Принцип работы термопары описание, устройство, схема


Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Как снять термопару с газовой колонки

Для того чтобы была возможность оперативно отремонтировать газовую колонку своими руками и всегда быть с теплой водой, с учетом опыта длительной эксплуатации газовых колонок разных моделей, у меня под рукой всегда имеется набор запасных частей. Резиновые прокладки, трубки, тепловое реле и термопара в комплекте. Поэтому за полчаса термопара была заменена новой, и колонка опять стала исправно нагревать воду.

Термопара закреплена слева на общей планке с запальником и свечей с помощью гайки. Прежде чем отвинчивать гайку нужно немного отвинтить левый саморез, удерживающий планку, чтобы он не мешал поворачиваться гаечному ключу.

Далее гаечным рожковым ключом гайка откручивается вращением против часовой стрелки до полного схода с резьбы на корпусе термопары. После этого термопара легко выйдет вниз из планки.

На следующем шаге нужно с помощью рожкового ключа выкрутить винт-контакт из газо-водорегулирующего узла. Винт находится с противоположной стороны ручки регулировки подачи газа.

Останется только снять две клеммы с реле тепловой защиты, и термопара в комплекте с проводами будет снята с газовой колонки.

Установка новой термопары производится в обратном порядке, при этом желательно, чтобы токоведущие провода не касались как внутренних металлических частей газовой колонки, так и кожуха после его установки.

Термопары: устройство и принцип работы простым языком, типы

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки.

Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений.

В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары.

Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык.

Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай.

Схематически устройство изображено на рисунке 1.

Рис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Рис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС.

Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает.

Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Рис. 3. Измерение напряжения на проводах ТП

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки.

Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки.

Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар.

Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.

Рис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

  • ТПП13 – платинородий-платиновые (тип R);
  • ТПП10 – платинородий-платиновые (тип S);
  • ТПР – платинородий-платинродиевые (тип B);
  • ТЖК – железо-константановые (тип J);
  • ТМКн – медь-константановые (тип T);
  • ТНН – нихросил-нисиловые (тип N);
  • ТХА – хромель-алюмелевые (тип K);
  • ТХКн – хромель-константановые (тип E);
  • ТХК – хромель-копелевые (тип L);
  • ТМК – медь-копелевые (тип M);
  • ТСС – сильх-силиновые (тип I);
  • ТВР – вольфрамрениевые (типы A-1 – A-3).

О термопарах: что это такое, принцип действия, подключение, применение

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.
Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Как укладывать наноизол

Монтирование материала выполняется строго по стандартизированным правилам. С целью обеспечения защиты утеплителя пароизоляционный материал размещают во внутренней части помещения между обшивкой и теплоизоляционным слоем.

Как и в каких случаях ее можно восстановить

Термопара устроена таким образом, что любые повреждения или загрязнения могут снизить выдаваемое ею напряжение ниже критической отметки. Очень частой причиной неисправной работы является нагар или слой сажи на ее рабочей (нагреваемой) части. Чтобы восстановить термопару, достаточно почистить ее мягкой щеткой или ваткой и спиртом, не допуская при этом царапин и прочих повреждений. После очистки стоит заново произвести проверку напряжения следуя инструкции выше.

Также частой причиной являются окислившиеся контакты, их можно аккуратно обработать наждачкой-нулевкой. Если на термопаре присутствует глубокая черная вмятина или дыра вследствие прогорания, ее гарантировано необходимо заменить.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Компенсационные провода

В состав термопар входят компенсационные провода, которые выглядят как удлинители для подсоединения устройств к измерительному прибору. Если устроить свободные концы в головке термоэлектрического преобразователя, то практически его подсоединение выполнить нельзя, так как прибор работает при очень высоких температурах.

Кроме того, не всегда прибор, на который поступают данные, можно расположить недалеко от датчиков. Поэтому часто требуется подсоединение измерительного прибора на расстоянии от места, где установлены датчики. Эту задачу с успехом решают компенсационные провода. Обычно их изготавливают из того же материала, что и термоэлектрические датчики.

Удлинительные провода находятся на участках с более низкими температурами, поэтому существует возможность изготавливать их из более дешевого материала. При использовании компенсационных проводов необходимо учитывать возможность появления паразитных электродвижущих сил. Провода должны обеспечить отведение свободных концов от термопары в зону с пониженной и постоянной температурой.

