Калькулятор расчета сечения кабеля по мощности и току поможет вам рассчитать сечение кабеля, минимально необходимое для безопасной эксплуатации электропроводки, чтобы избежать перегревов, плавления изоляции, короткого замыкания и пожаров.
Калькулятор позволяет производить расчет сечение кабеля по току или мощности, исходя из параметров общей нагрузки и поступающего напряжения. При этом учитываются условия прокладки, материалы изготовления проводов, возможные потери напряжения и критерии выбора проводника. Функционал раздела позволяет также произвести расчет максимального тока и нагрузки на проводник с заданными параметрами и выбрать устройства защиты (автоматические выключатели, дифференциальные автоматы и УЗО).
Как производится расчет сечения кабеля:
- Укажите исходные данные (ток или мощность), напряжение, материал изготовления проводника (медь или алюминий), тип проводки (открытую или закрытую в трубе), количество проводов (при прокладке коммуникации в трубе);
- Отметьте дополнительные условия (длину провода, допустимые потери);
- Нажмите на кнопку «Рассчитать» и сохраните полученные параметры.
Калькулятор расчета сечения кабеля работает в онлайн и в офлайн режиме. Обратите внимание: он носит исключительно рекомендательный характер и не может гарантировать 100% верность подсчетов. Однако чем больше достоверных данных вы введете в соответствующие поля, тем выше будет процент соответствия.
Смежные нормативные документы:
- ПУЭ-7 «Правила устройства электроустановок»
- СП 76.13330.2016 «Электротехнические устройства»
- ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009 «Электроустановки низковольтные. Выбор и монтаж электрооборудования»
- ГОСТ 31946-2012 «Провода самонесущие изолированные и защищенные для воздушных линий электропередачи»
- ГОСТ 31947-2012 «Провода и кабели для электрических установок на номинальное напряжение до 450/750 В»
- ГОСТ 6323-79 «Провода с поливинилхлоридной изоляцией для электрических установок»
- ГОСТ 31996-2012 «Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ»
- ГОСТ 433-73 «Кабели силовые с резиновой изоляцией»
Как рассчитать сечение кабеля по мощности: формула
Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.
1️⃣ Первый шаг. Рассчитывается суммарная мощность всех электроприборов, которые могут быть подключены к сети:
Pсум = (P1 + P2 + .. + Pn) × Kс
- P1, P2 .. – мощность электроприборов, Вт;
- Kс – коэффициент спроса (вероятность одновременной работы всех приборов), по умолчанию равен 1.
2️⃣ Второй шаг. Затем определяется номинальная сила тока в цепи:
I = Pсум / (U × cos ϕ)
- Pсум – суммарная мощность электроприборов;
- U – напряжение в сети;
- cos ϕ – коэффициент мощности (характеризует потери мощности), по умолчанию равен 0.92.
3️⃣ Третий шаг. На последнем этапе используются таблицы, согласно ПУЭ (Правила устройства электроустановок).
Таблица сечения медного кабеля по току по ПУЭ-7
Сечение проводника, мм2 | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
0.5 | 11 | – | – | – | – | – |
0.75 | 15 | – | – | – | – | – |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1.2 | 20 | 18 | 16 | 15 | 16 | 14.5 |
1.5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2.5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | – | – | – |
185 | 510 | – | – | – | – | – |
240 | 605 | – | – | – | – | – |
300 | 695 | – | – | – | – | – |
400 | 830 | – | – | – | – | – |
Таблица сечения алюминиевого кабеля по току по ПУЭ-7
Сечение проводника, мм2 | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2.5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | – | – | – |
185 | 390 | – | – | – | – | – |
240 | 465 | – | – | – | – | – |
300 | 535 | – | – | – | – | – |
400 | 645 | – | – | – | – | – |
В правилах устройства электроустановок 7-го издания нет таблиц сечения кабеля по мощности, имеются только данные по силе тока. Поэтому рассчитывая сечения по таблицам нагрузки в интернете, вы рискуете получить неверные результат.
5 Однопроволочные и многопроволочные жилы
Жилы не должны иметь заусенцев, режущих кромок и выпучивания отдельных проволок.
5.1 Однопроволочные и многопроволочные (для больших сечений) жилы (класс 1)
5.1.1 Конструкция
a) Для однопроволочных и многопроволочных (для больших сечений)
жил (класс 1) используют один из материалов, приведенных в разделе 4.
b) Однопроволочные медные жилы должны быть круглыми. Допускается для многожильных кабелей и проводов применение фасонных однопроволочных медных жил сечением 25-50 мм.
