Устройство и принцип работы транзистора
Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Транзисторы являются ключами (кнопками) в сетях с постоянным током. Биполярные транзисторы могут управлять электрической цепью до 50 В, полевые транзисторы могут управлять приборами до 100 В (при напряжении на затворе 5 В). В сетях с переменным током использую реле.
Фото. Устройство полевого и биполярного транзистора
При отсутствии напряжения на базе или затворе транзистора, эмиттерный и коллекторный переход находятся в равновесия, токи через них не проходят и равны нулю. Таким образом, подавая на базу биполярного транзистора напряжение в 5 В, мы можем включать электрические цепи до 50 Вольт. Сегодня этот полупроводниковый элемент встречается почти в любом устройстве (в телефоне, компьютере и т.д.).
Транзисторы являются основой для построения микросхем логики, памяти и микропроцессоров компьютеров. Транзистор — это электронный элемент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током высокого напряжения. Использование транзистора — это наиболее простой способ подключения к Ардуино мотора постоянного тока.
Как подключить транзистор к Ардуино
Для этого занятия нам потребуется:
Подключить мотор постоянного тока напрямую к цифровым или аналоговым портам Arduino не получится. Это обусловлено тем, что пины на плате Ардуино не способны выдавать ток более 40 мА. При этом мотору постоянного тока, в зависимости от нагрузки, необходимо сотни миллиампер. Потому и возникает потребность управления электрической цепью высокого напряжения транзистором или Motor Shield L293D.
Схема подключения мотора постоянного тока к Ардуино
Соберите электрическую цепь, как на рисунке выше. Если присмотреться к сборке на макетной плате, то вы заметите, что транзистор играет роль кнопки. Если кнопка замыкает электрическую цепь при нажатии на толкатель, то транзистор начинает пропускать ток при подаче напряжения на базу. Таким образом, мы можем сделать автоматическое или полуавтоматическое управление мотором на Ардуино.
Скетч. Управление мотором через транзистор
Если вы заметили, то это скетч из занятия — Включение светодиода на Ардуино. С точки зрения микропроцессора абсолютно не важно, что подключено к Pin13 — светодиод, транзистор или драйвер светодиодов для Светового меча на Ардуино. Обратите внимание на то, что резистор R1 подтягивает базу транзистора к земле, а резистор R2 служит для защиты порта микроконтроллера от перегрузки.
Скетч. Управление мотором от датчика
Скетч управления двигателем постоянного тока на Ардуино можно написать по-другому. Добавим в схему фоторезистор и сделаем автоматическое включение мотора при снижении уровня освещенности в комнате. Можно также использовать датчик уровня жидкости или любой другой датчик. В скетче мы используем операторы if и else для управлением (включением/выключением) мотора постоянного тока.
Управление двигателем постоянного тока на Arduino UNO
NPN mosfet подключение к arduino
Тут все без гемора. Вот пара вариантов подключения:
Если надо еще и плавно включать/выключать лампочку, либо не на всю мощность, а только на половину например, можно из ардуино пищать шимом, а между затвором и истоком включить еще конденсатор микрофарад на 300. Это нужно чтобы открыть мосфет на половину.. Однако это подойдет только для маломощной лампочки, потому как полуоткрытый мосфет имеет некислое внутреннее сопротивление и греется как утюг.
В эту схему подойдет к примеру мосфет h6n03l. Но тут есть нюанс в выборе резюков. Тот, который между ардуино и gate – чем больше сопротивление, тем меньше ток на ноге ардуино и меньше вероятность что она задымится. И чем больше сопротивление тем медленнее открывается мосфет. Кароч 150 ом норм для ардуино (по закону ома I = E / R, I = 5 / 150 = 0.033 А — это 33 миллиампера, норм). Зачем он вообще нужен? Дело в том, что затвор (gate) у полевика имеет определенную емкость и является в какой-то мере конденсатором. Так что в момент переключения через затвор проходят большие токи, которые может не выдержать ардуина. Для этого и нужен резистор между gate и пином.
А второй 10 кОм типа подтягивающий резистор – нужен чтобы держать мосфет закрытым и нагрузку выключенной пока порт ардуины в неопределенном состоянии например при загрузке (так называемое Z-состояние).
Но у этой схемы есть косяк – она медленновата. На переключение уйдет 600ns что подходит не для всех задач. Вот фронт и спад.
Желтая – выход с мосфета, зелено-бирюзово-светло-голубая – выход с ШИМ ардуино. Желтая не успевает. Для решения этой проблемы надо поставить парочку транзисторов как тут предлагают https://joost.damad.be/2012/09/dimming-12v-led-strip-with-mosfet-and.html
Но это нужно далеко не всегда и как правило достаточно первой схемы. И кстати есть вариант получше — про него в конце статьи.
В этом уроке используется:
Arduino Uno: | Купить |
Инфракрасный дальномер: | Купить |
Высокоточный лазерный дальномер с I2C: | Купить |
Набор резисторов из 100 штук на все случаи: | Купить |
Небольшой моторчик: | Купить |
Слабенький сервопривод: | Купить |
Мощный сервопривод: | Купить |
Мосфет транзистор для управления переменным током высокого напряжения: | Купить |
Набор npn транзисторов из 100 штук: | Купить |
Подключение мотора к Arduino
Как уже было сказано выше, ардуино не может обеспечить мотор необходимым током и напряжением. В таких случаях используются транзисторы.
Транзистор это радиоэлектронный компонент из полупроводникового материала способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. Обычно у транзисторов 3 вывода: база, эмиттер и коллектор. Алгоритм действия можно сформулировать так: пропустить ток от коллектора к эмиттеру в зависимости от сигнала на базе. Транзисторы бывают разных типов и номиналов. Об этом можно подробнее почитать на википедии.
Будьте внимательны при выборе транзисторов для своих проектов. Некоторые рассчитаны на пропуск большого напряжения, или большого тока. Так же многие транзисторы не откроются от 5 вольт на базе. Всегда проверяйте характеристики транзисторов перед покупкой в datasheet. Так же обратите внимание, что для управления переменным током используются мосфет транзисторы.
Теперь давайте подключим мотор к ардуино по следующей схеме:
Подключение мотора к ардуино
Как всегда ничего сложного. Главное не перепутать выводы транзистора. Обратите внимание на резистор через который ардуино подключена к базе. Это резистор на 1 кОм и нужен он для того что бы обезопасить нашу ардуинку. В видео к схеме добавлены диод и конденсатор, но они не обязательны. Так же можно добавить резистор на 10 — 100 кОм между эмиттером и коллектором для стабильности работы нашей схемы. Так же не забудьте, что земля на всех уровнях напряжения должна быть объединена. И взглянем на наш код:
Как видите скетч очень прост. По комментариям в коде вы легко разберетесь, что к чему. Единственная конструкция, которую мы еще не использовали это цикл for.
Подключение сервопривода практически ни чем не отличается от подключения моторчика. Отличие в том что у сервы 3 вывода. Плюс, минус и логический. В видео подробно об этом рассказано.
Добавим в нашу схему инфракрасный дальномер. Просто потому, что мы можем