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Способ крепления термопары к металлическому изделию

Изобретение относится к контактному измерению температур металлических изделий. Сущность: в изделии формируют паз или отверстие, размером не меньше четырех диаметров устанавливаемой термопары. Устанавливают термопару в паз или отверстие. Заформовывают термопару составом смеси, включающим каолиновую глину, флюс П-0,66 и жидкое стекло, при следующем соотношении, масс. %: каолиновая глина 92-97; флюс П-0,66 2-5; жидкое стекло остальное. Технический результат: обеспечение возможности многократного крепления термопары к изделию без разрушения рабочего спая, упрощение аппаратурного обеспечения в процессе крепления и обеспечение повторяемости точности измерений. 1 ил., 1 табл.

Изобретение относится к способам контактного измерения температуры образцов (изделий), заготовок из металлов и сплавов в условиях повышенных температур и продолжительного времени.

Условия, которые необходимо соблюдать при измерении температуры изделий термопарами во время таких испытаний, характеризуются следующими требованиями:

— максимальный тепловой контакт с образцом;

— надежным креплением к образцу;

— многократное использование рабочего спая одной и той же термопары;

— малая инерционность термопары.

В настоящее время требуемые условия при закреплении термопар достигаются двумя путями. Первый это механическое прижимание термопары к поверхности образца (авт. св. СССР N 49379, кл. G01K 7/02) или склеивание термопары с образцом (авт. св. СССР N 123215, кл. H01L 35/34). Такие способы не обеспечивают достаточной точности и повторяемости результатов измерения температуры при ее быстром возрастании из-за наличия термосопротивления клеевой пленки в месте контакта термопары и образца. Величина такого термосопротивления велика и снижает точность измерения температуры в несколько раз, а повторяемость измерений может быть снижена в десятки раз.

Второй путь это выполнение в образце отверстия (авт. св. СССР N 180382, кл. G01K 7/02), запрессовывание термопары в испытываемом объекте (авт. св. СССР N 110933, кл. 21 в 27/03), зачеканка и заполнение отверстия амальгамой (авт. св. СССР N 370480, кл. G01K 7/02). Такие способы, создавая механическую прочность крепления термопары к образцу, не обеспечивают возможности многократного использования одного и того же рабочего спая термопары при измерении температуры на серии образцов или изделий, что приводит к снижению повторяемости результатов в измерениях.

Наиболее близким к изобретению по технической сущности является способ (авт. св. СССР N 150268, кл. G01K 7/02), заключающийся в помещении термопар или термоэлементов в теле испытываемого объекта. Для этого термопары заделывают в поверхность металлических изделий путем заливки паза в месте их установки расплавленным металлом (например, медью) под глубоким вакуумом.

Недостатком указанного способа является невозможность использовать повторно рабочий спай (и некоторую часть термопары) для измерения температуры на последующих изделиях, что значительно увеличивает расход термопар и стоимость измерений при использовании термопар изготовленных из дорогостоящих металлов, например типа ТПР тип В), не обеспечивает точности и повторяемости результатов, кроме того невозможность получения серии рабочих спаев термопар с одинаковыми характеристиками, из-за попадания в рабочий спай в процессе сварки посторонних примесей.

Заливка паза расплавленным, металлом устанавливаемую на изделии термопару под глубоким вакуумом требует сложного аппаратурного оформления при креплении термопар к изделиям.

Задача решаемая настоящим изобретением является уменьшение затрат на осуществление способа.

Техническая сущность заключается в возможности многократного использование рабочего спая термопары с одинаковыми характеристиками, при измерении температуры нагреваемых изделий, за счет крепления его к ним специальным составом смеси, упрощения аппаратурного оформления в процессе ее крепления и повторяемость точности измерений.

Настоящая задача решается в способе крепления термопары к металлическому изделию, включающем формирование в изделии паза или отверстия, установку в него термопары, ее заформовывание, паз или отверстие формируют размером не меньше четырех диаметров устанавливаемой термопары, а заформовку термопары ведут составом смеси включающим каолиновую глину, флюс П-0,66 и жидкое стекло, при следующем соотношении, масс., %:

каолиновая глина92-97
флюс П-0,662-5
жидкое стеклоостальное

Последовательность выполнения указанных операций позволяет получить достаточно высокую механическую прочность после затвердевания жидкого стекла в смеси и обеспечит плотный и прочный контакт между рабочим спаем и поверхностью испытываемого образца или изделия. После проведения измерений (до 40 циклов, после четырех переустановок с одного образца на последующий) место крепления термопары достаточно легко разрушается (постукиванием о металлический предмет образцом или путем нагрева образца до температуры 1200-1300°С, (где происходит размягчения крепежного материала).