Примечание — Однопроволочные медные жилы номинальным сечением не менее
70 мм
предназначены для специальных типов кабелей, например с минеральной изоляцией, но не для кабелей общего применения.
с) Однопроволочные жилы из алюминия и алюминиевого сплава с номинальным сечением до 35 мм включительно должны быть круглыми. Жилы большего сечения должны быть круглыми для одножильных кабелей и проводов и могут быть круглыми или фасонными для многожильных кабелей и проводов. Допускается для многожильных кабелей и проводов применение фасонных однопроволочных жил из алюминия и алюминиевого сплава сечением 25 и 35 мм.
5.1.2 Электрическое сопротивление
Электрическое сопротивление жилы при температуре 20 °С, определенное в соответствии с разделом 7, должно быть не более значения, указанного в таблице 3. Таблица 3 — Однопроволочные
и многопроволочные (для больших сечений)
жилы класса 1 для одножильных и многожильных кабелей
и проводов
Номинальное сечение, мм | Минимальное число проволок жилы | Электрическое сопротивление 1 км жилы при температуре 20 °С, Ом, не более | |||
Cu | AI | Круглые жилы из отожженной меди | Круглые или фасонные жилы из алюминия или алюминиевого сплава | ||
без покрытия | с металлическим покрытием | ||||
0,03 | 1 | — | 588,0 | 617,3 | — |
0,05 | 1 | — | 347,9 | 365,3 | — |
0,08 | 1 | — | 225,3 | 238,8 | — |
0,12 | 1 | — | 130,8 | 138,6 | — |
0,20 | 1 | — | 88,8 | 90,4 | — |
0,35 | 1 | — | 50,7 | 51,8 | — |
0,50 | 1 | — | 36,0 | 36,7 | — |
0,75 | 1 | — | 24,5 | 24,8 | — |
1,0 | 1 | — | 18,1 | 18,2 | — |
1,5 | 1 | 1 | 12,1 | 12,2 | 18,1 |
2,5 | 1 | 1 | 7,41 | 7,56 | 12,1 |
4 | 1 | 1 | 4,61 | 4,70 | 7,41 |
6 | 1 | 1 | 3,08 | 3,11 | 5,11 |
10 | 1 | 1 | 1,83 | 1,84 | 3,08 |
16 | 1 | 1 | 1,15 | 1,16 | 1,91 |
25 | 1 | 1 | 0,727 | — | 1,20 |
35 | 1 | 1 | 0,524 | — | 0,868 |
50 | 1 | 1 | 0,387 | — | 0,641 |
70 | 1 | 1 | 0,268 | — | 0,443 |
95 | 1 | 1 | 0,193 | — | 0,320 |
120 | 1 | 1 | 0,153 | — | 0,253 |
150 | 1 | 1 | 0,124 | — | 0,206 |
185 | 1 или 35 | 1 | 0,101 | — | 0,164 |
240 | 1 или 35 | 1 | 0,0775 | — | 0,125 |
300 | 1 или 35 | 1 | 0,0620 | — | 0,100 |
400 | 1 или 35 | 1 или 35 | 0,0465 | — | 0,0778 |
500 | 35 | 1 или 35 | 0,0366 | — | 0,0605 |
625, 630 | 59 | 1 или 59 | 0,0283 | — | 0,0469 |
800 | 59 | 1 или 59 | 0,0221 | — | 0,0367 |
1000 | 59 | 1 или 59 | 0,0176 | — | 0,0291 |
1200 | — | 1 | — | — | 0,0247 |
Алюминиевые жилы с номинальным сечением до 35 мм включительно только круглые; см. перечисление с) 5.1.1. См. примечание к перечислению b) 5.1.1. См. примечание к 5.1.2. Для одножильных кабелей могут быть объединены четыре секторные части жилы для образования круглой жилы. Максимальное электрическое сопротивление образованной жилы должно быть равно 25% значения для каждого из четырех секторных частей жилы. |
Примечание — Для однопроволочных жил из алюминиевого сплава, имеющих то же номинальное сечение, что и алюминиевые жилы, значение электрического сопротивления, указанное в таблице 3, должно быть умножено на коэффициент 1,162, если иное не установлено в соглашении между изготовителем и заказчиком.
