Условные обозначения в электрических схемах: как читать схемы


Определение 1

Электрической цепью называют совокупность различных устройств, которые соединены конкретным способом. Устройства должны обеспечивать путь для протекания электрического тока. Существуют различные элементы цепей, служащие для множества целей. Для описания цепей используют специальные электрические схемы.

В состав любой электрической цепи входят различные элементы:

  • Источник тока. Им, например, может быть катушка индуктивности, по которой какое-то время шёл ток внешнего источника.
  • Проводники;
  • Нагрузка (в случае, когда она постоянна, вольтамперная характеристическая кривая представляет собой прямую линию, а такая нагрузка зовётся линейной;
  • Устройства защиты;
  • Устройства коммутации.

Готовые работы на аналогичную тему

  • Курсовая работа Замкнутая и разомкнутая электрическая цепь 410 руб.
  • Реферат Замкнутая и разомкнутая электрическая цепь 250 руб.
  • Контрольная работа Замкнутая и разомкнутая электрическая цепь 210 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Различают два вида элементов цепей: пассивные и активные. Пассивные представляют собой соединительные элементы и приборы-потребители электроэнергии, также к пассивным элементам относятся конденсаторы. Активные элементы — это электродвигатели, заряжающиеся аккумуляторы и различные источники ЭДС.

Основными видами электрической цепи являются:

  • замкнутая цепь;
  • разомкнутая цепь.

Функции различных частей цепи

Каждый элемент электрической цепи выполняет свои специфические функции.

Источник тока снабжает энергией приемники тока – потребители.

Соединительные провода доставляют энергию от источника к потребителям.

Всевозможные кнопки, выключатели, рубильники, применяют в нужные моменты времени для подключения потребителей к источнику тока, а, так же, их отключения от источника.

Каждый элемент электрической цепи выполняет определенные функции

Чтобы по электрической цепи циркулировал ток, эта цепь должна быть замкнутой.

Поэтому любая замкнутая цепь состоит из элементов, способных проводить электрический ток — проводников.

Если разомкнуть (разорвать) цепь в какой-либо ее части, то электрический ток перестанет по ней протекать. Разрывают цепь в нужные моменты времени с помощью всевозможных выключателей.

Если цепь разомкнуть, ток прекратится

Определение работы электрической цепи

На практике определить замкнута или разомкнута цепь можно несколькими способами. Наиболее распространенным способом является индикация. Например, такие электробытовые приборы как светильники не нуждаются в индикации и их включение можно определить визуально, то есть если светильник светит, значит цепь замкнута.

Другой вопрос – как определить цепь с нагревательными или удаленными приборами? Как правило, такая техника как утюг, конвектор, электроплита и др. оснащаются индикаторной лампочкой, свечение которой оповещает о замкнутой цепи и работе прибора. При нагревании до определенной температуры, термостат отключается, разрывая цепь, и лампочка потухает. После остывания на величину температурного гистерезиса, термостат снова включает цепь, в результате чего лампочка индикатора снова светится.

Индикация позволяет определить лишь наличие тока в цепи, а его величина определяется с помощью амперметра, включенного в цепь последовательно. Применяются также бесконтактные измерительные приборы – токоизмерительные клещи. Это портативный прибор, с помощью которого можно измерить электрический ток в изолированном проводнике. Наличие тока всегда свидетельствует о том, что цепь замкнута.

Как элементы электрической цепи обозначают на схемах

Для наглядности способы соединения элементов изображают графически. Такие чертежи называют принципиальными электрическими схемами (рис. 6). Чтобы не рисовать элементы в подробностях, для них придумали упрощенные обозначения.

Пример цепи и ее электрической схемы

Обозначение каждого элемента стандартизировали. Благодаря стандартам, схема цепи, составленная в какой-либо стране, может быть прочитана и воспроизведена в другой части мира.

Обозначения, принятые в странах СНГ и некоторых странах Европы.