В качестве примера крепления термопары составом смеси к образцу выбрана сталь 30МнВ5 по стандарту EN 10083-3, используемую для изготовления рабочих органов сельхозмашин: стрельчатые лапы, диски, лемех и др.

Способ осуществлялся следующим образом.

Из проката стали 30МнВ5 вырезали образцы размером 15*30*8 мм в количестве 30 шт., которые разделили на 5 партий по 6 шт. в каждой.

В 15 образцах прорезали сквозной паз длинной 10 мм и ширенной 2,5-3,0 мм, а в остальных высверливали отверстия глубиной 10 мм и диаметром 2,5-3,0 мм.

Рабочий спай термопары формировали контактной сваркой.

Диаметр хромель-алюмелиевой термопары составлял 0,8 мм.

Затем готовился состав смеси для крепления термопары к образцу.

Подготовленный паз или отверстие с термопарой наполняли составами приведенные в таблице.

Подготовленные образцы помещали в индуктор подключенный к высокочастотному инвертору ЭЛСИТ-70/100 и осуществляли шестикратный ТВЧ-нагрев от 20 до 1250°С, затем крепление разрушалось и устанавливалась термопара с рабочим спаем на последующие образцы с однократным нагревом (в количестве 6 шт.).

При проведении испытаний образцов значения измерения температуры до температур 300-420°С погрешность не превышала 1,5-3,0%, а после 780-1250°С и установки термопары на последующие образцы она не превышала 3,7% (на шести образцах).

На фиг. 1 — показан образец с закрепленной термопарой: 1 — образец из стал 30МнВ5; 2 — термопара; 3 — крепежный состав смеси; 4 — прорезь.

Экспериментально было установлено, что максимальный эффект от крепления термопары к образцам достигается при содержание глины от 92 до 97%, а флюса от 2 до 5% и остальное жидкое стекло плотность которого составляла 1,5 г/см3 (состав смесей №1-3).

В сыром состоянии механическую прочность крепежной смеси обеспечивает жидкое стекло.

При нагревании буры и борного ангидрида выше 790°С образуются стекловидная масса взаимодействующая с поверхностью металла образуется окислы типа вюстита, кристаллическую решетку которого достраивает α-железо, что и обеспечивает механическую прочность состава смеси с термопарой и с металлической поверхностью

При содержании каолиновой глины меньше заявляемого, например: 90% прочность значительно не увеличивается, но увеличивается расход дорогостоящего связующего материала флюса П-0,66 (состав смеси №4), а при увеличение связующего компонента, например 99% механическая прочность низкая, термопара не фиксируется (состав смеси №5), в отверстии или пазу.

Количество связующего (флюс П-0,66) вводимую в смесь, обеспечивающие оптимальную прочность крепления термопары к поверхности это составы смеси №1-3 приведенные в таблице.

При увеличении количество связующего (флюс П-0,66) более оптимального, например 9%, значительно повышается прочность крепежной смеси к внутренней поверхности образца, что значительно усложняет последующее извлечение термопары из паза или отверстия (состав смеси №4).

Содержания связующего менее заявляемого (2%), например 1% (состав смеси №5) механическая прочность крепежной смеси значительно снижается и она не обеспечивает прочного крепления термопары к образцу или изделию, что значительно влияет на точность измерения температуры.

В случае уменьшения паза или диаметра отверстия меньше четырех диаметров термопары, то значительно увеличивается механическая прочность крепежной смеси и извлечение рабочего спая и термопары становится затруднительным и даже приводит к разрыву термопары.

В случае при увеличение ширины паза или диаметра отверстия более чем четырехкратное, то степень извлечения упрощается, создаются условия механического разрушения крепежной смеси, например тонким сверлом, но снижается точность измерений, так как наблюдается эффект замурованной термопары в теплоизолирующем объекте, уменьшается, скорость нагрева, скорость охлаждения образца снижается.

Таким образом, предлагается способ многократного крепления термопары к образцу или детали без разрушения рабочего спая и использования сложного аппаратурного оформления, что значительно увеличивает повторяемость получаемых результатов.

