Расчет характеристик трехфазного асинхронного двигателя


Расчет характеристик асинхронного двигателя

Методические указания к выполнению практической работы по курсу
«Электромеханические системы» для студентов специальности 210100 всех форм обучения

Балаковского института техники,

технологии и управления

ЭП с трехфазным асинхронным двигателем (АД) является самым Массовым видом привода в промышленности, коммунальном и сельском хозяйстве. Такое положение определяется простотой изготов­ления и эксплуатации АД, меньшими по сравнению с ДПТ массой, габаритными размерами и стоимостью, а также высокой надежно­стью в работе.

В основную общепромышленную серию 4А входят АД с мощно­стью от 0,06 до 400 кВт и высотами осей вращения от 50 до 355 мм, которые выпускаются самых различных модификаций и конструк­тивных исполнений: с повышенными пусковым моментом и сколь­жением; с фазным ротором; встраиваемые; малошумные; со встро­енной температурной защитой; с электромагнитным тормозом; с подшипниками скольжения; химостойкие. АД различаются также по климатическому исполнению и категории размещения. Для ком­плектации ЭП большой мощности выпускаются АД серий АН-2 (мощностью до 2000 кВт), АВ (мощностью до 8000 кВт), ДАЗО (мощ­ностью до 1250 кВт) и ряд других.

Цель работы: расчет асинхронного трехфазного двигателя, определение параметров двигателя и построение механической характеристики.

Специфика и особенности трехфазных сетей

Трехфазные электрические сети наиболее эффективно передают ток через промежуточные звенья, вплоть до потребителя. В процессе доставки потери энергии минимальны.

Наличие трехфазной сети в квартире или частном доме очень легко определить. Для этого нужно просто заглянуть в щиток и посчитать количество проводов. Если в наличии 2 или 3 проводника, значит сеть однофазная. В ней два провода являются фазой и нулем. При наличии заземления может быть третий провод. В трехфазных сетях проводов больше на два из-за двух дополнительных фаз. При отсутствии заземления – их всего четыре, а при наличии заземляющего контура – пять.

Эту же задачу можно решить и с помощью вводного автоматического выключателя. К нему также подводится определенное количество проводов, подключаемых в соответствующие клеммы.

В процессе эксплуатации трехфазной сети велика вероятность неравномерного распределения нагрузки по отдельным фазам. Если к одной из них будет подключено только мощное оборудование, а к другим – обычные бытовые приборы, в этом случае может возникнуть ситуация, называемая перекосом фаз. В результате асимметрии тока и напряжения, отдельные потребители могут выйти из строя. Во избежание негативных последствий, нагрузка должна быть равномерно спланирована еще на стадии проектирования и выполнен расчет мощности трехфазной сети.

Трехфазная сеть, по сравнению с однофазной, отличается большим количеством кабельно-проводниковой продукции, автоматов и других устройств. К ней подключается специфическое трёхфазное оборудование Суммарная мощность будет выше ровно в три раза. Значение мощности рассчитывается по току и напряжению с использованием формул.

Основные теоретические сведения

Трехфазный АД имеет обмотку статора, подключаемую к трехфазной сети переменного тока с напряжением U1, и частотой f1, и обмотку ротора, которая может быть выполнена в двух вариантах. Первый вариант предусматривает выполнение обычной трехфазной обмотки из проводников с выводами на три контактных кольца Такая конструкция соответствует АД с фазным ротором (рис. 1, а).

она позволяет включать в роторную цепь различные электротехнические элементы, например резисторы для регулирования скорости, тока и момента ЭП, и создавать специальные схемы включения АД.

Рисунок 1- АД с фазным ротором

Второй вариант это выполнение обмотки заливкой алюминия в пазы ротора, в результате чего образуется конструкция, известная под названием «беличья клетка». Схема АД с такой обмоткой, не имеющей выводов и получившей название короткозамкнутой, представлена на рис.1, б.

Для получения выражений электромеханической и механичес­кой характеристик АД используется его схема замещения, на кото­рой цепи статора и ротора представлены своими активными и ин­дуктивными сопротивлениями. Особенность схемы замещения АД состоит в том, что в ней ток, ЭДС и параметры цепи ротора пере­считаны (приведены) к цепи статора, что и позволяет изобразить эти две цепи на схеме соединенными электрически, хотя в действи­тельности связь между ними осуществляется через электромагнит­ное поле. Приведение осуществляется с помощью коэффициента трансформации АД по ЭДС:

где Е1

и
Е
фазные ЭДС статора и ротора при неподвижном рото­ре;
U
ф.ном– фазное номинальное напряжение сети. Расчетные формулы приведения имеют вид:

-где штрихом обозначены приведенные значения.

Как видно из рис.2, ЭДС статора равна приведенной ЭДС ротора, а ток намагничивания Iт,

определяющий маг­нитный поток АД, протекает под дей­ствием
Uф
по отдельной цепи, состоящем из сопротивлений контура намагничива­ния
хm
и
Rm,
и представляет собой век­торную сумму токов статора и приведен­ного роторного, т. е.



.

Механическая характеристика АД.