5.2 Многопроволочные круглые неуплотненные жилы (класс 2)
5.2.1 Конструкция
a) Для многопроволочных круглых неуплотненных жил (класс 2) используют один из материалов, приведенных в разделе 4.
b) Номинальное сечение многопроволочных жил из алюминия или алюминиевого сплава силовых кабелей должно быть не менее 10 мм.
c) Все проволоки каждой жилы должны иметь один и тот же номинальный диаметр.
d) Число проволок каждой жилы должно быть не менее числа проволок, указанного в таблице 4. Таблица 4 — Многопроволочные жилы класса 2 для одножильных и многожильных кабелей и проводов
Номинальное сечение, мм | Минимальное число проволок жилы | Электрическое сопротивление 1 км жилы при температуре 20 °С, Ом, не более | |||||||
круглой | круглой уплотненной | фасонной | Жила из отожженной меди | Жила из алюминия или алюминиевого сплава | |||||
Сu | AI | Сu | AI | Cu | AI | Проволока без покрытия | Проволока с металлическим покрытием | ||
0,5 | 7 | — | — | — | — | — | 36,0 | 36,7 | — |
0,75 | 7 | — | — | — | — | — | 24,5 | 24,8 | — |
1,0 | 7 | — | — | — | — | — | 18,1 | 18,2 | — |
1,5 | 7 | 7 | 6 | — | — | — | 12,1 | 12,2 | 22,7 |
2,5 | 7 | 7 | 6 | — | — | — | 7,41 | 7,56 | 12,4 |
4 | 7 | 7 | 6 | — | — | — | 4,61 | 4,70 | 7,41 |
6 | 7 | 7 | 6 | — | — | — | 3,08 | 3,11 | 5,11 |
10 | 7 | 7 | 6 | 6 | — | — | 1,83 | 1,84 | 3,08 |
16 | 7 | 7 | 6 | 6 | — | — | 1,15 | 1,16 | 1,91 |
25 | 7 | 7 | 6 | 6 | 6 | 6 | 0,727 | 0,734 | 1,20 |
35 | 7 | 7 | 6 | 6 | 6 | 6 | 0,524 | 0,529 | 0,868 |
50 | 19 | 19 | 6 | 6 | 6 | 6 | 0,387 | 0,391 | 0,641 |
70 | 19 | 19 | 12 | 12 | 12 | 12 | 0,268 | 0,270 | 0,443 |
95 | 19 | 19 | 15 | 15 | 15 | 15 | 0,193 | 0,195 | 0,320 |
120 | 37 | 37 | 18 | 15 | 18 | 15 | 0,153 | 0,154 | 0,253 |
150 | 37 | 37 | 18 | 15 | 18 | 15 | 0,124 | 0,126 | 0,206 |
185 | 37 | 37 | 30 | 30 | 30 | 30 | 0,0991 | 0,100 | 0,164 |
240 | 37 | 37 | 34 | 30 | 34 | 30 | 0,0754 | 0,0762 | 0,125 |
300 | 61 | 61 | 34 | 30 | 34 | 30 | 0,0601 | 0,0607 | 0,100 |
400 | 61 | 61 | 53 | 53 | 53 | 53 | 0,0470 | 0,0475 | 0,0778 |
500 | 61 | 61 | 53 | 53 | 53 | 53 | 0,0366 | 0,0369 | 0,0605 |
625 , 630 | 91 | 91 | 53 | 53 | 53 | 53 | 0,0283 | 0,0286 | 0,0469 |
800 | 91 | 91 | 53 | 53 | — | — | 0,0221 | 0,0224 | 0,0367 |
1000 | 91 | 91 | 53 | 53 | — | — | 0,0176 | 0,0177 | 0,0291 |
1200 | 0,0151 | 0,0151 | 0,0247 | ||||||
1400 | 0,0129 | 0,0129 | 0,0212 | ||||||
1600 | 0,0113 | 0,0113 | 0,0186 | ||||||
1800 | 0,0101 | 0,0101 | 0,0165 | ||||||
2000 | 0,0090 | 0,0090 | 0,0149 | ||||||
2500 | 0,0072 | 0,0072 | 0,0127 | ||||||
Эти сечения не являются предпочтительными. Для специального применения допускаются другие непредпочтительные сечения жил, но на них действие настоящего стандарта не распространяется. Минимальное число проволок для этих сечений не нормировано. Жилы этих сечений могут быть сформированы из четырех, пяти или шести одинаковых секторов. Для многопроволочных жил из алюминиевого сплава, имеющих то же номинальное сечение, что и алюминиевые жилы, значение электрического сопротивления должно быть согласовано между изготовителем и заказчиком, если оно не установлено в стандартах или технических условиях на кабельные изделия. |
5.2.2 Электрическое сопротивление
Электрическое сопротивление жилы при температуре 20 °С, определенное в соответствии с разделом 7, должно быть не более значения, указанного
в таблице 4
.
