Y»

Применительно для общих случаев «звездной» системы линейные токовые величины идентичны фазовым.

Обычно предполагается, что источник, питающий электроприемники, симметричен, и только импеданс определяет работу схемы.

Поскольку суммирующий токовый показатель соответствует нулю (закон Кирхгофа), то в случае четырехпроводной системы в нейтральном проводнике ток не течет. Система будет вести себя одинаково, независимо, существует нейтральный проводник или нет.

Для активной мощности трехфазного приемника справедлива формула:

P = √3 x Uф I x cos φ.

Реактивная мощность:

Q = √3 x Uф I x sin φ.

«Y» при асимметричной нагрузке

Это такая схемная конфигурация, где токовая величина одной фазы отличается от другой, либо различны фазовые сдвиги токов по сравнению с напряжениями. Межфазовые напряжения будут оставаться симметричными. По векторным построениям определяется появление сдвига нулевой точки от центра треугольника. Результатом является асимметрия фазных величин напряжений и появление Uo:

Uo = 1/3 (U(А) + U(В) + U(С)).

Несмотря на асимметричную нагрузку, суммирующий токовый показатель нулевой.

«Y» без N-проводника при асимметричной нагрузке

Важно! Работа схемы с асимметричной нагрузкой зависит от того, есть или нет N-проводник.

Иначе ведет себя схема, когда подключен N-проводник с незначительным полным сопротивлением Zo = 0. Нулевые точки ИП и электроприемника оказываются гальванически связанными и имеют одинаковый потенциал. Фазное напряжение разных фаз приобретает идентичное значение, а токовая величина в N-проводнике:

Io = I(А) + I(В) + I(С).

Схема четырехпроводной «Y»

При передаче мощности принято использовать трехпроводные системы на уровнях высокого и среднего напряжения. На низком уровне напряжения, где трудно избежать несбалансированных нагрузок, применяются четырехпроводные системы.

Схема «Δ»

Подключая конец каждой фазы электроприемника к началу следующей, можно получить трехфазный ток с последовательно подсоединенными фазами. Полученная схемная конфигурация называется «треугольником». В таком виде она может работать только как трехпроводная.

С помощью векторных построений, понятных даже для чайников, иллюстрируются фазные и линейные напряжения и токи. Каждая фаза электроприемника оказывается подключенной на линейное напряжение между двумя проводниками. Линейное и фазное напряжение идентичны на приемнике электроэнергии.

Схема «Δ» и построения векторов

Межфазовые токи для «треугольника» – I(А), I(В), I(С). Фазные – I(АВ), IВС), I(СА).

Линейные токи находятся из векторных построений:

  • I(А) = I(АВ) – I(СА);
  • I(В) = I(ВС) – I(АВ);
  • I(С) = I(СА) – I(ВС).

Суммирующая токовая величина в симметричной системе соответствует нулю. Среднеквадратичные величины фазных токов:

I(АВ) = I(ВС) = I(СА) = U/Z.

Поскольку фазовый сдвиг между U и I равен 30°, линейный ток в данной конфигурации будет равен:

I(А) = I(АВ) – I(СА) = 2 x I(АВ) x cos 30° = 2 x Iф x √3/2 = √3 x Iф.

Важно! Эффективная величина линейного тока превышает в √3 раз эффективную величину тока фазы.

Способы

Таким образом, для получения переменного тока достаточно вращать в поле постоянного магнита проволочную рамку с подсоединенной к ее концам электрической цепью. Источником энергии выступает сила, вращающая рамку и преодолевающая сопротивление магнитного поля.

Каждые пол-оборота проводники рамки меняют направление движения относительно полюсов магнита, соответственно, меняется и направление ЭДС в рамке.

Получение переменного тока

Угол между вектором скорости и силовыми линиями поля меняется по закону α = w*t, где:

  • W — угловая скорость вращения рамки, рад/с;
  • T — время, прошедшее с начального момента, когда вектор скорости был параллелен силовым линиям, с.

То есть ЭДС зависит от sin (wt): E = f (sin (wt)). Следовательно, график изменения значения ЭДС с течением времени имеет вид синусоиды. Вызванный этой ЭДС переменный ток называют, соответственно, синусоидальным.

Описанный простейший генератор можно усовершенствовать:

  1. постоянный магнит меняют на электрический, размещая в статоре несколько катушек (обмотка возбуждения). В итоге получают равномерное магнитное поле и тем самым добиваются идеальной синусоидальности ЭДС (повышается качество работы приборов). Обмотку возбуждения питает маломощный генератор постоянного тока либо аккумулятор;
  2. вместо одной рамки размещают на роторе несколько: ЭДС кратно увеличивается. То есть ротор также представляет собой обмотку.