Потери мощности в цепи ро­тора, которые часто называют потерями скольжения, выраженные через механические координаты АД, представляют собой разность электромагнитной и полезной механической мощности, т. е.
(1)
Потери мощности в роторе, выраженные через электрические ве­личины, определяются как

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция асинхронного электродвигателя

Статор

состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор

состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.


Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор “беличья клетка” наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Сайт для электриков

Пример. 3-х фазный АД с КЗ ротором типа АИР180М4 получает питание от 3-х фазной сети с линейным напряжением U1 = 380 В, частотой 50 Гц. Данные номинального режима двигателя: мощность на валу Р2НОМ = 30 кВт; синхронная частота вращения n1 = 1500 об/мин; номинальное скольжение sНОМ = 2,0 %; коэффициент мощности cosϕНОМ = 0,87; коэффициент полезного действия ηНОМ = 92 %; кратности критического кM = 2,7; пускового моментов кП = 1,7; кратность пускового тока iП = 7; соединение обмоток статора — звезда.

Найти: число пар плюсов; номинальную частоту вращения ротора; номинальное фазное напряжение; номинальный фазный ток обмотки статора; номинальный момент на валу; критическое скольжение и момент двигателя; пусковой момент при номинальном напряжении и снижении его значения на 20%; пусковой ток; емкость конденсаторов для увеличения коэффициента мощности до 1 и начертить электрическую схему двигателя с включением конденсаторов.

Решение:

Асинхронный электродвигатель с короткозамкнутым ротором — это

Определяем число пар полюсов обмотки статора:

Вычисляем номинальная частота вращения ротора: об/мин.

Находим номинальное фазное напряжение: При соединении в «звезду» В.

Рассчитываем номинальный фазный ток обмотки статора: А.

Определяем номинальный момент на валу: Н⋅м.

Вычисляем критическое скольжение:

Находим критический момент: Н⋅м.

Рассчитываем пусковой момент при номинальном напряжении: Н⋅м, при пониженном напряжении: Н⋅м,

Определяем пусковой ток: А.

Вычисляем емкость конденсаторов, для повышения коэффициента мощности до 1.

Формула емкости компенсирующих конденсаторов, соединенных по схеме «звезда», имеет вид: Ф.

Формула емкости компенсирующих конденсаторов, соединенных по схеме «треугольник», имеет вид: Ф,

где f — частота питающей электросети, Гц; QK — реактивная мощность, вар; PHOM — активная мощность, Вт; U1 — линейное напряжение, В; ϕ1 и ϕ2 — соответственно углы сдвига фаз между напряжением и током до включения и после включения конденсаторной батареи, град. град; град.

Тогда, емкость конденсаторов, при соединении «в звезду» будет равна: Ф или 1124,89 мкФ.

При соединении в «треугольник», емкость конденсаторов будет в три раза меньше, чем при соединении «в звезду» и равняется: Ф или 374,96 мкФ.

В схеме соединения конденсаторов в «треугольник» емкость батареи получатся в три раза меньше, зато напряжение на конденсаторах в больше, если сравнивать со схемой соединения конденсаторов в «звезду».

Чертим схему включения конденсаторов для повышения коэффициента мощности электросети с асинхронным двигателем.

Подробно о реактивной мощности читайте здесь.

Управление асинхронным двигателем

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Реверсивная схема

Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.

Плавный пуск асинхронного электродвигателя

В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.

Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в “звезду”, а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.


Фазный ротор

Типы электрических двигателей

Двигатели постоянного тока

Основным преимуществом данных двигателей, которое определяло повсеместное их использование на этапе развития электрических приводов, является легкость плавного регулирования скорости в широких пределах. Поэтому с развитием полупроводниковой промышленности и появлением относительно недорогих преобразователей частоты процент их использования постоянно уменьшается. Там, где это возможно двигатели постоянного тока заменяются приводами на основе асинхронных двигателей с короткозамкнутым ротором.

Основные недостатки двигателя постоянного тока (невысокая надежность, сложность обслуживания и эксплуатации) обусловлены наличием коллекторного узла. Кроме того, для питания двигателя необходим источник постоянного тока или тиристорный преобразователь переменного напряжения в постоянное. При всех своих недостатках двигатели постоянного тока обладают высоким пусковым моментом и большой перегрузочной способностью. Что определило их использование в металлургической промышленности, станкостроении и на электротранспорте.

Синхронные двигатели

Основным преимуществом данных двигателей является то, что они могут работать с коэффициентом мощности cosφ=1, а в режиме перевозбуждения даже отдавать реактивную мощность в сеть, что благоприятно сказывается на характеристиках сети: увеличивается ее коэффициент мощности, уменьшаются потери и падение напряжения. Кроме того, синхронные двигатели устойчивы к колебаниям сети. Максимальный момент синхронного двигателя пропорционален напряжению, при этом момент асинхронного двигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность их работы при аварийных понижениях напряжения. Больший воздушный зазор по сравнению с асинхронным двигателем и применение постоянных магнитов делает КПД синхронных двигателей выше. Их особенностью также является постоянство скорости вращения при изменении момента нагрузки на валу.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]