Звук – что это?
Звук представляет собой физическое явление. Это упругие волны механических колебаний, распространяющиеся в газообразной, твердой или жидкой среде. Под звуком чаще рассматривают те колебания, которые воспринимаются животными и людьми. Основными характеристиками звука считаются амплитуда и спектр частот. Для людей второй показатель колеблется в диапазоне 16-20Гц – 15-20 кГц. Все что ниже этого диапазона, называют инфразвуком, выше – ультразвуком (до 1 ГГц) или гиперзвуком (от 1 ГГц). Громкость звука формирует звуковое давление и его эффективность, форма колебаний и их частота, а вот высота звука зависит от величины звукового давления и частоты.
Аналогово цифровое преобразование
Звуковой сигнал может быть аналоговым или цифровым. Если рассматривать аналоговый сигнал, исходящий из аналоговой аппаратуры, то представляет он собой непрерывный электрический сигнал. Цифровой звук – это сигнал, представленный дискретными численными значениями его амплитуды. То есть такой сигнал записывается в виде чисел, а считывается он компьютерной техникой.
Аналоговый звук можно преобразовать в цифровой путем обработки аналогового сигнала, придавая ему численных значений. Сделать это можно в два этапа. Первый – дискретизация, в ходе которой из сигнала, который необходимо преобразовать, в определенные временные промежутки выбирают величины по заданным значениям. Второй – квантование: процесс разбиения значений, полученных в ходе дискретизации значений амплитуды звука с максимально приближенной точностью.
В аналогово-цифровом преобразовании точные значения не используются – все величины указываются округленными, поскольку из-за ограничения оперативной памяти приборов реальное значение амплитуды указать невозможно – оно бесконечное.
Частота дискретизации и разрядность
Эти два понятия часто рассматривают во время описания цифровых записывающих приборов. Итак, частота дискретизации означает частоту, с которой фиксируется частотность отсчетов входных сигналов записывающим устройством. Когда аналоговый звук преобразовывают в цифровой, он записывается отдельными отсчетами, то есть значениями интенсивности сигнала в конкретные временные периоды.
Частота дискретизации чаще всего имеет следующие стандартные значения:
- 44,1 кГц;
- 48 кГц;
- 96 кГц.
Чтобы получить лучшее качество цифровой записи, следует использовать большую частоту дискретизации: за счет большего количества отсчетов за секунду времени улучшается качество преобразованного звука.
А что же такое разрядность? Когда речь заходит о записывающих устройствах, мы часто слышим такие единицы измерения информации, как 16 бит, 24 бита и т.д. Обозначают они количество единиц информации, которыми можно изобразить значение отсчетов, получаемых при цифровой записи (причем каждого отсчета в отдельности). В этом случае качество получаемого звука тем выше, чем большая величина единицы измерения. Однако стоит учесть, что не от количества бит зависит значение интенсивности звука, а от точности его представления.
Основные преимущества цифровых приборов перед аналоговыми
Стр 1 из 2Следующая ⇒
Введение
Целью данной работы является рассмотрение преимуществ цифровой техники и их причин.
Цифровые технологии, как таковые, основаны на представлении сигналов дискретными полосами аналоговых уровней, а не в виде непрерывного спектра. Все уровни в пределах полосы представляют собой одинаковое состояние сигнала.
С конца 90-х годов прошлого века принято считать, что именно за цифровыми технологиями стоит будущее. В этой работе я попытаюсь осветить основные причины и тезисы такой точки зрения.
Аналоговый сигнал
Аналоговый сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений. Такие сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом.
Свойства аналоговых сигналов в значительной мере отражают их непрерывность:
· Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.
· Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).
Рассмотрим этот вид сигнала на простом примере. Во время разговора, наши голосовые связки излучают определенную вибрацию различной тональности (частоты), и громкости (уровня звукового сигнала). Эта вибрация, пройдя некоторое расстояние, попадает в человеческое ухо, воздействуя там, на так называемую слуховую мембрану. Эта мембрана, начинает вибрировать с такой же частотой и силой вибрации какую излучали наши звуковые связки, с одним лишь отличием, что сила вибрации за счет преодоления расстояния, несколько ослабевает.
Так вот, передачу голосовой речи от одного человека к другому, можно смело назвать аналоговой передачей сигнала, и вот почему.
