Асинхронный двигатель – принцип работы и устройство
8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.
Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение.
Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.
Обратите внимание
Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.
Асинхронный двигатель – это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный.
При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.
Устройство
На рисунке: 1 – вал, 2,6 – подшипники, 3,8 – подшипниковые щиты, 4 – лапы, 5 – кожух вентилятора, 7 – крыльчатка вентилятора, 9 – короткозамкнутый ротор, 10 – статор, 11 – коробка выводов.
Основными частями асинхронного двигателя являются статор (10) и ротор (9).
Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.
Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.
Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали.
В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется “беличьей клеткой“.
В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.
Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.
С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.
Подробнее о фазном роторе можно прочитать в статье – асинхронный двигатель с фазным ротором.
Принцип работы
При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.
Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС.
Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.
Скольжение s – это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.
Скольжение это крайне важная величина.
Важно
В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента.
В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр – критического скольжения.
Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.
Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.
Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.
Рекомендуем к прочтению – однофазный асинхронный двигатель.
1 1 1 1 1 1 1 1 1 1 4.74 (430 Голоса)
Источник: https://electroandi.ru/elektricheskie-mashiny/asdvig/asinkhronnyj-dvigatel-printsip-raboty-i-ustrojstvo.html
История создания электродвигателя
Май 1834, Якоби
Первый вращающийся электродвигатель. Якоби, 1834
Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.
1836 — 1837, Дэвенпорт
Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.
1839, Якоби
Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.
1837 — 1842, Дэвидсон
Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.
1856, Сименс
Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.
1861-1864, Максвелл
Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.
1871-1873, Грамм
Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.
1885, Феррарис
Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.
1887, Тесла
Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.
1889-1891, Доливо-Добровольский
Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде «беличьей клетки». Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.
Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.
Выбор между двухфазной и трехфазной системой
Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.
Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.
Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.
Принцип работы и устройство асинхронного двигателя
Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.
Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.
В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.
Немного истории
Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.
А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора.
Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре.
Совет
Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.
Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.
Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.
Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.
Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.
Устройство трехфазного двигателя
Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:
- статор (неподвижная часть машины)
- ротор (вращающаяся часть)
Помимо этого, в современных трех фазных двигателях можно найти следующие детали:
- вал
- подшипники
- обмотку
- заземление
- корпус (в который монтируются все детали)
Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).
Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.
Первые эксперименты с электромагнитными устройствами
Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.
1800, Вольта
Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.
1820, Эрстед
Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.
1821, Фарадей
Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем
в истории.
1822, Ампер
Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.
1822, Барлоу
Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.
1825, Араго
Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.
1825, Стёрджен
Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.
1827, Йедлик
Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.
Первый практически полезный электродвигатель Якоби
АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»
Предыдущая статья данного цикла [1] была посвящена первым лабораторным опытам, показавшим способность электрического тока производить механическое вращение или качение. Однако из-за ртутного коммутатора и ничтожной мощности такие устройства было нереально использовать в приводных двигателях. Первый практически полезный электродвигатель, сразу нашедший свое применение, был создан выдающимся электротехником Б. С. Якоби. В настоящей статье рассматриваются различные конструкции двигателя, а также другие изобретения этого ученого, прославившего российскую науку.
Рис. 1. Борис Семенович Якоби (1801–1874)
Борис Семенович Якоби (рис. 1), в молодости Мориц Герман (Moritz Hermann Jacobi), родился в Потсдаме (Пруссия) в семье преуспевающего еврейского банкира [2, 3]. Его старший брат Карл (Carl Jacobi) стал знаменитым математиком, имя которого запечатлено в таких понятиях, как якобиан, матрица Якоби и т. д.
По примеру многих своих современников Мориц принял протестантство с именем Борис и впоследствии в России назывался Борисом Семеновичем (по имени отца Симона). Образование получил сначала в Берлинском университете, а затем и в знаменитом Геттингенском, выпустившись с дипломом архитектора. После преподавал вместе с братом Карлом в Кенигсбергском университете, где заинтересовался электротехникой и попытался создать электрический аналог паровой машины.
В 1834 г. он решительно отверг эту идею, построил действующий «магнитный аппарат» вращательного движения и послал его описание в Парижскую академию наук, которое, после благоприятного отзыва Ампера и Беккереля, было опубликовано в трудах академии, а затем и в широкой прессе.