Условные обозначения некоторых элементов электрической цепи

Рядом с графическим символом указывают буквенные обозначения. Элементы на схемах принято обозначать латинскими буквами так:

  • гальваническую батарею GB или B. В качестве источника тока для компактных электронных устройств часто применяют аккумуляторы, или батарейки;
  • выключатель – SA, кнопка — SB; Для кнопок и выключателей иногда используют только одну букву S;
  • проводник, обладающий сопротивлением – R;
  • соединительные клеммы — буквами XT;
  • символом FU — плавкий предохранитель. Он служит для защиты схемы и из строя первым, как только ток превысит определенный порог, указанный на таком предохранителе;
  • нагревательный элемент электроплит и других обогревателей — символом EK;
  • лампу накаливания – HL или HA;
  • разъем вилка-розетка – XS;
  • электродвигатель постоянного тока – M;
  • электромеханический звонок – HA.

Часто бывает так, что на схемах присутствуют элементы, обозначаемые одинаковыми графическими значками. Чтобы различать их, дополнительно вводят цифровую нумерацию (рис. 8).

Для нескольких одинаковых элементов цепи применяют цифровую нумерацию

Например, первую лампу обозначают HL1, вторую – HL2, и так далее.

Примечание: В Северной Америке и Японии графические обозначения некоторых элементов отличаются.

Существует еще одно, полезное для составителя схем, правило.

Элемент цепи можно передвигать по схеме вдоль соединительного проводника, если это не изменяет электрические соединения.

Благодаря такому правилу, одну и ту же схему можно нарисовать различными способами.

Элементы цепи можно передвигать по схеме, если это не нарушает соединений

Как читать простые схемы

Процесс чтения для «чайников» рассматривается на примере простого проекта, состоящего из источника питания, звонка, нефиксируемой кнопки и проводников. Схема представляет собой замкнутую цепь с компонентами, соединенными последовательно. Это означает, что сила протекающего по ней тока будет одинакова в любой точке.

При подаче напряжения по нажатию кнопки звонок начинает звонить. Это связано с тем, что ток идет от положительного полюса батареи к отрицательному через все компоненты. Если провода не оказывают сопротивление постоянному току, то напряжение на клеммах звонка и выводах источника питания будет одинаковым по второму закону Кирхгофа.

Типы электрических соединений.

Существуют три основных типа электрических соединений:

1. Последовательное соединение.

При этом все аппараты и приборы соединяются в единую непрерывную цепь, как лампы в ёлочной гирлянде.


Если в такой гирлянде (с последовательным соединением) перегорит хотя бы одна лампа, то погаснет вся гирлянда. В последовательной цепи сила тока на всех её участках одинакова : I1 = I2 = I3

, общее сопротивление всей цепи будет равно сумме всех сопротивлений:
Rобщ = R1 + R2 + R3
, а общее напряжение всей цепи будет равно сумме падений напряжения на каждом её участке:
Uобщ = U1 + U2 + U3.
Для расчёта последовательной цепи применяют
Закон Омадля неразветвлённой цепи.
Сила тока в неразветвлённой цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению цепи:

I

= , где
U
— напряжение,
R
— сопротивление

2. Параллельное соединение.

Для изучения свойств электрических цепей с параллельным соединением необходимо вспомнить Первый Закон Кирхгофа: если к одной точке (узлу) подвести несколько проводников и несколько вывести, то…

Сумма токов, подходящих к узлу, будет равна сумме токов, выходящих из узла: I1+I2+I3

=
I4+I5
. Алгебраическая сумма токов в общей точке будет равна нулю. Этот закон можно проиллюстрировать при помощи рисунка, расположенного ниже:


В горизонтальную трубу поступает вода, в тройнике она разделяется и далее течёт в обе стороны по горизонтальной трубе. Очевидно, что количество воды, протекающей по верхней трубе и входящей в тройник будет равно сумме количества воды, вытекающей из тройника в обоих направлениях, причём правый и левый потоки будут распределяться в зависимости от диаметра каждой трубы.

Для электрических цепей это значит, что токи, выходящие из узла (то есть, в параллельных цепях), будут распределяться в зависимости от сопротивления каждой цепи, а значит, при одинаковом сопротивлении параллельных цепей токи между ними будут разделяться поровну.

При параллельном соединении две и более электрических цепей имеют общее начало и общий конец.


Каждая электрическая цепь проводит ток в большей или меньшей степени. Способность цепи проводить электрический ток называется проводимостью. Очевидно, что чем меньше сопротивление цепи, тем лучше её проводимость и наоборот. Из этого следует, что проводимость – это величина, обратная сопротивлению, то есть :

g

= Единица измерения – Сименс
(Сим)
.

