Структурная схема универсального осциллографа

Осциллограф – это измерительный прибор, который показывает изменение амплитуды сигнала с учетом временного графика. Такое оборудование применяют в домашних и профессиональных лабораториях. С помощью этого преобразователя настраивают электрические схемы, находят и устраняют неисправности компьютеров, телевизоров, усилителей, блоков питания.


Современный осциллограф

Общие определения

Электронно-лучевой осциллограф, или осциллоскоп (oscilloscope), отображает на своем экране график зависимости амплитуды сигнала от времени. Несмотря на сложный внешний вид, работа с прибором не вызывает существенных затруднений, также как с тензометром. Многочисленные элементы управления помогают настроить удобный для пользователя масштаб изображения.


Осциллограмма

Этот проверочный цикл работы форсунок двигателя внутреннего сгорания используют для ремонта электронных блоков и регулировки угла зажигания. Рисунок наглядно демонстрирует, для чего нужен осциллограф. С применением обычного мультиметра невозможно получить аналогичный результат, чтобы объективно оценить форму сложного сигнала.

Назначение осциллографа определить несложно по перечню типовых задач:

  • измерение временных, амплитудных и частотных характеристик;
  • изучение сдвига фаз в разных участках цепей;
  • выявление искажений формы, постоянной и переменной составляющих сигнала.

Классификация

Энергия конденсатора

По виду используемой схемотехники (электронных компонентов) различают цифровые и аналоговые измерительные приборы. Простые модели показывают только динамическую картинку. Современные – оснащены функцией запоминания для обеспечения лучших условий при изучении сложных процессов. Некоторые электронные осциллографы способны выводить на экран до 14 и более сигналов одновременно. Для исследования оптических сигналов производители выпускают стробоскопические высокоскоростные модификации.

Отдельно следует отметить специализированные приставки, которые подключаются через стандартный порт или коммуникационную плату к ноутбуку (стационарному компьютеру). Такое комбинированное оборудование можно перенастроить с применением специализированного программного обеспечения.


Плагин vst обеспечивает удобство обработки волновых процессов в звуковом диапазоне

Устройство

Трансформатор тока — принцип работы, назначение и устройство

Что такое осциллограф, можно выяснить на примере типовой конструкции:

  • вакуумная трубка (ЭЛТ) покрыта изнутри люминофором, который светится при попадании электронных лучей;
  • блок горизонтальной развертки формирует пилообразные сигналы вместе с импульсами «гашения» луча при возврате в исходное положение;
  • усилитель увеличивает амплитуду входного сигнала до необходимого уровня чувствительности ЭЛТ;
  • для синхронизации развертки применяют внутренний генератор тактовой частоты или внешний источник.


Устройство осциллографа

Экран

На картинке выше приведена блок схема осциллографа с электронно-лучевой трубкой. В современных моделях часто применяют дисплеи, созданные с применением технологий жидких кристаллов. Они экономичнее и надежнее, весят меньше. Координатную сетку наносят на прозрачную накладку либо формируют программным способом.


Современный экран позволяет уменьшить осциллограф что это такое на практике демонстрирует данная картинка

Сигнальные входы

В многолучевых осциллографах сохранен базовый принцип работы, однако сигналы подают на отдельные каналы. В каждом из трактов установлен собственный усилитель. Регулировкой выравнивают амплитуды для удобного сравнения нескольких показателей.

К сведению. При наличии слишком большой постоянной составляющей луч отклоняется за пределы экрана. Чтобы вернуть его в рабочую область, применяют переключение в режим «закрытого» входа с разделительным конденсатором.

Управление развёрткой

В осциллографии применяют следующие виды развертки:

  1. «Автомат» – импульсы генерируются по заданному режиму без дополнительного вмешательства со стороны пользователя.
  2. Ждущий – применяют при малых уровнях (отсутствии) сигнала. Он запускается по определенному уровню фронта (спада). В некоторых случаях используют внешнее управление.
  3. Однократный – активируется принудительно. Его применяют для исследования одиночных сигналов (последовательностей из нескольких импульсов).

Синхронизация развёртки с исследуемым сигналом

Чтобы обеспечить неподвижность «картинки», траекторию движения луча по экрану необходимо согласовать с процессом прохождения сигнала. Задачу решают с помощью запуска развертки по нулевому или другому уровню на входе. Ограничением является порог восприятия частоты человеческим глазом. От 18-22 Гц и выше мерцания не заметны.