Здесь дело в том, что наши голосовые связки, излучают такую же звуковую вибрацию, какую и воспринимает само человеческое ухо (что говорим, то и слышим), то есть, передаваемый и принимаемый звуковой сигнал, имеет схожую форму импульса, и такой же частотный спектр звуковых вибраций, или по другому сказать, «аналогичной» звуковой вибрации.
Теперь, рассмотрим более сложный пример. И за этот пример, возьмем упрощенную схему телефонного аппарата, то есть того телефона, которым люди пользовались задолго до появления сотовой связи.
Во время разговора, речевые звуковые вибрации передаются на чувствительную мембрану телефонной трубки (микрофона). Затем, в микрофоне, звуковой сигнал преобразуется в электрические импульсы, и далее поступает по проводам ко второй телефонной трубке, в которой, с помощью электромагнитного преобразователя (динамика или наушника) электрический сигнал преобразуется обратно в звуковой сигнал.
В приведенном выше примере, используется, опять же, «аналоговое» преобразование сигнала. То есть, звуковая вибрация имеет такую же частоту, как и частота электрического импульса в линии связи, а так же, звуковой и электрический импульсы, имеют схожую форму (то есть, аналогичную).
В передаче телевизионного сигнала, сам аналоговый радиотелевизионный сигнал имеет достаточно сложную форму импульса, а так же, достаточно высокую частоту этого импульса, ведь в нем передается на большие расстояния, как звуковая информация, так и видео.
Цифровой сигнал
Цифровой сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.
Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания — это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы передают данные в виде цифрового сигнала одной частоты.
Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.
Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе / частоте поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).
За пример, «цифрового сигнала», возьмем принцип передачи информации с помощью достаточно известной «азбукой Морзе». Для тех, кто не знаком с таким видом передачи текстовой информации, далее вкратце поясню основной принцип.
Раньше, когда передача сигнала по воздуху (с помощью радиосигнала), еще только развивалась, технические возможности приемо-передающей аппаратуры не позволяли передавать речевой сигнал на большие расстояния. Поэтому, вместо речевой информации использовали текстовую. Так как текст состоит из букв, то эти буквы передавались с помощью коротких и длинных импульсов тонального электрического сигнала.
Такая передача текстовой информации называлась — передача информации с помощью «Азбуки Морзе».
Тональный сигнал, по своим электрическим свойствам, имел большую пропускную способность, чем речевой, и вследствие этого радиус действия приемо-передающей аппаратуры увеличивался.
Единицами информации в такой передаче сигнала, условно назывались «точка» и «тире». Короткий тоновый сигнал означал точку, а длинный тоновый сигнал тире. Здесь, каждая буква алфавита состояла из определенного набора точек и тире. Так например, буква А обозначалась комбинацией».-» (точка-тире), а буква Б «— …» (тире-точка-точка-точка), ну и так далее.
То есть, передаваемый текст, кодировался с помощью точек и тире в виде коротких и длинных отрезках тонового сигнала. Если слова «АЗБУКА МОРЗЕ» выразить с помощью точек и тире, то это будет выглядеть так:
В основу цифрового сигнала, положен очень похожий принцип кодирования информации, только сами единицы информации там уже другие.
Любой цифровой сигнал состоит из так называемого «двоичного кода». Здесь, за единицы информации используются логический 0 (ноль), и логическая 1 (единица).
Если за пример, мы возьмем обычный карманный фонарик, то если включить его, то это как бы будет означать логическую единицу, а если выключим, то логический ноль.
В цифровых электронных микросхемах за единицы логической 1 и 0, принимают определенный уровень электрического напряжения в вольтах. Так, к примеру, логическая единица будет означать 4,5 вольта, а за логический ноль 0,5 вольт. Естественно для каждого типа цифровых микросхем, значения величины напряжений логического нуля и единицы, разные.
Любая буква алфавита, как и на примере с описанной выше азбукой Морзе, в цифровом виде, будут состоять из определенного количества нулей и единиц, располагающиеся в определенной последовательности, которые в свою очередь, входят в пакеты логических импульсов. Так например, буква А будет одним пакетом импульсов, а буква Б другим пакетом, но в букве Бпоследовательность нулей и единичек будет уже другой чем в букве А (то есть, различной комбинации расположения нулей и единичек).