Проблемная часть такого генератора — подвижный контакт между вращающимся ротором и электрической цепью.

Он состоит из медного кольца и графитовых щеток, прижимаемых к кольцу пружинами. Чем выше мощность генератора, тем менее надежен этот узел: он искрит, быстро изнашивается. Поэтому в мощных промышленных генераторах, установленных на электростанциях, обмотки статора и ротора меняют местами: обмотку возбуждения размещают на роторе, а индуцирующую — на статоре.

Подвижный контакт остается, но из-за малой мощности обмотки возбуждений требования к нему снижаются. Частота промышленного переменного тока — 50 Гц. То есть напряжение периодически меняет направление и величину 50 раз в секунду или 3000 раз в минуту. При наличии 2-х полюсов в обмотке возбуждения для достижения такой частоты и ротор должен вращаться со скоростью 3000 об/мин.


В генераторах тепловых и атомных электростанций так и происходит. Но в гидроэлектростанциях вращать ротор с такой скоростью невозможно физически: движителем служит падающая вода, а ее скорость намного меньше скорости перегретого пара с давлением в 500 атм.

Кроме того, ротор гидростанции имеет огромные размеры и при частоте вращения в 3000 об/мин.

Его удаленные от центра участки двигались бы со скоростью сверхзвукового истребителя, что приведет к разрушению конструкции. Для сокращения количества оборотов увеличивают число пар полюсов в электромагните. Частота вращения при этом составит W = 3000 / n, где n — число пар полюсов. То есть при наличии 10-ти пар полюсов для генерации переменного тока с частотой 50 Гц ротор необходимо вращать со скоростью всего 300 об/мин, а при 20-ти парах — 150 об/мин.

В электротехнике практикуют и другой способ получения переменного тока — преобразованием постоянного. Применяется электронное устройство — инвертор, состоящее из силовых транзисторов, управляющей ими микросхемы и прочих элементов. На выходе инвертора можно получить переменное напряжение любой величины и частоты. Самые простые схемы выдают прямоугольное переменное напряжение, более сложные и дорогие — стабилизированное синусоидальное.


Примеры применения инверторов:

  • импульсные блоки питания и инверторные сварочные аппараты. Сетевой ток с частотой 50 Гц выпрямляется и затем подается на инвертор, дающий на выходе переменный ток с частотой 60-80 кГц. Назначение: при столь высокой частоте резко уменьшаются габариты трансформатора и потери в нем, то есть устройство в целом становится более компактным и экономичным;
  • автономные дизельные и бензиновые генераторы для питания оборудования, чувствительного к качеству напряжения. Дизель-генератор в чистом виде дает низкокачественный ток, поскольку при преобразовании нагрузки частота вращения вала у него меняется. Инвертор устраняет все эти колебания и дает на выходе стабильное, качественное напряжение;
  • ЛЭП на постоянном токе.

Передавать особенно значительные мощности на сверхбольшие расстояния по ряду причин выгоднее постоянным током, а не переменным. В конечной точке его преобразуют инвертором в переменный промышленной частоты и отправляют в местную энергосистему.

Чем отличается трехфазный ток от однофазного

Основное отличие однофазной цепи от трехфазной:

  • однофазный ток подается потребителям через один проводник, трехфазный — через три;
  • для завершения сети необходим нулевой кабель, поэтому в цепях с одной фазой их два, а в трех — четыре;
  • мощность повышается с увеличением количества фаз;
  • простота сетевой конструкции;
  • в однофазной цепи появляются перепады напряжения с увеличением количества потребителей электроэнергии;
  • при отключении одной жилы в трехфазном, ток продолжает течь в оставшихся двух проводах. В однофазном напряжение полностью пропадает.

Обратите внимание! Трехфазная система позволяет использовать разные номиналы напряжений при питании оборудования с разными параметрами мощности

Зачем нужен трехфазный ток

Однофазный и трехфазный переменный ток широко применяются в промышленной и бытовой сфере. Однако в последнее время все больше потребителей предпочитают отказываться от первого и склоняются к последнему.

Вам это будет интересно Обозначение нулевого защитного проводника

И дело даже не в увеличении мощности и включении большего количества электрического оборудования. Порой разница между силовой нагрузкой даже не заметна, а при определенных параметрах сети входная мощность для обоих цепей может быть одинаковой.

Основным потребителем является трехфазное оборудование. В эту группу входит:

  • асинхронные электроприводы;
  • нагревательные установки;
  • промышленное оборудование.

Наиболее частым потребителем трехфазного тока является асинхронный двигатель. Именно в составе этой сети они показывают наилучшие рабочие параметры, высокое КПД при относительно низких энергозатратах.