К сведению. Отсутствие синхронизации проявляется как движущееся изображение. Ручной настройкой устанавливают запуск по фронту (спаду), выбирают оптимальный уровень для стабилизации.

Описание структурной схемы и блоков электронного осциллографа

Электронный осциллограф предназначен для визуального наблюдения, измерения и регистрации электрических сигналов, представленных в форме напряжения.

Упрощённая структурная схема осциллографа приведена на рис.5.1.

Электронный осциллограф (ЭО) состоит из электронно-лучевой трубки (ЭЛТ), генератора развёртки (ГР) с цепью синхронизации (ЦС), усилителей вертикального (УВ) и горизонтального (УГ) отклонений, блока питания (БП).

Основным измерительным узлом ЭО является ЭЛТ, преобразующая значение исследуемого напряжения в перемещение электронного луча. В современных осциллографах применяют ЭЛТ с горячим катодом и электростатическими фокусировкой и управлением. ЭЛТ представляет собой колбу, в которой создан вакуум. Внутри колбы расположены:

-нить накала (Н), предназначенная для подогрева оксидного катода (К) в форме цилиндра и эмитирующего поток электронов;

-модулятор (управляющий электрод М) в виде цилиндра с отверстием в торцовой части. Модулятор имеет отрицательный потенциал относительно катода (–10 –60 В). Изменение потенциала модулятора с помощью потенциометра R1 «Яркость» обеспечивает изменение плотности электронов в пучке и тем самым позволяет регулировать яркость изображения;

-первый А1 и второй А2 аноды. Первый анод, называемый фокусирующим, представляет собой полый цилиндр с диафрагмами и имеет положительный потенциал относительно катода (+300 +1000В). Изменением потенциала первого анода при помощи потенциометра R2 ,,Фокус” осуществляется фокусировка луча. При хорошей фокусировке диаметр луча достигает 0,2 0,3 мм. Второй анод А2, называемый ускоряющим, имеет относительно катода ещё более высокий положительный потенциал (+800 +5000В) и предназначен для ускорения электронов с целью повышения яркости изображения.

Группа электродов, включающая катод К с нитью накала Н, модулятор М и аноды А1 и А2, образует так называемую «электронную пушку», предназначенную для получения узкого пучка электронов – электронного луча.

Экран ЭЛТ с внутренней стороны покрыт люминофором, веществом, способным светиться при бомбардировке электронами. Электроны, бомбардируя экран, выбивают из него вторичные электроны, которые стекают на боковые стенки ЭЛТ, покрытые специальным составом из графита (акводагом), являющимся хорошим проводником. Акводаг соединён со вторым анодом, благодаря чему замыкается цепь тока через трубку. Электронный ток луча обычно составляет сотни микроампер.

Отклоняющая система ЭЛТ состоит из двух пар пластин Y и X, расположенных во взаимно перпендикулярных плоскостях. Каждая пара пластин образует конденсатор. Электронный луч, проходя между пластинами и попадая в электростатическое поле конденсатора, искривляется, а после выхода из поля отклоняющих пластин электроны по

инерции летят по прямой (рис.5.2).

Помимо ЭЛТ в структурной схеме ЭО (рис.5.1) можно выделить следующие основные части:

1) канал вертикального отклонения (канал Y, включающий делитель напряжения (ДН), предназначенный для ослабления больших сигналов напряжения (единицы-десятки вольт) и усилитель УВ для усиления слабых сигналов (десятки-сотни милливольт). Усиление сигнала в канале Y регулируется ступенями с помощью специальных переключателей на передней панели ЭО. Фиксированные значения масштаба my по оси Y, называемого коэффициентом отклонения, можно устанавливать в широком диапазоне. Для многих ЭО my=10мВ/см 20В/см;

2) канал горизонтального отклонения (канал Х), включающий генератор развёртки ГР с цепью синхронизации ЦС и усилитель УГ. Необходимость введения усилителей УВ и УГ объясняется малой чувствительностью ЭЛТ. Основные требования к усилителям современных ЭО:

— высокий коэффициент усиления (Ку =30 30000) и его постоянство в широкой полосе частот (от 0 до 100 МГц и выше);

— линейная зависимость между выходным и входным напряжением;

— высокое входное сопротивление и малая входная ёмкость для того, чтобы подключение ЭО к исследуемой схеме не изменяло режима её работы. Для большинства ЭО Rвх=1МОм, Свх=30пФ.