В цифровой код, можно закодировать практически любой вид передаваемого электрического сигнала (включая и аналоговый), и не важно, будет это картинка, видеосигнал, аудио сигнал, или текстовая информация, причем можно передавать эти виды сигнала, практически одновременно (в едином цифровом потоке).
Аналоговые приборы
С появлением электричества у людей появилась возможность использовать технику, работающую от тока. С каждым днем появлялось все больше новых приборов, наука развивалась, техника совершенствовалась. Тогда все изобретения считались аналоговыми. Слово «аналоговый» означало, что прибор работает по аналогии чего-то. Чтобы было понятнее, рассмотрим измерительный прибор. Допустим, нужно построить график измерений, сами данные измерений известны. Прибор сначала выведет уравнение по известным данным, которое описывает поведение графика, а затем попытается построить график. Он работает по аналогии уравнения, строго подчиняется его законам. А насколько точно уравнение описывает график, прибору это неважно. Таким образом, аналоговые электронные устройства — это устройства усиления и обработки аналоговых электрических сигналов, выполненные на основе электронных приборов. Следует выделить две большие группы, по которым можно классифицировать аналоговые электронные устройства:
· Усилители — это устройства, которые за счет энергии источника питания формируют новый сигнал, являющийся по форме более или менее точной копией заданного, но превосходит его по току, напряжению или по мощности.
· Устройства на основе усилителей — в основном преобразователи электрических сигналов и сопротивлений.
Преобразователи электрических сигналов (активные устройства аналоговой обработки сигналов) — выполняются на базе усилителей, либо путем непосредственного применения последних со специальными цепями обратных связей, либо путем некоторого их видоизменения. Сюда относят устройства суммирования, вычитания, логарифмирования, антилогарифмирования, фильтрации, детектирования, перемножения, деления, сравнения и др. Преобразователи сопротивлений выполняются на основе усилителей с обратными связями. Они могут преобразовывать величину, тип, характер сопротивления. Используют их в некоторых устройствах обработки сигналов. Особый класс составляют всевозможные генераторы и связанные с ними устройства.
Цифровые приборы
Цифровыми называются измерительные приборы, автоматически вырабатывающие дискретные сигналы измерительной информации и дающие показания в цифровой форме. Под дискретными понимают сигналы, значения которых выражены числом N импульсов. Система правил для представления информации с помощью дискретных сигналов называется кодом. Дискретные сигналы в отличие от непрерывных имеют лишь конечное число значений, определяемое выбранным кодом.
Главными и обязательными функциональными узлами электронных цифровых измерительных приборов являются аналого-цифровые преобразователи, в которых измеряемая аналоговая, т.е. непрерывная во времени, физическая величина X автоматически преобразуется в эквивалентный ей цифровой код, а также цифровые отсчётные устройства, в которых полученные кодовые сигналы N преобразуются в цифровые символы десятичной системы счисления, удобные для визуального восприятия. Цифровая форма представления результата измерения по сравнению с аналоговой ускоряет считывание и существенно уменьшает вероятность субъективных ошибок. Так как большинство цифровых измерительных приборов содержат предварительные аналоговые преобразователи, предназначенные для изменения масштаба измеряемой входной величины х или её преобразования в другую величину Y = f(x), более удобную для выбранного метода кодирования, то в общем случае структурная схема прибора представляется в виде рис.
Структурная схема цифрового измерительного прибора
Современные цифровые приборы содержат аналого-цифровые преобразователи, способные производить сотни и более преобразований в секунду, что позволяет регистрировать быстро протекающие физические процессы и легко сопрягать объекты исследования с ЭВМ. Цифровые приборы — новая ступень эволюции техники, работающей по цифровым данным.
Для наглядности рассмотрим тот же случай — нужно построить график по заданным измерениям. Прибор не станет составлять уравнение, он разобьет график на мелкие кусочки, и по известным данным для каждого кусочка рассчитает координаты. Затем прибор построит каждый кусочек по полученным координатам, и из-за того, что таких кусочков огромное количество, они будут представлять непрерывный график. Вот так работает цифровая техника.