5.3 Многопроволочные круглые уплотненные жилы и многопроволочные фасонные жилы (класс 2)
5.3.1 Конструкция
a) Для многопроволочных круглых уплотненных жил и многопроволочных фасонных жил (класс 2) используют один из материалов, приведенных в разделе 4. Номинальное сечение многопроволочных круглых уплотненных жил из алюминия или алюминиевого сплава должно быть не менее 10 мм. Номинальное сечение многопроволочных фасонных жил из меди, алюминия или алюминиевого сплава должно быть не менее 25 мм.
b) Соотношение между значениями диаметров двух различных проволок одной жилы должно быть не более двух.
c) Число проволок каждой жилы должно быть не менее числа проволок, указанного в таблице 4.
Примечание — Это требование распространяется на жилы, изготовленные из круглых проволок до уплотнения, и не распространяется на жилы, скрученные из предварительно профилированных проволок.
d) В уплотненных жилах допускается обрыв или пропуск проволок при соответствии электрического сопротивления жил требованиям настоящего стандарта.
5.3.2 Электрическое сопротивление
Электрическое сопротивление жилы при температуре 20 °С, определенное в соответствии с разделом 7, должно быть не более значения, указанного
в таблице 4.
Выбор сечения кабеля по силе тока: формула расчета
Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается.
1️⃣ Первый шаг. Расчет проводится абсолютно аналогичным образом, то есть сначала рассчитывается суммарная мощность всех электроприборов, которые могут быть подключены к сети:
Pсум = (P1 + P2 + .. + Pn) × Kс
- P1, P2 .. – мощность электроприборов, Вт;
- Kс – коэффициент спроса (вероятность одновременной работы всех приборов), по умолчанию равен 1.
2️⃣ Второй шаг. Затем определяется номинальная сила тока в цепи:
I = Pсум / (U × cos ϕ)
- Pсум – суммарная мощность электроприборов;
- U – напряжение в сети;
- cos ϕ – коэффициент мощности (характеризует потери мощности), по умолчанию равен 0.92.
3️⃣ Третий шаг. На последнем этапе используются те же таблицы, согласно ПУЭ (Правила устройства электроустановок), которые расположены выше.
Активные и индуктивные сопротивления проводов СИП-1, СИП-2, СИП-4
Значения активных и индуктивных сопротивлений для проводов СИП-1, СИП-2 и СИП-4 приведены в ТУ 16-705.500-2006 «Провода самонесущие изолированные и защищенные для воздушных линий электропередач» таблицы Б.1, Б.2.
Расчет сечения кабеля по длине: формула
Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.
1️⃣ Первый шаг. Сначала определяется номинальная сила тока в цепи:
I = Pсум / (U × cos ϕ)
- Pсум – суммарная мощность электроприборов;
- U – напряжение в сети;
- cos ϕ – коэффициент мощности (характеризует потери мощности), по умолчанию равен 0.92.
2️⃣ Второй шаг. Затем рассчитываются сопротивление проводника:
R = dU / I
- dU – потери напряжения, не более 5% (0.05);
- I – сила тока.
3️⃣ Третий шаг. Выполняется расчет сечения токопроводящей жилы по формуле:
S = ρ × L/R
- ρ – удельное сопротивление металла, медь (0.0175), алюминий (0.028);
- L – длина проводника;
- R – сопротивление проводника.
Как выбрать сечения кабеля?
Существует ещё несколько критериев, которым должно соответствовать сечение используемых проводов:
- Длина кабеля
. Чем больше провод по длине, тем большие в нём наблюдаются потери тока. Это происходит опять-таки в результате увеличения сопротивления, нарастающего по мере увеличения длины проводника. Особенно это ощущается при использовании алюминиевой проводки. При применении медных проводов для организации электропроводки в квартире, длина, как правило, не учитывается — стандартного запаса в 20–30% (при скрытой проводке) с лихвой достаточно, чтобы компенсировать возможные увеличения сопротивления, связанные с длиной провода. - Тип используемых проводов
. В бытовом электроснабжении используются 2 типа проводников — на основе меди или алюминия. Медные провода качественнее и обладают меньшим сопротивлением, но зато алюминиевые дешевле. При полном соответствии нормам, алюминиевая проводка справляется со своими задачами не хуже медной, так что необходимо тщательно взвесить свой выбор перед покупкой провода. - Конфигурация электрощита
. Если все провода, питающие потребителей, подключены к одному автомату, то именно он и будет являться слабым местом в системе. Сильная нагрузка приведёт к нагреву клеммных колодок, а несоблюдение номинала к его постоянному срабатыванию. Рекомендуется разделять электропроводку на несколько «лучей» с установкой отдельного автомата.