Канал Х ЭО может работать в двух основных режимах – развертки и усиления сигнала, поданного на «Вход Х». Режим работы канала выбирается с помощью переключателя SA1: положение 1 соответствует режиму развёртки, положение 2 – усилению сигнала. В режиме развёртки напряжение генератора ГР пилообразной формы через усилитель УГ подаётся на горизонтально отклоняющие пластины Х. Линейно-возрастающее напряжение ГР обеспечивает горизонтальное перемещение луча с постоянной скоростью и позволяет наблюдать кривую изменения исследуемого напряжения во времени. Принцип работы ГР вытекает из рис. 5.3.

Генератор ГР включает в себя источник неизменного тока I с большим внутренним сопротивлением, конденсатор С и электронный коммутатор с ключом К, шунтирующим конденсатор. При размыкании электронного ключа К конденсатор С начинает заряжаться от источника тока I, при этом напряжение на конденсаторе возрастает по линейному закону (участок аб)

.

В момент, когда напряжение UС достигает определённого значения UСm ., электронный ключ замыкается и начинается быстрый разряд конденсатора (участок бв). В автоколебательном режиме работы ГР после разряда конденсатора ключ К вновь размыкается независимо от наличия или отсутствия сигнала на входе Y, и далее процесс повторяется. В ждущем режиме после замыкания ключа К и разряда конденсатора это состояние ГР сохраняется до прихода запускающего сигнала. Переход от автоколебательного к ждущему режиму осуществляется с помощью регулировки, выводимой на переднюю панель ЭО. Частоту развёртки можно регулировать путём изменения I и С. Выбор необходимого масштаба mx, называемого коэффициентом развёртки, осуществляется с помощью специального переключателя на передней панели ЭО. Современные универсальные осциллографы имеют ряд фиксированных значений масштаба по оси Х (mx= 0,02мкс/cм 100мс/см).

Цепь синхронизации ЦС предназначена для обеспечения неподвижного, устойчивого изображения на экране осциллографа. Изображение будет неподвижным, если период развёртки Тр в кратное число раз больше периода исследуемого процесса Т. Постоянная кратность частот обеспечивается автоматической синхронизацией, при этом цепь синхронизации управляет работой генератора развёртки. В зависимости от источника синхронизирующего напряжения различают внутреннюю, внешнюю синхронизацию и синхронизацию от сети. При внутренней синхронизации работой генератора развёртки управляет предварительно усиленное исследуемое напряжение (рис. 5.1). При внешней синхронизации напряжение берётся от какого-либо внешнего источника. При синхронизации от сети синхронизирующее напряжение берётся от специальной обмотки силового трансформатора блока питания.

Блок питания БП предназначен для выработки постоянных напряжений для питания электродов ЭЛТ и всех остальных узлов. Питание электродов ЭЛТ осуществляется с помощью делителя напряжения R1–R2–R3 (рис. 5.1), с которого подаётся отрицательный по отношению к катоду потенциал на модулятор и положительные напряжения на оба анода.

Осциллографы оснащаются также калибраторами – специальными устройствами, позволяющими точно установить чувствительность по вертикали (вольты/деление) и по горизонтали (секунды/деление), т.е. использовать осциллограф для измерений.

Основные параметры

Программируемый термостат W1209

Для выбора осциллографа рекомендуется правильно оценивать следующие характеристики:

  • чтобы исключить искажения при работе с несколькими высокочастотными сигналами, следует приобрести двух,- или многолучевой прибор;
  • в разных моделях погрешность составляет 5-15%, поэтому следует учитывать ограниченную точность измерений;
  • цифровые аппараты оснащают цветными экранами, разнообразными устройствами для синхронизации, дополнительными сервисными режимами;
  • функциональность аналоговых приборов скромнее, но стоят они дешевле;
  • ограниченные возможности амплитудно-частотных преобразователей затрудняют качественную обработку цифровой электроникой высокочастотных сигналов;
  • режим застывшей картинки с функцией увеличения поможет изучить мельчайшие детали сложных изображений.

Перед детальным анализом нужно уточнить, для чего именно предназначается прибор. Далее оценивают соответствие по следующим параметрам:

  • полоса пропускания;
  • частотный диапазон;
  • входное сопротивление;
  • допустимые значения амплитуды (переменной и постоянной составляющей);
  • погрешность измерений;
  • развязка между каналами;
  • объем внутренней памяти (цифровая техника).

