Трансформаторы стали частью жизни человека с началом электрификации. Далее они стали использоваться в качестве источников постоянного напряжения для различной аппаратуры, приборов, бытовой техники.
В статье изложена информация о принципе работы этих устройств, разновидностях, поисках мощности. Также будут даны советы, как проверить трансформатор мультиметром.
Принцип работы и назначение
Основным назначением трансформатора является преобразование или понижение электрического напряжения. В зависимости от конструкции и назначения, трансформаторы изменяют классность токов, напряжение, или преобразуют импульс в необходимое значение.
В работу трансформатора заложен принцип образования магнитного поля при взаимодействии металлического сердечника и постоянного напряжения. При подключении напряжения в 220 В, ток движется по первичной обмотке трансформатора, образуя магнитное поле. Далее ток попадает во вторичную обмотку, число и шаг которой намного меньше. Создается сильное сопротивление, которое сглаживается за счет воздействия магнитных потоков. Таким образом, во вторичной обмотке, напряжение сильно занижается, что приводит к выходному напряжению более низкого числа.
Проверка бытовых понижающих устройств
Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.
Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:
- малейшая видимость дыма;
- запах гари;
- треск.
В этом случае следует сразу прекращать эксперимент.
Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.
К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.
Конструкция
В независимости от конструкции и назначения трансформатора, его конструкция максимально проста. Эти устройства состоят из:
- Стальной или ферромагнитный сердечник. Используется для образования магнитного поля. Сердечники могут быть различных видов. Все зависит от назначения устройства и величины преобразования тока.
- Обмотка. В устройстве находится минимум 2 обмотки: первичная и вторичная. Представляет собой медный или алюминиевый изолированный лаком провод. Обмотка наматывается на трансформатор с заданным количеством витков, шагом, сечением провода. Именно обмотка трансформатора влияет на параметр входного и выходного напряжения.
- Клеммы и контакты. Необходимы для включения устройства в сеть и выходную цепь.
- Конструктивные дополнения. Ими могут быть защитные корпуса, изоляционные и крепежные элементы, радиаторы охлаждения. Все это необходимо для обеспечения надежного монтажа и защиты от воздействия постоянного напряжения.
Тип и назначение преобразователя напряжения можно определить по внешнему виду. Для этого необходимо знать основные разновидности трансформаторов.
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Разновидности
В зависимости от назначений, трансформаторы используются в различных сферах, не только в приборостроении. Различаются по следующим типам:
- Силовой. Используется как понижающий трансформатор на электростанциях, крупных организациях, в сети электроснабжения населения. В цепи электроснабжения используется несколько подобных устройств. Их задача понизить напряжение от электростанции до потребителя. Также силовые трансформаторы могут работать по обратному принципу, в качестве повышающего устройства. Такие устройства необходимы для передачи электричества на большие расстояния от электростанций потребителям, существенно снимая нагрузку с генераторов.
- Сетевые. Самые распространенные в бытовой технике. Основной задачей этих устройств является снижение напряжения с 220 до 36, 24, 12, 9 вольт. Сетевые трансформаторы можно встретить в бытовой технике, произведенной до 2000 годов. Теперь эти устройства выглядят значительно меньше и их редко применяют.
- Импульсные. Пришли на смену сетевым элементам. Основное отличие в работе состоит в преобразовании импульсного напряжения, а не прямого тока. Этот принцип способствовал уменьшению габаритов, возможность экономии материалов, использование трансформатора в роли занижающего устройства и защиты от перегрузок.
- Трансформатор тока. Используется для измерения токовой величины. Применяется в цепях между силовыми трансформаторами и выходом в 380 вольт и счетчиками потребления электричества. Также применяется в качестве защитного устройства. Первичная обмотка этого трансформатора включается в цепь подачи электричества по 1 фазе, осуществляя защиту от перепада напряжения в результате выхода из строя силового устройства.
Также существуют лабораторные или автотрансформаторы. Их отличием является только возможность регулировки и переключения выходного напряжения с одного значения на другое.
Что собой представляет оборудование?
Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.
Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.Трансформаторы делятся на следующие группы:
- Понижающие и повышающие.
- Силовые чаще служат для уменьшения подводящего напряжения.
- Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
- Одно- и многофазные.
- Сварочного назначения.
- Импульсные.
В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.