Способ крепления термопары к металлическому изделию, включающий формирование в изделии паза или отверстия, установку в него термопары, ее заформовывание, отличающийся тем, что паз или отверстие формируют размером не меньше четырех диаметров устанавливаемой термопары, а заформовку термопары ведут составом смеси включающим каолиновую глину, флюс П-0,66 и жидкое стекло, при следующем соотношении, масс., %:

каолиновая глина92-97
флюс П-0,662-5
жидкое стеклоостальное

Что это и для чего нужно?


Приобретение термопары для газовой плиты – забота о безопасности своей семьи.
По сути – это датчик, регистрирующий температуру. Но только не окружающей среды, а пламени горелки плиты. Впрочем, разработчики не пытались следить за изменением температуры огня, а лишь за его наличием. Горит огонь, датчик нагрет, все работает нормально. Погас огонь, датчик остыл, отключается газ.

Покупка газовой плиты с термопарой не намного дороже, чем без нее, зато гарантирована профилактика утечки газа.

Все просто, эффективно и незатратно. Наличие опции незначительно влияет на цену модели. А безопасность такой плиты повышается.

В общих чертах термодатчик представляет собой небольших размеров цилиндр из спаянных вместе двух металлов. От него идут провода к электромагнитному клапану. Именно он и контролирует подачу газа. Работа системы построена на физических законах, о которых многие забыли сразу после школы.

Повторим физику


Устройство термопары основано на законах физики: закрытый контур из металлических проводников при нагревании производит электрический ток.

Первым эффект, легший в основу термопары, открыл немецкий физик Т. Зеебек. В своих опытах он установил, что закрытый контур из двух проводников различных металлов при нагревании образует электрический ток. При этом, чем больше нагревать спайку проводников, тем больший ток возникает.


Немецкий ученый Т. Зеебек первым обнаружил физическое явление, на котором основано действие термопары.

Один контакт контура нагревается и называется «горячим». Другой, «холодный» должен быть при более низкой температуре. С него и снимается показание температуры. Поскольку зависимость полученного тока от температуры нагревания строго линейна.

Маркировка термопар

Перед приобретением прибора важно разобраться в маркировке изделия, чтобы выбрать подходящий вариант.

Опытным путем были установлены пары металлов, использование которых наиболее эффективно. В зависимости от использованных металлов, прибор имеет свою маркировку. Зная ее и характеристики полученных спаев, можно выбрать подходящий для своих нужд датчик.

Различают следующие типы:

  • K (ТХА/ХА) – никель с хромом или алюмелем. Распространенный, точный и недорогой с точностью +/- 1.10 С и диапазоном от -270 до 12600C.
  • L (ТХК) – хромель с копелем. Основная черта – долговечность.
  • J – железо с константаном. Второй по популярности с диапазоном от -210 до 7600C, не долговечен.
  • T – медь с константаном. Прибор узкой специализации для особо низких температур.
  • E – никель или хром с константаном. Высокоточный прибор для средних температур до 8700С.
  • N – нихросил. Чрезвычайно точный, но дорогой прибор с диапазоном измерений до 3920C.

В продаже есть сплавы с добавлением усилителей. Они не так популярны, но имеют применение.

Где и как это используют?

В конфорках термопара для газовой плиты работает по простому принципу: есть или нет пламени.


Принцип действия термопары для газовой плиты не сложен, она реагирует на наличие и отсутствие пламени.

В духовке уже требуется контролировать температуру нагревания. Хозяйка устанавливает температуру и, в зависимости от того, насколько близка реальная температура в духовке, датчик регулирует интенсивность подачи газа через электромагнитный клапан.


Термопара для газового духового пара контролирует степень нагрева, а не только наличие пламени.

На том же принципе основана работа термодатчика газовых котлов и колонок. Контролируется температура нагревания воды, что дает возможность экономить потребление газа.


Термопара, установленная на газовый котел и регулирующая нагрев воды, сэкономит семейный бюджет.

Часто встречаются электронные термометры. С их помощью измеряют температуру в помещениях и у человека. Такие приборы гораздо безопаснее ртутных. В свое время они широко использовались в быту.

В промышленности широко применяется такое свойство термопары, как низкая инерционность. Что дает возможность измерять малую разность температур. Высоко ценится и применение датчиков в агрессивных средах и при высоких температурах, порядка 2 000 градусов.


Есть термопары, подходящие для измерения температуры в агрессивной среде. Они обладают устойчивой защитной арматурой.

Виды устройств

Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:

  • Тип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
  • J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
  • Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
  • Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
  • Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.