Области применения

Осциллограф предназначен для изучения динамических процессов. Чтобы пользоваться прибором правильно, следует не превышать конструкционные возможности. Ниже представлены примеры решения практических задач.

Наблюдение фигур Лиссажу

При одновременной подаче на входы осциллографа сигналов с приблизительно равными частотами на экране будут видны характерные изображения. Этот метод используют для настройки генератора по эталонному образцу.


Фигура Лиссажу на ЭЛТ аналогового прибора

Курсорные измерения

Для повышения точности измерений на экран выводят вспомогательные координатные полосы (курсоры). При хорошей оснащенности осциллограф индицирует отдельные показатели в цифровом виде.

Математические функции

Некоторые модели современных осциллографов (блоки для подключения к компьютеру) способны обрабатывать сигналы по сложному алгоритму. Необходимый вариант описывают соответствующей математической функцией: сложение, вычитание или др.

Захват строки телевизионного сигнала

В соответствии с названием такой режим предназначен для изучения телевизионного сигнала. Главная особенность – специальная синхронизация, позволяющая выводить на экран необходимое количество строк.

Специфика выбора товара

Приобретая такую узкоспециализированную технику, следует учитывать ряд важных параметров. В первую очередь следует обратить внимание на следующие:

  • Полосу пропускания. В среднем полоса должна быть на 5 пунктов выше значения частоты исследуемого сигнала. Для использования простого усилителя звуковых частот и цифровой схемы достаточным параметром будет 25 МГц. Научные изыскания и профессиональные исследования потребуют использование устройства с минимальной полосой пропускания около 150 МГц.
  • Тип питания. В случае проведения работ вдали от сети или на выезде рекомендуется приобрести модель с аккумулятором. В любой другой ситуации целесообразно использовать аппаратуру, работающую от сети.
  • Частота дискретизации. Пункт влияет на качество разрешения изображений на экранах, количество выборок сигнала за секунду. Для более точного изображения потребуется увеличение числа точек сигнала. Частота важна и для измерения однократных и переходных процессов.
  • Число каналов. Каналы влияют на количество отображаемых на дисплее независимых сигналов. Обеспечивают возможность анализировать и сравнивать несколько графиков одновременно. Работа с простыми техническими приборами не требует более 3 каналов. Более продвинутая аппаратура должна быть оснащена логическим анализатором и 16 каналами.

Вам это будет интересно Устройство, принцип работы и применение ионистора

Дополнительные возможности

В современной электронике часто приходится проверять аналоговые и цифровые сигналы одновременно. Для работы с такими задачами пригодится осциллограф с встроенным логическим анализатором.

Некоторые современные приборы оснащают режимом сегментации блока памяти. Это пригодится для длительного контроля сигнала с автоматическим сравнением по образцовой форме. Регистрироваться и записываться будут только отклонения (шумы, искажения).

Для автомобильных сервисных станций выпускают специализированные осциллографы (сканеры). Кроме особых переходников, такие аппараты дополняют программным обеспечением. Это оборудование применяют для контроля функционального состояния датчиков и других электронных компонентов через бортовой компьютер.

Развёрнутая классификация прибора

Современные осциллографы обладают весомым набором приложений для измерения, глубокой памятью, сенсорным ёмкостным дисплеем и способностью к скоростному обновлению сигналов на дисплее. Ознакомление с классификацией — неотъемлемый шаг в работе с техникой. Аппаратура подлежит внутреннему делению по назначению и логике работы:

  1. Стробирующий.
  2. Реального времени или аналоговый.
  3. Запоминающий: сходный с ЭЛТ аналоговый и цифровой.

В отдельную группу выделяются приборы с непрерывной развёрткой. Они позволяют регистрировать кривую на особой фотоленте. По числу лучей бывают двулучевые, однолучевые, трехлучевые и так далее. Вершиной автоматизации считается 16 лучей и более. Параметр влияет на синхронизацию данных.

Для техники с периодической развёрткой характерно следующее деление: стробоскопические, скоростные, обычные и универсальные, специальные запоминающие. Цифровым моделям свойственно сочетание нескольких параметров. Реже встречаются осциллографы, назначение которых совмещено с другим измерительным прибором. Их официальное название — скопметры.

Вам это будет интересно Определение и применение правил рук и буравчика

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]