Видео: подробное описание принципа работы импульсного трансформатора https://www.youtube.com/watch?time_continue=13&v=XYxKfYd8Elk
Проверка
Проверка трансформатора на работоспособность и величину выходного напряжения необходимо начинать с визуального осмотра. На корпусе многих современных и элементах старого производства, нанесена принципиальная схема. В ней находится информация о контактах входа и выхода, количество витков первичной и вторичной обмотки, величины выходных напряжений. Если этой информации нет, необходимо прозвонить трансформатор.
Многие начинающие радиолюбители сталкиваются с проблемой, как прозвонить импульсный трансформатор мультиметром. Далее будут даны рекомендации на примере именно этого устройства.
Межвитковое короткое замыкание
Самый важный тест. Запрещается проводить подключение неизвестных, найденных где — то трансформаторов, без теста на короткое замыкание. Межвитковое замыкание не определяется при помощи мультиметра. Причина этого кроется в пробое двух рядом стоящих обмоток и их соединении между собой.
При прозвонке на сопротивление, оно останется неизменным (если до КЗ нет обрыва). Поэтому проверяется трансформатор визуально. Любые потемнения, вспучивания, плавления изоляции или нагар на бумаге можно считать следствием короткого замыкания. Плавление и нагар произошли из-за нагрева обмотки при нагрузке. При межвитковом замыкании первичной обмотки, ток проходит меньшее количество витков, что создает нагрузку и нагрев. Также КЗ можно определить по запаху гари.
Если внешне устройство не имеет дефектов изоляционного покрытия, можно начинать следующую проверку.
Поиск обмоток
Этот тест необходим, если элемент был изначально не подключен к электрической схеме прибора или устройства. Первичная обмотка трансформатора, имеет большее число витков, так как на нее подается высокое напряжение. Значит и сопротивление должно быть значительно больше. Вход первичной обмотки всегда располагается в верхней части устройства, клеммы вторичной в нижней. Для поиска необходимо:
- Мультиметр перевести в режим замера сопротивления.
- Оба контрольных щупа соединить с двумя выводами трансформатора.
- Сохранить полученные значения.
Далее нужно найти выходы вторичных катушек. Делается это по тому же принципу. Если выходов более 2, то необходимо провести замер каждой пары. Полученные значения также сохраняются.
Теперь необходимо провести сверку результатов. Выводы с самым большим сопротивлением укажут на первичную обмотку входа. Остальные пары будут являться выходными контактами.
Целостность
Определение целостности необходимо для того чтобы узнать, нет ли обрыва в цепи трансформатора. Предыдущая проверка помогла выяснить, какие контакты являются входящими и выходящими. Теперь нужно определить их целостность. Для этого нужно:
- Перевести мультиметр в режим прозвонки со звуковым оповещением.
- 2 контрольных щупа подключить к входным контактам трансформатора.
- Звуковое оповещение будет свидетельствовать о целостности провода.
Таким же образом нужно проверить остальные контакты выхода. У современных понижающих устройств бытового назначения есть один нюанс. В его схему первичной обмотки встроен тепловой резистор. Найти его просто. Он припаян между клеммой и началом обмотки и скрыт под изоляцией. Если проверка на входе показала обрыв, стоит осторожно вскрыть изоляционный слой и найти резистор. Далее сделать еще один замер, но только самого провода, за резистором. Если проверка была удачной, значит необходима замена теплового элемента.
Тепловой резистор необходим для отключения цепи во время перегрева. Он может выйти из строя по причине высокой нагрузки, не пропустив в цепь высокое напряжение.
Определение величины входящего напряжения
Этот тест поможет узнать, можно ли эксплуатировать элемент от бытовой электрической сети или он рассчитан на напряжения других значений. Для определения величины тока необходимо:
- Подключить один контакт лампы накаливания к клемме входа ТР.
- Второй контакт к источнику напряжения 220 В.
- Клемму «2» от ТР к «2» клемме источника напряжения.
Если лампа не загорается, то это указывает на то, что трансформатор предназначается для работы от сети 220 вольт. Горение лампы любой величины накала, укажет на работу от токов иных величин.
Замер выходящего напряжения
После проведения всех тестов, на целостность импульсного трансформатора, можно перейти к его подключению к электрическому напряжению и замеру выходного напряжения. Для этого нужно:
- К найденным разъемам входа подключить напряжение 220 вольт.
- На входных клеммах попарно замерить напряжение.
- Полученные результаты сохранить.