Для того, чтобы определить точные данные для выбора сечения кабелей электрической проводки, необходимо учитывать любые, даже самые незначительные параметры, такие как:
- Вид и тип изоляции электрической проводки;
- Длина участков;
- Способы и варианты прокладки;
- Особенности температурного режима;
- Уровень и процент влажности;
- Максимально возможная величина перегрева;
- Разница в мощностях всех приемников тока, относящихся к одной и той же группе. Все эти и многие другие показатели позволяют значительно увеличить эффективность и пользу от использования энергии в любых масштабах. Кроме того, правильные расчеты помогут избежать случаев перегревания или быстрого истирания изоляционного слоя.
Для того, чтобы правильно определить оптимальное кабельное сечение для любых человеческих бытовых нужд, необходимо во всех общих случаях использовать стандартизированные следующие правила:
- для всех розеток, которые будут монтироваться в квартире, необходимо использовать провода с соответствующим сечением в 3,5 мм²;
- для всех элементов точечного освещения необходимо использовать кабеля электрической проводки с сечением в 1,5 мм²;
- что же касается приборов повышенной мощности, то для них следует использовать кабеля с сечением в 4-6 мм².
Если в процессе монтажа или расчетов возникают некоторые сомнения, лучше не действовать вслепую. Идеальным вариантом будет обратиться к соответствующей таблице расчетов и стандартов.
Таблица: Сечение кабеля для закрытой и открытой проводки
Видео: Как выбрать сечение провода?
Открытая и закрытая прокладка проводов
В зависимости от размещения проводка делится на 2 основных вида: закрытая и открытая.
Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.
При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.
Сопротивление проводов
Электрическое сопротивление является основной характеристикой проводниковых материалов. В зависимости от области применения проводника величина его сопротивления может играть как положительную, так и отрицательную роль в функционировании электротехнической системы. Также, особенности применения проводника могут вызывать необходимость учёта дополнительных характеристик, влиянием которых в конкретном случае нельзя пренебрегать.
Природа сопротивления
Проводниками являются чистые металлы и их сплавы. В металле, фиксированные в единую «прочную» структуру атомы, обладают свободными электронами (так называемый «электронный газ»). Именно эти частицы в данном случае являются носителями заряда. Электроны находятся в постоянном беспорядочном движении от одного атома к другому. При появлении электрического поля (подключении к концам металла источника напряжения) движение электронов в проводнике становится упорядоченным. Движущиеся электроны встречают на своём пути препятствия, вызванные особенностями молекулярной структуры проводника. При столкновении со структурой носители заряда теряют свою энергию, отдавая её проводнику (нагревают его). Чем больше препятствий проводящая структура создаёт носителям заряда, тем выше сопротивление.
При увеличении поперечного сечения проводящей структуры для одного количества электронов «канал пропускания» станет шире, сопротивление уменьшится. Соответственно, при увеличении длины провода таких препятствий будет больше и сопротивление увеличится.
Таким образом, в базовую формулу для вычисления сопротивления входит длина провода, площадь поперечного сечения и некий коэффициент, связывающий эти размерные характеристики с электрическими величинами напряжения и тока (1). Этот коэффициент называют удельным сопротивлением. R= r*L/S (1)
Удельное сопротивление
Удельное сопротивление неизменно и является свойством вещества, из которого изготовлен проводник. Единицы измерения r — ом*м. Часто величину удельного сопротивления приводят в ом*мм кв./м. Это связанно с тем, что величина сечения наиболее часто применяемых кабелей является относительно малой и измеряется в мм кв. Приведём простой пример.
Задача №1. Длина медного провода L = 20 м, сечение S = 1.5 мм. кв. Рассчитать сопротивление провода. Решение: удельное сопротивление медного провода r = 0.018 ом*мм. кв./м. Подставляя значения в формулу (1) получим R=0.24 ома. Вычисляя сопротивление системы питания сопротивление одного провода нужно умножить на количество проводов. Если вместо меди использовать алюминий с более высоким удельным сопротивлением (r = 0.028 ом*мм. кв./м), то сопротивление проводов соответственно возрастёт. Для вышеприведенного примера сопротивление будет равно R = 0.373 ома (на 55 % больше). Медь и алюминий – основные материалы для проводов. Существуют металлы с меньшим удельным сопротивлением, чем удельное сопротивление меди, например серебро. Однако его применение ограничено из-за очевидной дороговизны. В таблице ниже приведены сопротивления и другие основные характеристики проводниковых материалов.
Таблица – основные характеристики проводников
electry.ru