Если мы имеем 3 параллельные цепи, то, применив 1й Закон Кирхгофа, мы получим, что проводимость общего участка будет равна сумме проводимостей каждой цепи : gобщ = g1 + g2 + g3.

Учитывая, что g

= , получается, что

При этом :

U1 = U2 = U3

то есть, напряжение в каждой цепи одинаково и равно напряжению на клеммах всей цепи, а
Iобщ = I1 + I2 + I3
то есть, сила тока во всей цепи равна сумме токов в каждой цепи.

Чтобы рассчитать общее сопротивление для двух параллельных цепей можно воспользоваться формулой: R

общ
=
, где
R1
и
R2
— сопротивления параллельных цепей.

Пример: рассчитаем общее сопротивление двух параллельных цепей , где R1 = 2 Ома, а R2 = 8 Ом :

R

общ
= = =
1,6 Ом. Таким образом, общее сопротивление двух параллельных цепей уменьшилось.

Исходя из этого, можно сделать вывод, что общее сопротивление параллельных цепей всегда будет меньше меньшего из сопротивлений и, если из нескольких параллельных цепей убрать хотя бы одну, то общее сопротивление увеличится (так как уменьшится общая проводимость)!

3. Смешанное соединение.

Это сочетание последовательных и параллельных цепей, то есть, цепь то разветвляется, то сходится в одну. Общее сопротивление такой цепи определяется, как сумма сопротивлений всех разветвлённых и неразветвлённых участков, рассчитанных раздельно, например:

R

общ=R1+ + R4

Правила чтения

Соблюдение рекомендаций по чтению ПС поможет разбираться с принципом работы устройств. Существует несколько правил изучения схем:

  1. Вначале надо ознакомиться с общим расположением деталей на ПС, примечаниями и пояснениями.
  2. Правильно определить систему питания. Для этого следует искать общие провода, выявлять наличие оксидных конденсаторов, полярность их подключения, а также структуру транзисторов. В цепях переменного тока надо обязательно установить фазировку.
  3. Потенциал в выбранной точке замеряется относительно отрицательного полюса, если в примечании не указано иное.

Кроме того, имеются дополнительные правила чтения, характерные для высоковольтных и магистральных цепей, схем автоматики и вычислительной техники.

Для чего рисуют точки на схемах

Чтобы обозначить соединение элементов на схемах, используют точки. Нарисованная точка указывает на наличие контакта между токоведущими проводниками.

Ставьте точку там, где проводники соединяются

Если в каком-либо месте цепи соединяются три или более проводящих линии, их соединение обозначают точкой.

На следующем рисунке приведен пример использования точек на простых схемах, состоящих из батареек и лампочек. Рисунок 11а содержит соединение нескольких проводящих дорожек. Благодаря соединениям заряды во время протекания тока могут перемещаться из одного проводника в другой.

При построении электрических схем применяют различные способы соединения элементов, наиболее распространенные — последовательное и параллельное соединение, а так же, смешанное.

Две лампы подключены к общему источнику тока. Б) – каждая лампа подключена с своему собственному источнику, проводники не соединяются

А представлено пересечение изолированных проводников. Соединений между такими проводниками нет и, ток из одного проводника во второй проводник проникать не будет.

Обязательно на схемах обозначайте точками соединения проводников. Если точку на схеме не поставить, то другие люди, читающие ваши схемы, подумают, что проводники не соединяются, а скрещиваются без соединения.

Электрическая цепь в замкнутом положении

Наиболее простой замкнутой цепью считается соединение проводниками источника питания с приемником. Проводники всегда должны изолироваться.

Для того, чтобы обеспечить стабильную и безопасную работу электроцепи, в нее включают вспомогательные элементы. К ним относятся приборы измерения напряжения и тока, разнообразные включатели и переключатели, а также прочие устройства.

Замкнутая электрическая цепь делится на две составляющие: внутреннюю и внешнюю.

Определение 2

Внутренней составляющей электроцепи является источник питания. Внешняя составляющая – это потребитель электроэнергии или их совокупность вместе с проводниками и прочими приборами, которые работают в замкнутой электроцепи.

Типы электрических цепей

В электротехники по типу соединения элементов электрической цепи существуют следующие электрические цепи:

  • последовательная электрическая цепь;
  • параллельная электрическая цепь;
  • последовательно-параллельная электрическая цепь.