Если на корпусе трансформатора нанесены обозначения величины выходящих напряжений, то при замере они должны быть больше на 5–20 %. Это делается для запаса мощности, при последующем подключении к диодному мосту.
Если маркировки нет, нужно выполнить следующие действия:
- Красный контрольный щуп подключить к «1» клемме вывода.
- Черный щуп поочередно подключать к остальным выводам.
- Если замер дал результаты от 9 до 24–36 вольт, то эти контакты необходимо отметить.
Проверка считается удачной, если все разъемы показали определенные значения.
Важно! На выходах трансформаторов переменное напряжение. Запрещаться делать замер, касаясь руками оголенных контактов.
Помогите разобраться с трансформатором
Как я понял, есть вероятность проскакивания 220В в цепь 110В — и это спалит девайс рассчитаннный на 110В. Может быть, можно поставить какую-нибудь защиту типа конденсатора-тиристора-варистора (больше деталей не помню). Трансик хороший, потому что маленький и идеально влезает в корпус ХТ блока питания, можно соорудить неплохой блок. Купить большой трансформатор не проблема, но габариты ни к чему.
Опасность использования автотрансформатора состоит не в некой вероятности»проскакивания 220 В в цепь 110В». Такая «вероятность» существует для всех трансформаторов и не только трансформаторов.
Опасность заключается в наличии гальванической связи между первичной сетью и нагрузкой.
Поясним на примере:
Допустим у Вас есть два понижающих трансформатора , который из 220 В «делают», например абсолютно безопасное напряжение 6 Вольт.
Но один трансформатор, -это «просто» трансформатор, с изолированными первичной и вторичной обмотками, а второй -автотрансформатор, у которого вторичная обмотка -это часть первичной.
Первый трансформатор (при качественной изоляции между обмотками) абсолютно безопасен.
Мы можем прикоснуться к любому из выводов вторичной обмотки , взяться за оба вывода вторичной обмотки и, наконец, одновременно касаться выводов вторичной обмотки и т.н. «земли», в виде батареи отопления, металлического водопровода, газопровода и проч. (Это совсем не означает, что так надо делать. Наиболее «продвинутые» наполняют ванну водой, опускают туда свое несчастное тело , включают электробритву и используют её по назначению. По моему -это полный п….., надо быть полным идиотом,чтобы так делать)
Если-же мы получаем 6 вольт от автотрансформатора, попытка прикосновения между любым проводом вторичной обмотки и «землей» может привести к смерти. Хочу обратить Ваше внимание, исправность\неисправность трансформатора здесь не при чем!
Поэтому большинство несчастных случаев с автотрансформаторами связано не с попаданием под выходное напряжение этого устройства, а попаданием между землей и каким-либо его выводом.
Не верьте тем, кто утверждает, что предохранитель сделает автотрансформатор более безопасным.
Только с противопожарной точки зрения, с точки зрения электробезопасности -никак -смертельное значение тока через человека гораздо меньшее, чем необходимое для сгорания предохранителя.
Изменено 17 марта, 2008 пользователем MMS
Определение мощности
Далее будет рассмотрен вопрос, как узнать мощность трансформатора. Для этого потребуется замерить ширину его сердечника. Если ТР имеет сердечник типа «Ш», то придется замерить толщину центральных пластин. Например, толщина пластин 2 см, а ширина центрального набора 1.7 см. Необходимо перемножить эти значения, получив число 3.4 кв/см. Далее понадобится коэффициент усреднения для трансформаторов, равный 1.3. 3.4 разделить на 1.3 = 2.6 кв/см. Это значение определяет мощность ТР равную 7 Вт.
Многие задаются вопросом, как определить мощность трансформатора мультиметром. Бытовой элемент таким способом протестировать не получиться.
Советы
Проверка работоспособности трансформаторов важна, перед подключением или ремонтом устройства. При работе нужно соблюдать следующие правила:
- Внимательно изучить маркировку и схему на корпусе.
- Если на корпусе нет схемы, выполнять прямое подключение запрещено.
- Запрещается подключать в сеть неизвестный ТР, без проверки на короткое замыкание.
- Любые замеры под напряжением проводятся без контакта с клеммами.
- Не выпаивая устройство из схемы, не получиться сделать замер выходящего сопротивления.
- При работе нужно четко соблюдать технику безопасности.
Трансформаторы, особенно неизвестные, могут стать причиной короткого замыкания электропроводки и привести к возникновению пожара.