Основные преимущества цифровых приборов перед аналоговыми
Цифровой сигнал, по своим электрическим свойствам (также как и в примере с тональным сигналом), имеет большую пропускную способность передачи информации, нежели аналоговый сигнал. Также, цифровой сигнал, можно передавать на большее расстояние, чем аналоговый, причем без снижения качества передаваемого сигнала. Например, непрерывный звуковой сигнал, передающийся в виде последовательности 1 и 0, может быть восстановлен без ошибок при условии, что шума при передаче было не достаточно, чтобы предотвратить идентификацию 1 и 0. Час музыки может быть сохранен на компакт-диске с использованием около 6 млрд. двоичных разрядов. Это особенно актуально в последнее время, с учетом огромного роста передаваемой информации (увеличение количества теле-, радиоканалов, увеличение количества телефонных абонентов, увеличение числа пользователей интернета и скорости интернет линий).
Хранение информации в цифровых системах проще, чем в аналоговых. Помехоустойчивость цифровых систем позволяет хранить и извлекать данные без повреждения. В аналоговой системе старение и износ может ухудшить записанную информацию. В цифровой же, до тех пор, пока общие помехи не превышают определенного уровня, информация может быть восстановлена совершенно точно.
Цифровыми системами с компьютерным управлением можно управлять с помощью программного обеспечения, добавляя новые функции без замены аппаратных средств. Часто это может быть сделано без участия завода-изготовителя путем простого обновления программного продукта. Подобная функция позволяет быстро адаптироваться к изменяющимся требованиям. Кроме того, возможно применение сложных алгоритмов, которые в аналоговых системах невозможны или же осуществимы, но только с очень высокими расходами.
При передаче цифрового телевизионного сигнала, телезритель уже не увидит такого дефекта как «изображение снежит», как было в аналоговом сигнале при плохом приеме. В цифровой передаче телеканалов, качество картинки может быть только хорошим, или изображения совсем не будет если прием плохой (то есть, или да, или нет).
Что касается цифровой передачи телефонных разговоров, то здесь, с хорошим качеством может передаваться как шепот, так и крик, как нижние тона, так и высокие, и тут уже неважно на каком расстоянии находятся телефонные абоненты.
Цифровая техника всегда превосходила аналоговую по точности. Например, сравним аналоговый и цифровой диктофоны. При необходимости записать голосовую информацию, цифровой прибор справится с задачей лучше аналогового. Это будет заметно в качестве записи. Дело в том, что аналоговый диктофон не так точно воспроизводит информацию, в запись будут намешаны шумы, а цифровой будет отсеивать ненужные шумы, соответственно звучание будет правдоподобнее.
Цифровая техника миниатюрнее. Приборы построены на микросхемах, способных проводить операции сложения и вычитания над числами, отсюда и малые размеры. Данные современных приборов могут в отличие от аналоговых быстро обрабатываться компьютерами. Конечно, данные аналоговых тоже могут быть помещены в компьютер, но ему предварительно потребуется их переводить на «свой» цифровой язык.
Цифровая техника экономичнее и дольше служит. Микросхемы потребляют меньше энергии и могут долгое время исправно работать, в то время как механическая техника будет быстро выходить из строя.
Также цифровые приборы могут похвастаться:
· Малая погрешность. Точность аналоговых приборов ограничивается погрешностями измерительных преобразователей, самого измерительного механизма, погрешностями шкалы и т.д.
· Высокое быстродействие (число измерений в единицу времени); При измерении изменяющихся во времени величин быстродействие играет важную роль. Если для показывающих приоров не требуется высокого быстродействия, так как возможности работающего с ними оператора ограничены, то напротив, требование быстродействия становится важным при обработке информации с помощью ЭВМ, к которым часто подключаются цифровые приборы.
· Отсутствие субъективной ошибки отсчетов результата измерения — субъективных погрешностей, связанных с особенностями зрения человека, из-за параллакса, из-за разрешающей способности глаза.
Цифровой фильтр
Цифровой фильтр — в электронике любой фильтр, обрабатывающий цифровой сигнал с целью выделения и / или подавления определённых частот этого сигнала. В отличие от цифрового, аналоговый фильтр имеет дело с аналоговым сигналом, его свойства недискретны, соответственно передаточная функция зависит от внутренних свойств составляющих его элементов.
Преимуществами цифровых фильтров перед аналоговыми являются:
· Высокая точность (точность аналоговых фильтров ограничена допусками на элементы).
· Стабильность (в отличие от аналогового фильтра передаточная функция не зависит от дрейфа характеристик элементов).
· Гибкость настройки, лёгкость изменения.