Вам это будет интересно Устройство, принцип работы и применение ионистора

Существуют термопары, выполненные из сплавов родия и платины. Относятся они к типам B, S, R и считаются самыми стабильными устройствами. К минусам этих преобразователей относится высокая цена и низкая чувствительность.

При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.

По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.

Ремонт своими руками

Уметь починить любую вещь в доме – признак настоящего хозяина. Но в отношении газового оборудования нужно быть осторожным.


Ремонтом газового оборудования должен заниматься специалист, имеющий сертификат.

Но не все, что есть в таком приборе – газовое. Заменить конфорки, горелки, почистить детали – для этого не нужен мастер с допуском к работе. Прежде всего, нужно выявить неисправность.

Сбой в работе термопары для газовой плиты выглядит так. Газ горит только при нажатой кнопке. Стоит ее отпустить – пламя тухнет. Чтобы выяснить причину, нужно тщательно осмотреть как сам прибор, так и плиту в целом.


Работу по устранению неисправности термопары начинают с отключения подачи газа и осмотра техники.

  • Разбираем газовую плиту.
  • Снимаем с конфорки рассекатель.
  • Убираем отражатель.
  • Проверяем состояние термопары.


Частыми причинами поломки термопары являются ее загрязнение или повреждение датчика.

Возле газовой горелки находится два прибора. Один из них напоминает свечу зажигания в автомобиле. Это для розжига плиты. Второй – термопара. Причинами выхода ее из строя могут быть:

  • загрязнение;
  • повреждения;
  • смена вида газа;
  • поломка датчика или клапана.

Если загрязнен элемент термопары в газовой плите – его нужно как следует почистить. Термопара – два куска металла и чистка ее это пройти мелкой наждачной бумагой по поверхности.

Возможны повреждения проводки прибора. Потертости из-за неправильного монтажа, грызуны или домашние животные, возможны и другие причины повреждений.


После устранения неисправности газконтроля, необходимо тщательно проверить прибор.

После проверки и, при необходимости замены проводки, следует правильно подключить термопару. В противном случае «холодный» и «горячий» контакты контура окажутся не в противофазе. Все плюсовые провода подсоединяют к плюсовому выводу. Минусовые – к минусовому.


Правильно установленная термопара – залог безопасности при эксплуатации газового оборудования.

В зависимости от типа датчика цвет проводки меняется. В некоторых случаях изоляция может быть двойной и разного цвета. Но первичный слой будет всегда неизменным. В таблице представлены цвета основного изоляционного слоя.

Тип термопарыЦвет изоляции
ПлюсМинус
Jбелыйкрасный
Kжелтыйкрасный
Tголубойкрасный
Eмалиновыйкрасный
Sчерныйкрасный
Rчерныйкрасный


Нетрудно запомнить, что цвет провода с минусом всегда красный.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.

Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.

Типы спаев

В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.

Буквами обозначено:

Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.

С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.

Многоточечные термопары

Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.

READ Как подключить геймпад дуалшок 3 к пк

Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.

Какие бывают термпопары ?

По количеству чувствительных элементов термосопротивления бывают :

— с одним элементом (стандартное исполнение); — с двумя чувствительными элементами.

Количество чувствительных элементовЭлектрическая схема датчика
Один
Два

По исполнению коммутационной головки термопары бывают :

— с пластмассовой головкой (исполнение по умолчанию) ; — с металлической головкой (при заказе в конце марки датчика добавляется код МГ) ; — с увеличенной пластмассовой головкой (при заказе в марке к модели добавляется код Л ) ; — с увеличенной металлической головкой (при заказе в марке к модели добавляется код Л и в конце марки датчика добавляется код МГ) . Увеличенная головка применяется для встраивания в датчик нормирующего преобразователя тока НПТ, что превращает обычную термопару в преобразователь температуры с токовым выходом 0..20 или 4..20 мА.

Конструктивное исполнение Стандартное исполнение Увеличенное исполнение Со встроенным НПТ-3
Пластмассовые головки
Металлические
головки
Для моделей 015-105, 185-215, 265 (поставка по умолчанию)
Для моделей 115-165, 225, 275, 285, 295, 365 (поставка по умолчанию)
Для моделей 115-165, 225 — с защелкой(поставка под заказ)

Тип K или ТХА. Материалы электродов: хромель-алюмель

Термопары, состоящие из хромеля и алюмели, относятся к датчикам общего назначения. Чаще всего применяются в качестве самых разнообразных щупов. Они очень популярны из-за своей невысокой стоимости и широкого диапазона измеряемых температур от -270°С до +1372 °С (предел измерений будет зависеть от диаметра используемой термоэлектродной проволоки). Нежелательно использование в атмосфере с повышенным содержанием серы, так как она влияет на оба электрода.