Асинхронный двигатель

К тому же, приводы, обогреватели, котлы, электрические печи, обогреватели не перекашивают фазы. Для чувствительного оборудования такое проседание — тема очень щекотливая.

Обратите внимание! В реальности обеспечить одинаковую нагрузку на всех трех фазах невозможно. Соответственно, напряжение всегда будет неодинаковым.

Поскольку в помещении присутствует еще несколько потребителей, необходима дополнительная система, которая сможет распределять нагрузку равномерно по всем приемникам. Для этого нужна трехкабельная цепь. Включение нагрузки в сеть трехфазного тока происходит к той цепи, на которую приходится меньше всего потребителей.


Схема подключения трехфазного тока

Однако распределительные системы для цепей трехфазного тока получаются очень громоздкими и занимают много места. Оно требует дополнительных систем безопасности, так как напряжение таких сетей составляет 380 В. При коротком замыкании ток будет в разы больше, чем при привычных нам 220 В.

Эдисон и Тесла

Ипполит Пикси сумел создать первый генератор переменного тока в 1835 году. Это было устройство на постоянных магнитах, работающее при вращении рукоятки. Предприниматели того времени были заинтересованы в генерации DC и не совсем понимали, где может применяться изобретение и зачем нужно получать AC.

Настоящая конкуренция за стандарты электричества в линиях передач развернулась к концу 1880-х. годов, когда началась борьба между основными энергетическими компаниями за доминирование на рынке собственных запатентованных энергетических систем. Это было соперничество концепций электрификации двух великих изобретателей: Николы Теслы и Томаса Эдисона.

Эдисон изобрёл и усовершенствовал немало устройств, необходимых для первых систем генерации и транспортировки постоянного тока. В течение короткого времени его компания смогла открыть более 200 станций в Северной Америке. Предприятие росло, и изобретатель для выполнения работ по усовершенствованию оборудования нанял Николу Теслу — молодого инженера из Европы. Новый сотрудник предложил вниманию Эдисона революционные для того времени работы, основанные на технологиях переменного значения. Идеи Тесла были отвергнуты и пути изобретателей разошлись.

Джордж Вестингауз, наоборот, отнёсся к открытиям сербского инженера с большим интересом и выкупил все патенты Тесла. После предприятия Вестингауза пережило немало потрясений, в том числе и связанных с мощными пропагандистскими компаниями Эдисона. Финалом борьбы стал момент, когда система Теслы была выбрана для освещения выставки в Чикаго. Это событие познакомило мир с преимуществами многофазной генерации AC и его транспортировки. С тех пор большинство электрических устройств и сетей заказывались уже под новый стандарт. Основными датами войны токов были:

  • 1870 г. — создание Эдисоном первого генератора DC;
  • 1878 г. — основание Edison Electric Light Co в Нью-Йорке;
  • 1882 г. — открытие Эдисоном генерирующей станции Pearl Street на 5 тыс. огней;
  • 1883 г. — изобретение Теслой трансформатора;
  • 1884 г. — изобретение Теслой генератора AC;
  • 1888 г. — демонстрация Теслой многофазной электрической системы, Вестингауз выкупает его патенты;
  • 1888 г. — казнь с помощью электрического стула, изобретённого Эдисоном как средство для пропагандистской компании, демонстрирующей опасность технологий Теслы.
  • 1893 г. — триумф Westinghouse Electric Company на Чикагской ярмарке.

Пошаговая технология наращивания ногтей гелем

Пошаговое наращивание ногтей гелем

выглядит следующим образом. Этап

первый, подготовительный, заключается в дезинфекции рук, удалении

кутикулы любым привычным или удобным способом. Поверхность ногтя

обезжиривают для крепкого сцепления, а затем шлифуют, чтобы избежать

отслаивания. Край ногтя опиливают и придают нужную форму. Каждый слой геля

обязательно высушивается под специальной ультрафиолетовой лампой. И это,

помимо основного назначения, помогает избежать в будущем грибковых

заболеваний. Есть трёхфазная и двухфазная системы наращивания ногтей

гелем. Наращивание гелем проводят по двухфазной и трёхфазной системе. Каждая из них состоит из определённого числа компонентов, который имеет своё назначение. Например, в трёхфазной системе первый слой отвечает за сцепление ногтевой пластины с искусственным материалом. Второй слой моделирует ноготь, а третий обеспечивает прочность, создавая гладкую, блестящую поверхность. В двухфазной системе один компонент применяют для моделирования и сцепления, а второй – для придания прочности. Есть и однофазная система, в которой гель выполняет все перечисленные функции.