· Компактность — аналоговый фильтр на очень низкую частоту (доли герца, например) потребовал бы чрезвычайно громоздких конденсаторов или индуктивностей.
Но также имеются и недостатки:
· Трудность работы с высокочастотными сигналами. Полоса частот ограничена частотой Найквиста, равной половине частоты дискретизации сигнала. Поэтому для высокочастотных сигналов применяют аналоговые фильтры, либо, если на высоких частотах нет полезного сигнала, сначала подавляют высокочастотные составляющие с помощью аналогового фильтра, затем обрабатывают сигнал цифровым фильтром.
· Трудность работы в реальном времени — вычисления должны быть завершены в течение периода дискретизации.
· Для большой точности и высокой скорости обработки сигналов требуется не только мощный процессор, но и дополнительное, возможно дорогостоящее, аппаратное обеспечение в виде высокоточных и быстрых аналого-цифровых преобразователей.
1Следующая ⇒
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
Джиттер и шум квантования
В АЦП рассматривают еще и такие понятия, как джиттер и шум квантования. Рассмотрим коротко, что они собой представляют.
Итак, джиттер называют фазовым дрожанием цифрового сигнала. В целом это нежелательные (случайные) фазовые и/или частотные отклонения сигнала, что передаются носителем. Может возникнуть по причине нестабильности работы задающего генератора из-за изменения параметров (временных или частотных) линии передачи. Джиттер может проявляться в виде задержек и затухания сигнала, шумов.
В АЦП джиттером называют смещение во временном периоде моментов квантования во время оцифровки аналогового звука. Связано это с несовершенством тактового сигнала, который задает момент семплирования.
Шумом квантования называют ошибки, которые возникают в процессе преобразования аналогового сигнала в цифру. Могут возникать вследствие округления или усечения сигналов. Оба рассмотренные явления влияют на качество итогового звучания. Поэтому, чтобы избежать данных ошибок, во время АЦП передачу сигнала с одного регистра на другой следует осуществлять максимально точно. Кроме того, важно использовать качественную аппаратуру для преобразования сигнала: это касается и звукозаписывающих приборов, и источников питания, и кварцевых генераторов.
Достоинства и недостатки аналогового звукового сигнала
Если говорить о преимуществах аналогового сигнала как аудио таки видео, то одно из них связано с тем что именно в таком образе и виде человек воспринимает его своим органом слуха. И хотя впоследствии слух человека преобразует сигнал всё равно в набор импульсов, передаваемых в мозг, но тем не мнение современная техника ещё не научилась миновать уши как основной орган слуха и передавать сигнал непосредственно в мозг. Хотя нельзя и не отметить что данные исследования ведутся уже последние 70 лет и если они обвенчаются успехом то с таким понятием, как человеческая глухота будет покончено, а пока звуковые колебания каждый слышащий человек и воспринимающий их в полном объёме получает в виде аналогового сигнала. То есть, аналоговой звуковой сигнал имеет высокие показатели частотной глубины, а также неплохую сбалансированность между высокими и низкими частотами.
Основная проблема и недостаток с использованием чистого аналогового сигнала заключается в его хранении, а также способах тиражирования и передачи. Запись на любой из аналоговых хранителей аудио информации подвержен размагничиванию и механическим повреждением, поэтому спустя время записанная на них информация, значительно снижает качество в случае её воспроизведения. Виниловые диски сильно подвержены царапинам, да и тиражирование их довольно проблематичный и трудоемкий процесс. Выполнить копию аудио сигнала, записанного в аналоговом формате обозначает почти то же что и создать её заново.
Цифро аналоговое преобразование
Когда звук был преобразован в цифровой сигнал, чтобы его прослушать, его необходимо снова перевести в аналоговое звучание. Для этого используются цифро-аналоговые преобразователи. На примере аудио интерфейсов рассмотрим, как происходит этот процесс. Аналоговый звук попадает в микшер (аналоговый вход) и направляется в АЦП, где он квантуется и дискретизируется. Полученный цифровой сигнал на выходе проходит такой же процесс, только обратный: данные проходят через цифро-аналоговый преобразователь, который превращает их в аналоговый сигнал. На схеме процесс выглядит так:
Аналоговое телевидение
Данная телевизионная система использует для передачи картинки аналоговый сигнал, который поступает непрерывно. При помощи электронной схемы этот сигнал преобразуется в видео и звук.