Рис. 2. Электродвигатель Якоби
Действующий образец этого двигателя, хранящийся в московском Политехническом музее, показан на рис. 2, где 1 — обмотка статора с восемью аксиальными полюсами электромагнитов (возбуждение), 2 — ротор, 3 — обмотка ротора также с восемью полюсами (якорь), 4 — щеточно-коллекторный узел (коммутатор), называемый тогда «жиротропом», с четырьмя металлическими контактными рычагами и коллекторными дисками, 5 — вал, 6 — гальваническая батарея. Двигатель развивал мощность 15 Вт при скорости 40 об/мин [3–5].
Рассмотрим принцип действия двигателя для четырех полюсов, как показано на рис. 3, где четыре неподвижных полюса (1) двух электромагнитов статора намагничены N—S—N—S, аполюсы (3) электромагнитов ротора (2) с помощью коммутатора перемагничиваются в зависимости от положения ротора. В положении, показанном на рисунке, угловое положение ротора ? = 45°, разноименные полюса ротора и статора притягиваются и вращающий момент направлен против часовой стрелки. При повороте ротора до угла ? = 90° токи и полюса якоря переключаются на противоположные, что сохраняет знак вращающего момента. Таким образом, двигатель вращается против часовой стрелки.
Рис. 4. Схема двигателя Якоби
Это классический электродвигатель постоянного тока последовательного возбуждения со щеточно-коллекторным узлом торцевой конструкции, схема которого в современном начертании имеет вид, показанный на рис. 4, где 1 — обмотка возбуждения, а 2 — якорь со щеточно-коллекторным узлом. Интересно отметить, что щеточно-коллекторный узел двигателя, являющийся, по существу, датчиком положения ротора, реализует принцип обратной связи подобно любой автоматической системе.
Рис. 3. Принцип действия электродвигателя Якоби
Публикации о двигателе Якоби имели далеко идущие последствия , 3]. Сам он получил степень доктора наук и был приглашен профессором в университет Дерпта, входившего тогда в состав Российской империи (ныне это город Тарту в Эстонии). Профессор этого университета астроном Василий Яковлевич Струве вместе со знаменитым электротехником академиком Павлом Львовичем Шиллингом обратили внимание российского правительства на полезность такого двигателя для судостроения. Император Николай I повелел пригласить профессора Якоби для построения «электрохода», на что было ассигновано 50 000 руб. Для оценки внушительности этой суммы можно вспомнить, что, как следует из поэмы Гоголя «Мертвые души», цена крепостного в те времена составляла 100 руб.
Якоби с энтузиазмом принимает предложение, в 1837 г. переезжает в Петербург, становится российским подданным и все последующие тридцать семь лет верой и правдой служит российской науке и технике в составе Петербургской академии наук.
Рис 5. Второй двигатель Якоби
Для построения «электрохода» была учреждена особая «комиссия для применения электромагнитной силы к движению машин по способу проф. Якоби» во главе с адмиралом Иваном Федоровичем Крузенштерном, куда входили ведущие российские электротехники Эмилий Христианович Ленц и Павел Львович Шиллинг [6]. Была выделена шлюпка длиной 8 м, для которой потребовался электродвигатель гораздо большей мощности. Поэтому Якоби создает второй вариант своего двигателя — больших габаритов и со сдвоенным статором, обеспечивающим повышение магнитного потока (рис. 5).
Однако мощность и этого варианта в 120 Вт была явно недостаточна, и Якоби меняет всю концепцию двигателя, перейдя к более компактной конструкции с размещением всех электромагнитов в диаметральной плоскости, показанной на рис. 6, где 1 — два электромагнита статора, 2 — четыре электромагнита ротора, 3 — коммутатор [4, 5]. Принцип действия двигателя в точности такой же, как на рис. 3. Диаметральную конструкцию электродвигателя предложил американский изобретатель Томас Дэвенпорт (Thomas Davenport), о котором будет рассказываться в следующей статье.
Рис. 6. Третий двигатель Якоби
Итак, Якоби собирает сорок таких двигателей на двух вертикальных параллельных валах, соединенных коническими передачами с гребными колесами «электрохода». С 1838 г. начинаются его многомесячные испытания с катанием по Неве до 14 пассажиров со скоростью 3 версты в час, как показано на рис. 7. Питание двигателей осуществлялось от 320 усовершенствованных гальванических цинкоплатиновых элементов весом в 200 кг, благодаря чему мощность гребного привода была доведена до 550 Вт.