Преобразователи этого типа выпускает промышленная группа «Метран» («Rosemaunt»).

ТХА Метран-231-1-3, ТХА Метран-231-4-5 и ТХА Метран-241

Метран-231-1-3 предусмотрен для измерения температур жидких и газообразных химически неагрессивных сред, а также агрессивных, которые не разрушают оболочку кабеля. Благодаря тому, что данные термопреобразователи исполнены в кабельном виде, они не боятся изгибаний в ходе укладки и монтажа, легко укладываются в труднодоступные места, а также прижимаются к поверхностям, температуру которых необходимо измерить. Диапазон рабочих температур от -40°С до +1000°С

Метран-231-4-5 используются для измерения температур продуктов, образующихся в процессе сгорания топлива (жидкого или газообразного) в пульсирующем потоке.

ТХА Метран-241 Разработаны для замеров температуры различных малогабаритных подшипников, а также поверхностей различных твердых тел, в том числе головок и корпусов термопластических автоматов, различных червячных прессов для переработки резиновых смесей и пластмасс. Диапазон рабочих температур от -40°С до +400°С.

ТХАУ Метран-271

Температурные преобразователи с унифицированным выходным сигналом используют во взрывоопасных зонах, где существует вероятность образования газов, паров, горючих жидкостей, образующих взрывоопасные смеси с воздухом категорий IIА, IIВ и IIС, а также групп Т1-Т6 согласно ГОСТ Р 51330.11-99. Функционируют в нейтральных и агрессивных средах, в которых защитная арматура не подвергается коррозии. В головку датчика встроен измерительный преобразователь с микропроцессором. Диапазон рабочих температур от 0°С до +1000°С

Термопары ДТПK(ХА)-EХ

Компания по разработке и производству КИПа «Овен» предлагает обычные и взрывозащищеные термопары ДТПK(ХА)-EХ

Диапазон рабочих температур от -40°С до +400°С.

Существует также ДТПК (ХА)-ЕХ с коммутационной головкой (тип ХХ5). Этот прибор имеет диапазон рабочих температур обычных датчиков от -40°С до +1100°С, для взрывозащищенных -200°С до +1200°С. В промежутке от -160°С до +333°С погрешность измерений может составлять до 2,5°С.

Термопреобразователи модификаций ДТПК(ХА) используются для постоянного измерения температуры разнообразных рабочих сред, не агрессивных к материалу, из которого изготовлен корпус датчика (газ, пар, вода, различные сыпучие материалы, а также химические реагенты и прочие). Во взрывозащищенном исполнении применяются для измерений температуры взрывоопасных смесей газов и паров, а также различных легковоспламеняющихся и взрывчатых веществ.

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Электроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.
  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Вам это будет интересно Подключение проходного выключателя света по схеме

Конструкция датчика во многом зависит от условий его применения. При создании термопары во внимание принимается диапазон измеряемых температур, состояние внешней среды, тепловая инерционность и т. д.

Принцип действия

Термопары, установленные в газовых котлах, работают синхронно с электромагнитным впускающим клапаном, который по первому сигналу термопары немедленно прекращают подачу топлива. Работа термопары полностью основана на так называемом эффекте Зеебека, когда два проводника, изготовленные из разных материалов, контактируют друг с другом одной или несколькими точками, которые носят названия рабочей части и помещаются в область открытого пламени горелки. К противоположным концам этих металлических пластин приварены или припаяны проводники в защитной оболочке, второй конец которых удерживается зажимной гайкой в гнезде автоматического датчика. В момент, когда зажигается запальник и горелка котла, подача топлива осуществляется в ручном режиме, посредством нажатия на шток.

В результате газ подаётся к запальнику и он начинает гореть, нагревая своим пламенем термопару, расположенную рядом. По прошествии 15 секунд кнопка подачи топлива отпускается и подача топлива осуществляется благодаря тому, что термопара начала выработку напряжения, удерживающего шток топливного клапана. Среднее напряжение, которое способна выработать термопара, благодаря разности потенциалов на холодных окончаниях, находится в диапазоне 40-50 мВ. В некоторых высокотехнологичных моделях клапаны отличаются максимальной чувствительностью и удерживаются в открытом положении до тех пор, пока показатель напряжения на входе не опустится ниже 20 мВ.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]