Для аналогового ТВ достаточно антенны. Однако подобного плана телевидение сегодня считается устаревшим и постепенно сходит на «нет». Главный недостаток аналогового вещания – неустойчивость сигнала к помехам, что способствует ухудшению качества картинки.
Большинство современных государств давно отказались от данной разновидности телевещания, остальные же страны в дальнейшем планируют поступить аналогично. В России срок отказа от аналогового телевидения несколько раз переносился на более поздний период.
Громкость в цифровом звуке
Громкость цифровых сигналов не должна превышать 0db. Если не учитывать этот нюанс, на входе или выходе мы получаем перегрузку цифрового сигнала. Это значение является самой высокой точкой, то есть пиковым значением. Она позволяет записывать качественный звук и воспринимать его надлежащим образом. Если превысить это значение, сигнал искажается, а оборудование от перенагрузки может испортиться.
Кроме пиковой точки, понятие громкости включает в себя еще и такой элемент, как значение RMS. Этим понятием определяют уровень актуальной громкости, который отражает плотность записи и выдает информацию о громкости, которую способен воспринять наш слух. RMS обозначают в децибелах, но с минусовым значением: звук тем громче, чем больше числовое значение RMS (максимально громко — -6db, максимально тихо — -20db). Оптимальные значения цифровой громкости — -12db — -10db.
Отличия цифрового сигнала от аналогового
Для большинства людей различие между аналоговым и цифровым сигналом может быть совершенно неявным. И все же их разница значительна и заключается не просто в качестве подачи телеэфира.
Аналоговым сигналом являются полученные данные, которые мы видим, слышим и воспринимаем, как мир, который нас окружает. Этот метод генерирования, обработки, передачи и записи сигналов – традиционный и пока очень распространённый. Данные преобразовываются в электромагнитные колебания, отражающие частоту и интенсивность явлений по принципу полного соответствия.
Цифровой сигнал представляет собой совокупность координат, описывающих электромагнитную волну, которая не недоступна для восприятия напрямую, без декодирования, т.к. является последовательностью электромагнитных импульсов. Говоря о дискретности и непрерывности сигналов, подразумевают соответственно «принятие значений из конечного набора» и «принятие значений из бесконечно множества».
Примером дискретности могут быть школьные оценки, которые принимают значения из набора 1,2,3,4,5. Фактически, цифровой видеосигнал часто создаётся путём оцифровки аналогового сигнала.
Вас может заинтересовать: Комнатная антенна для телевизора общая информация
Уходя от теории, на деле можно выделить следующие ключевые отличия между аналоговыми и цифровыми сигналами:
- аналоговое телевидение уязвимо для помех, вносящих в него шумы, в то время как цифровой импульс либо вовсе перекрыт помехами и отсутствует, либо поступает в первоначальном виде.
- принять и считать аналоговый сигнал может любое устройство, работа которого базируется на том же принципе, что и вещание передатчика. Цифровая волна предназначена определённому «адресату», а стало быть, устойчива к перехвату, т.к. надёжно закодирована.
Качество изображения
Качество картинки в телевизоре, которую предоставляет аналоговое ТВ во многом обусловлено ТВ стандартом. Кадр, который несёт с собой аналоговое вещание, включает 625 строк с соотношением сторон 4×3. Таким образом, старый кинескоп демонстрирует изображение из телевизионных линий, в то время как цифровое изображение составлено из пикселей.
Картинка при аналоговом сигнале
При слабом приёме и помехах телевизор будет «снежить» и шипеть, недодавая зрителю изображение и звук. В попытках внести улучшения в эту ситуацию, в своё время, было реализовано кабельное ТВ.
Картинка при цифровом сигнале
Другие возможности
Несмотря на быстрое развитие электронных технологий и преимущества цифрового сигнала перед аналоговым, все ещё существуют области, в которых аналоговая технология незаменима, как, к примеру, профессиональная обработка звука. Но, хотя оригинальная запись может быть не хуже «цифры», после редактирования и копирования она неизбежно будет зашумлена.
Вот набор основных операций, которые можно выполнять с аналоговым потоком:
- усиление и ослабление;
- модуляция, направленная на снижение его восприимчивости к помехам, и демодуляция;
- фильтрация и обработка частоты;
- умножение, суммирование и логарифмирование;
- обработка и изменение параметров его физических величин.