Красивый маникюр, ухоженные ногти

Пошаговая технология наращивания ногтей гелем предполагает нанесение двух-трёх слоёв геля, каждый из которых поочерёдно высушивается под ультрафиолетовой лампой. Иногда при сушке под лампой возникает чувство жжения. Тогда процедуру приостанавливают и ждут, пока исчезнут все симптомы. Процесс наращивания завершается дизайном ногтей. Весь процесс гелевого наращивания занимает до трёх-четырёх часов и служит до двух недель.

Из своего опыта знаю, что настоящий мастер профессионал делает полтора часа и если сложные узоры на ногтях – два часа. Коррекция, которую проводят спустя десять – четырнадцать

дней после наращивания, позволяет «забыть» о маникюре на пару месяцев. Хотите, чтобы покрытие держалось долго? В день наращивания не стоит заниматься хозяйством: мыть посуду, ручной стиркой, пересадкой цветов. Поскольку все эти дела подождут и до «завтра», когда ногти станут «железобетонными».

Наращивание гелем, как и все косметические процедуры, имеет и неприятные последствия

  • Во-первых, наращивание – достаточно трудоёмкий и длительный процесс, который требует немалых затрат, в том числе и финансовых.
  • Во-вторых, ногти под гелем совершенно не «дышат», что впоследствии потребует длительного лечения-восстановления с приёмом витаминов и проведения специальных процедур.

Пошаговая технология наращивания ногтей гелем часто доставляет неприятные ощущения, которые зависят от порога чувствительности и профессионализма мастера. Несмотря на гладкое и плотное покрытие, гелевые ногти более хрупкие, чем акриловые. Избежать травмирования ногтя позволяет покрытие биоскульптурным гелем, который наполовину состоит из естественных смол, натуральных витаминов и протеинов. Наличие такие материалов позволяет ногтю «дышать», а после реставрации такие ногти выглядят более здоровыми и крепкими.

154

Структура

Электрическая цепь — совокупность устройств и элементов, имеющая целью доставить ток потребителю и преобразовать его в другой вид энергии: тепло, свет или механическую работу.


В цепи различают три части:

  1. источник питания;
  2. транслирующая часть: провода, выключатели, трансформаторы, стабилизаторы и пр. Все то, что используется для передачи, трансформации электрической энергии и поддержания ее качества на должном уровне;
  3. потребители: лампы, электродвигатели, нагреватели и пр.

Источник питания — генератор, аккумулятор, солнечную батарею — называют внутренней частью цепи, остальные компоненты — внешней. Также источник называют активным элементом, прочие — пассивными. Электрическая цепь функционирует только в замкнутом виде, то есть в непрерывном. При размыкании сила тока в ней падает до нуля, хотя участок со стороны генератора или батареи остается под напряжением.

По числу выводов компоненты цепи делятся на два вида:

  1. двухполюсные: имеют одну пару выводов. Пример — диод, резистор;
  2. многополюсные: имеют более двух выводов. Пример — трансформатор (4 вывода).

Процессы в электрической цепи описываются законами Ома и Кирхгофа.

Компоненты в ней соединяются тремя способами:

  • последовательно;
  • параллельно;
  • комбинированным способом.

Применяют такие термины:

  1. ветвь. Участок из последовательно соединенных элементов в параллельной или комбинированной цепи. Законы электротехники гласят: сила тока в пределах ветви одинакова, независимо от величины сопротивления составляющих ее компонентов, а общее сопротивление ветви равно сумме сопротивлений всех ее компонентов. В цепи только с последовательным соединением компонентов, ветвей не выделяют, ее так и называют — неразветвленная цепь;
  2. узел. Место, где цепь разветвляется. Принято считать, что сумма токов, сходящихся в узле, равна сумме токов, исходящих из него. Падение напряжения для параллельных ветвей между точками разветвления и схождения — одинаково;
  3. контур. Совокупность ветвей, представляющая собой замкнутый путь для тока.

По функциональности отдельные части в структуре электрической цепи делятся на такие виды:

  1. силовая. Включает в себя элементы, генерирующие, проводящие, преобразующие и потребляющие электроэнергию;
  2. вспомогательная. Различные дополнительные устройства, не относящиеся к силовой части. Например, установки компенсации реактивной мощности, предохранители;
  3. измерительная. Относящиеся к этой части приборы позволяют отследить параметры сети и подключенных к ней устройств;
  4. управляющая. Оборудование для регулировки параметров устройств либо их включения/отключения.;
  5. сигнализирующая. Сообщает путем включения сигнальных устройств об изменениях в параметрах сети.

По сложности электрические цепи делят на:

  • простейшие: источник, подключенный к потребителю;
  • простые: содержат один контур;
  • сложные: насчитывают несколько контуров.

В сложных цепях выделяют:

  • многоконтурные;
  • многоузловые;
  • плоскостные;
  • объемные.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]