Испытания прошли успешно, и о них появляются восторженные отзывы в печати и в научном мире, в том числе и от Фарадея, приславшего личное письмо, в котором он мечтал установить электродвигатели на океанских лайнерах. Однако экономические расчеты самого Якоби показали, что для этого нужны значительно большие мощности и гигантские батареи. Даже для такого «электрохода» реально требовалось не менее 10 л. с., каждая из которых обходилась бы в 12 раз дороже, чем для паровой машины (по некоторым данным — в 40 раз). «Химическая энергия в настоящее время дороже механической», — с сожалением констатировал Якоби [3, 4]. Поэтому в 1842 г. затея была оставлена.
Лишь в 1891 г. на Неве заработал первый буксир с электротягой, построенный известными электротехниками В. Н. Чиколевым и Р. Э. Классоном для буксировки барж с Охтинского порохового завода [7] (применение паровых буксиров в этом случае было бы взрывоопасным). Однако широко гребные электрические установки начали применяться лишь в XX веке, после создания мощных судовых электрогенераторов.
Рис. 7. «Электроход» Якоби
Вклад Бориса Семеновича в электротехнику этим не ограничился , 3, 5, 7]. Самым его выдающимся делом считается изобретение в 1837 г. гальванопластики, которую сразу же стали применять для печатания денежных банкнот (в связи с финансовой реформой), а затем гравюр и других художественных произведений. За это Якоби был награжден золотой медалью Парижской выставки, а в России получил от правительства 25 000 руб. (с условием не патентовать, а широко публиковать изобретение), а затем и научную Демидовскую премию в 5000 руб., от которой он, впрочем, отказался в пользу научного фонда.
К другим его известным изобретениям относятся:
- • Усовершенствование телеграфа Шиллинга и установка его в Зимний дворец, а также прокладка первых телеграфных линий: Зимний дворец — Генеральный штаб и Петербург — Царское Село.
- • Применение электричества в военном деле. Якоби создал морские мины с электрическим дистанционным детонатором от магнитоэлектрического генератора, которые успешно использовали в 1865 г. во время Крымской войны для обороны Кронштадта и Севастополя.
- • Создание новых электроприборов (реостат, эталон Ома и др.).
Кроме того, Якоби вместе с академиком Ленцем открыл явления противо-ЭДС и реакции якоря, а также обратимость электрической машины, т. е. использование двигателей в качестве генераторов и наоборот. В 1840 г. Якоби положил начало электротехническому образованию в России, создав в Кронштадте учебную команду лейб-гвардии саперного батальона, изучавшую употребление гальванизма в военном деле. За «усовершенствования по гальванической части» ему была пожалована пожизненная пенсия. Уже в наше время на 7-й линии Васильевского острова Санкт-Петербурга установили памятную доску: «Здесь жил академик Борис Семенович Якоби. 1801–1874. Выдающийся физик и электротехник. Изобретатель гальванопластики, электрического телеграфа, электрических моторных лодок, электрических мин».
Первый практически полезный электродвигатель мощностью 15 Вт был создан Б. С. Якоби в 1834 г. в виде коллекторного электродвигателя постоянного тока торцевого типа с питанием от гальванической батареи.
- • Путем ряда конструктивных изменений, в том числе переходов к цилиндрической многодвигательной конструкции, мощность электропривода удалось довести до 550 Вт, что позволило установить его в 1838 г. на судне, перевозящем по Неве до 14 пассажиров.
• Помимо этого, академик Якоби прославил отечественную науку изобретением гальванопластики, усовершенствованием телеграфа и применением электричества в минном деле.
Дальнейшее развитие электродвигателей привело к изобретению прототипов большинства современных типов машин постоянного и переменного тока, которые будут рассмотрены в последующих статьях.
Литература
- Микеров А. Г. Первые демонстрации электромагнитного вращения. Control Engineering Россия. 2015. No 4.
- Луцкий Марк. Борис Семенович Якоби (1801-1874).
- Яроцкий А. В. Борис Семенович Якоби, 1801-1874. М.: Наука. 1988.
- История электротехники / Под ред. И. А. Глебова. М.: Изд-во МЭИ. 1999.
- Шателен М. А. Русские электротехники XIX века. М.-Л.: Госэнергоиздат.
- Хартанович М. Ф. «Электроход» профессора Якоби. Вестник Российской Академии наук. 1998, т. 68, No 7.
- Иванов Б. И. История развития электротехники в Санкт-Петербурге. СПб.: Наука. 2001.