Последовательная электрическая цепь.

В последовательной электрической цепи (рисунок 2.) все элементы цепи последовательно друг с другом, то есть конец первого с началом второго, конец второго с началом первого и т.д.

Рисунок 2. Последовательная электрическая цепь.

При таком соединении элементов цепи ток имеет только один путь протекания от источника тока к нагрузке.При этом общий ток цепи Iобщ будет равен току через каждый элемент цепи:

Iобщ=I1=I2=I3

Падение напряжения вдоль всей цепи, то есть на участке А-Б (Uа-б), будет равно приложенному к этому участку напряжению E и равно сумме падений напряжений на всех участках цепи (резисторах):

E=Uа-б=U1+U2+U3

Параллельная электрическая цепь.

В параллельной электрической цепи (рисунок 3.) все элементы соединены таким образом, что их начало соединены в одну общую точку, а концы в другую.

Рисунок 3. Параллельная электрическая цепь.

В этом случае у тока имеется несколько путей протекания от источника к нагрузкам, а общий ток цепи Iобщ будет равен сумме токов параллельных ветвей:

Iобщ=I1+I2+I3

Падение напряжения на всех резисторах будет равно приложенному напряжению к участку с параллельным соединением резисторов:

E=U1=U2=U3

Последовательно-параллельная электрическая цепь.

Последовательно-параллельная электрическая цепь является комбинацией последовательной и параллельной цепи, то есть ее элементы включаются и последовательно и параллельно (рисунок 4).

Рисунок 4. Последовательно-параллельная электрическая цепь.

Замкнутая электрическая цепь

Замкнутая электрическая цепь представляет собой наиболее простой вариант соединения. Она состоит из источника электроэнергии, потребителя энергии и соединительных элементов в виде обычных проводов. Провода в цепи обязательно должны иметь соответствующую изоляцию.

Для обеспечения стабильной и безопасной работы электрической цепи ее снабжают дополнительными элементами. Обычно это различные электроизмерительные приборы, с помощью которых можно узнать величину токов и напряжения в системе, а также оборудование, предназначенное для замыкания и размыкания цепи.

Все замкнутые электрические цепи делят на две основные части:

Необходимо подобрать научные статьи для учебной работы? Укажи тему и получи ответ через 15 минут получить помощь

  • внешний участок цепи;
  • внутренний участок цепи.

Определение 2

Внутренний участок цепи – непосредственно источник электроэнергии у потребителя.

Внешний участок цепи – система, которая состоит из одного или многих потребителей электроэнергии, а также соединительных проводов и приборов. Все они должны иметь отношение к функционированию замкнутой электрической цепи.

Активные и пассивные элементы электрической цепи

Эти же соображения относятся и к многофазным электродвигателям. Если ток изменяется в определённых пределах которые зависят от детали , то нижняя граница всегда равна нулю, и эта составляющая начинает отдавать энергию внешней цепи.


Третья часть состоит из передающих устройств — проводов и других установок, обеспечивающих уровень и качество напряжения. Особенности нанесения разметок на схемы: Для ЭДС источников они указываются произвольно. Каждый активный элемент характеризуется только одним параметром — ЭДС или током на выходных зажимах источников.


А определить мощность можно, умножив ток на напряжение. Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника.


Законы, которые понадобятся при работе с цепями постоянного тока Анализ и расчет будут гораздо эффективнее, если одновременно использовать закон Ома, а также первый и второй законы Кирхгофа. А выключатели или приборы защиты всегда подсоединяются последовательно, т. Трехфазные системы в настоящее время получили наибольшее распространение.

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается. Вторая — элементами, преобразующими электричество в другие виды энергии.

Параллельное соединение конденсаторов


Если в электрическую цепь были включены источники напряжений, то данный показатель будет равен нулю. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой ВАХ. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных.

В ней содержатся условные обозначения элементов, а также способы из соединения. Основные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию в качестве примера можно привести выпрямительное устройство.

Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. Рассмотрим процесс возникновения синусоидальной ЭДС. Так, когда элемент нагревается, то сопротивление начинает возрастать. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.

КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Закон Ома для замкнутой цепи

Закон Ома для замкнутой цепи показывает определенное значение тока. Оно зависит от сопротивления источника, а также от сопротивления нагрузки.