Стереофония и панорама
Стереофонией называют запись, передачу или воспроизведение звукового сигнала, при которых сохраняется информация аудиального типа о расположении источника этого сигнала методом раскладки звука парой и более независимыми аудиоканалами. При правильном расположении музыкальных вещателей можно получить объемное пространственное звучание. При этом создается ощущение, что звук с разными фазами исходит из разных источников.
Панорама – это, по сути, установленное направление источника звука по трем пространственным характеристикам – удаленности, высоте и направлению. Благодаря панорамированию мы получаем:
- равномерное распределение энергии звука;
- разграничение источников сигнала с одинаковым диапазоном и частотой звучания;
- специальные эффекты.
Чтобы создать качественную звуковую панораму, необходимо правильно расставить элементы, подающие сигнал. В идеале это выглядит так:
То есть центральный канал звукового источника должен располагаться между левым и правым каналом. Такое размещение стереофонических источников позволит получить максимально полное, чистое и насыщенное звучание звука.
Как узнать, какое телевидение показывает телевизор: цифровое или аналоговое
До 14 октября 2021 года эфирное аналоговое вещание будет остановлено и в тех регионах, где оно еще ведется. Поэтому телезрители хотят понять, какое ТВ смотрят они.
Этот вопрос актуален для жителей регионов, в которых ведутся оба типа вещания. Речь идет о следующих территориях:
- СПб и Ленинградская обл.;
- Мурманская обл.;
- Вологодская обл.;
- Псковская обл.;
- Белгородская обл.;
- Калужская обл.;
- Курская обл.;
- Астраханская обл.;
- Волгоградская обл.;
- Оренбургская обл.;
- Саратовская обл.;
- Челябинская обл.;
- Республика Алтай;
- Республика Карелия;
- Республика Крым;
- Республика Башкортостан;
- Забайкальский край.
У жителей перечисленных регионов есть несколько способов узнать, какое телевидение работает у них дома.
- Проверить, есть ли возле названия телеканала буква «А». Ее используют для обозначения аналоговых каналов, соответственно, если она есть, телевизор показывает АТВ.
- Если телевизор старый и работает без ресивера, значит, подключено аналоговое телевидение.
- В том случае, если телевизор может принимать закодированный сигнал без приемника, определить тип вещания можно с помощью штекера антенны. Нужно вынуть его и удерживать на расстоянии полсантиметра от гнезда. Если качество картинки ухудшится, но телевизор продолжит показывать, значит, принимается аналоговое ТВ. Если видео пропадет вовсе – подключено DTV.
- Можно открыть раздел «Источник сигнала» в меню телевизора.
- Цифровое телевидение лучше аналогового по качеству изображения, и если картинка яркая и очень четкая, это, скорее всего, ЦТВ.
Стоит заранее разобраться, какой сигнал принимает телевизор, чтобы осенью не остаться без телевидения.
Важно! Граждане, которые проживают в других регионах и подключены к эфирному ТВ, точно смотрят ЦТВ, поскольку АТВ у них больше нет.
Основные форматы аудио файлов
На самом деле форматов, с помощью которых можно читать аудио файлы, очень много. Но есть те, которые получили всеобщее признание. Все они делятся на три группы:
- аудиоформаты без сжатия;
- со сжатием без потерь;
- со сжатием с потерями.
Рассмотрим основные форматы аудио файлов:
- WAV – первый аудио формат, который мог обрабатываться компьютерными программами на высоком профессиональном уровне. Недостаток – запись занимает слишком много места.
- CD-диски – расширение .cda не поддается редактированию, однако его можно переформатировать и сохранить любой программой по обработке аудио.
- MP3 кодек – универсальный формат, максимально сжимающий аудио файлы.
- AIFF-файлы – формат поддерживает монофонические и стереофонические данные размером 8 и 16 бит, изначально разрабатывался для Macintosh, однако после дополнительных разработок может использоваться и на других площадках ОС.
- OGG – популярный формат, однако имеет недостатки в виде использования собственных кодеков и декодеров и перегрузки системных ресурсов компьютера.
- AMR – низкопробный аудиоформат.
- Формат MIDI позволяет производить редактуру записи нажатием клавиш, изменением темпа, тональности, высоты, а также добавлением эффектов.
- FLAC – формат, воспроизводящий аудио в высоком качестве.