Величина тока в замкнутой цепи, которая состоит из источника цепи, будет равняться отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений. При этом источник тока должен обладать внешним и внутренним нагрузочным сопротивлением.

Такая зависимость была установлена экспериментальным путем в начале 19 века известным ученым Георгом Омом. Он смог описать результаты собственных опытов на математическом уровне.

Закон Ома для замкнутой цепи можно записать следующим образом:

$I=\frac{\varepsilon}{R+r}$, где:

  • $\varepsilon$ — электродвижущая сила источника напряжения;
  • $R$ — сопротивление всех внешних элементов цепи, например, проводников;
  • $r$ — внутреннее сопротивление источника напряжения;
  • $I$ – сила тока в цепи.

Расчет для определенного сопротивления:

$\varepsilon =I_1 R_1+I_1 r$

$\varepsilon=I_2 R_2+I_2 r$

После подстановки полученных значений, формула приобретает такой вид:

$\varepsilon=\frac{I_1 I_2 (R_2-R_1)}{I_2-I_1}$

Схема электрической цепи – применение и классификация.

Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной.

Источник питания на рис. Действующее значение связано с амплитудным простым соотношением 2. Нюансы графической маркировки Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы.

Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.

Когда по цепи течет ток, за некоторое время по ней пройдет некоторое количество электричества и выполнится определенная работа. В этом случае они считаются первичными. Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной на рис.

Элементы электрической цепи

Электрическую цепь разделяют на 2 участка – внутренний и внешний. Внутренним участком считается источник питания постоянного или переменного напряжения, а внешним – система, состоящая из нагрузки, приборов и соединительных элементов (проводов). Кроме обязательных элементов – источника и нагрузки, электрическая цепь может включать выключатели, реостаты, предохранительные плавкие или автоматические устройства, приборы контроля и индикации. Нагрузка также может состоять из различных потребителей, подключенных в цепь параллельно или последовательно.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:

Схема электрическая объединенная (Э0)

На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.

Пример схемы электрической объединенной:

Схема электрическая подключения (Э5)

На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии. На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.

Пример схемы электрической подключений:

Схема электрическая соединений (монтажная) (Э4)

На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.

Пример схемы электрической соединений:

Схема электрическая принципиальная (полная) (Э3)

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.

Пример схемы электрической принципиальной:

Схема электрическая функциональная (Э2)

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.

Пример схемы электрической функциональной:

Схема электрическая структурная (Э1)

На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.

Пример схемы электрической структурной:

Как правильно составлять схему

Электросхему для начинающих следует рисовать на клетчатом листе, чтобы ровно вычерчивать все линии и символы. Чаще всего общий провод соединен с отрицательным полюсом источника постоянного тока. Линейные элементы рисуются слева направо. Не рекомендуется изображать более 3 параллельных проводников подряд, это затруднит чтение схемы.

Для составления ПС, МС и чертежей можно воспользоваться приложениями для компьютера. Одно из них — Microsoft Visio — входит в состав офисного пакета. В наборе функций этой программы доступно более 100 символов для деталей, проводников и механизмов. Поддерживается автоматическая привязка концов рисуемых элементов, что обеспечивает целостность диаграммы при редактировании.

Еще одно приложение для правильного составления схем — это отечественный sPlan. Программа распространяется бесплатно и имеет русифицированные интерфейс и справку. С помощью sPlan создают электросхемы, соответствующие ГОСТу. Кроме того, имеется встроенный графический редактор, позволяющий создать монтажную диаграмму.

Законы, действующие в электрических цепях

На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:

  1. Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
  2. Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
  3. Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.

В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.

В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».

Какую электрическую цепь называют замкнутой

Замкнутая цепь – это непрерывный контур, по которому через нагрузку протекает электрический ток. Простым примером является настольная лампа, подключенная в розетку. Пока кнопка выключателя выключена – цепь разомкнута. При этом тока в цепи нет, поэтому лампочка не светит. Когда же кнопка включена, в цепи протекает электрический ток и лампа светит. Такая цепь называется замкнутой.

Более сложным примером является электросеть квартиры, которая представляет разветвленную цепь, состоящую из отдельных цепей, подключенных к одному источнику. Каждая ветка имеет свой выключатель. В этом случае вся цепь может быть замкнутой или только отдельный ее участок.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]