Что собой представляют схемы
Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».
Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.
Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.
Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь. Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей. Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.
Поэтому его надо просто снизить. Есть несколько для этого способов:
- установить в систему подключения электрического двигателя один из перечисленных приборов: трансформатор, дроссель, реостат;
- изменяется схема подключения обмоток ротора.
Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.
Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания. Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз. Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.
Соединение обмоток генератора и фаз приемника треугольником
Соединение обмоток генератора или фаз приемника, при котором начало одной фазы соединяется с концом другой, образуя замкнутый контур, называется соединением треугольнико
м (Δ). Начало фазы
А
источника питания соединяют с концом фазы
В
(
Y
) и точку соединения обозначают
А
. Далее соединяют точки
B
и
Z
(точки
B
) и точки
С
и
Х
(точка
С
). Положительные направления ЭДС в обмотках такие же, как и при соединении обмоток генератора в звезду.
Подобным образом соединяют и фазы приемника, сопротивления которых обозначают двумя индексами, соответствующими началу и концу фазы. По фазам приемника протекают фазные токи , и . Условное положительное направление фазных токов приемника принято от точки первого индекса к точке второго индекса. Условное положительное направление фазных напряжений , и совпадают с положительным направлением фазных токов. Условное положительное направление линейных токов , и принято от источника питания к приемнику.
При отключенном источнике, когда токи , и равны нулю, в замкнутом контуре обмоток источника питания ток равен нулю, так как система ЭДС симметрична и суммарная ЭДС в контуре равна нулю (). Если соединение обмоток треугольником выполнено неправильно, то есть в одну точку соединены концы или начала двух фаз, то суммарная ЭДС в контуре треугольника отлична от нуля и по обмоткам протекает большой ток. Это аварийный режим для источника питания, и поэтому он недопустим.
Напряжение между началом и концом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению:
.
При подключении приемника, соединенного треугольником, к источнику питания по фазам приемника протекает фазный ток, который определяется по закону Ома:
,
где — комплексное сопротивление фазы приемника.
Например, , где ; .
Линейные токи можно определить из уравнений, записанных по первому закону Кирхгофа: для точки А’
; для точки
В’
; для точки
С’
.
Таким образом, получаем:
.
Итак, линейные токи при соединении треугольником равны векторной разности фазных токов тех фаз, которые соединены данным линейным проводом.
Как следует из предыдущих уравнений, векторная сумма линейных токов всегда равна нулю:
.
Система линейных (фазных) напряжений , и при соединении треугольником образует такой же замкнутый треугольник, как и при соединении звездой. Фазные токи , и при симметричной нагрузке равны по значению и сдвинуты по отношению к векторам напряжений на одинаковый угол φ
.
Для определения линейных токов на рисунке построена векторная диаграмма тех же фазных токов, что и на предыдущем рисунке.
Так как линейные токи определяются через фазные так же, как и линейные напряжения через фазные при соединении звездой, то можно сразу построить векторы линейных токов, соединив концы векторов фазных токов. Векторы линейных токов образуют замкнутый треугольник. Поскольку при симметричной нагрузке системы фазных и линейных токов симметричны, сравнивая векторные диаграммы токов и напряжений, можно заключить, что линейные токи при симметричной нагрузке, соединенной в треугольник, в раза больше фазных:
.
В общем случае, когда нагрузка несимметрична, системы фазных и линейных токов также несимметричны (рисунок б
).
Схема соединения фаз приемника (звезда или треугольник) не зависит от схемы соединения обмоток источника питания. Электроприемник присоединяют к источнику питания, имеющему три или четыре зажима. При трех зажимах (А
,
В
и
С
) обмотки источника питания могут быть соединены как звезда без вывода нейтральной точки, так и треугольником. При четырех зажимах (
А
,
В
,
С
и
N
) обмотки источника питания соединены звездой с выведенной нейтральной точкой. Фазы приемника могут быть соединены звездой с нейтральным проводом только в этом случае.
Соединение обмоток электродвигателя «треугольником» и «звездой»
На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.
Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.
Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.
При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.
Как подключить электродвигатель правильно – знает опытный электрик.
Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.
Соединение обмоток генератора треугольником
• Трехфазные цепи • |
- Трехфазные системы
- Соединение обмоток генератора звездой
- Соединение обмоток генератора треугольником
- Соединение приемников энергии звездой
- Соединение приемников энергии треугольником
- Несимметричный режим трехфазных цепей
- …
• Обзор сайта • |
- Электрооборудование до 1000 В
- Электрические аппараты
- Электрические машины
- Эксплуатация электро оборудования
- Электрооборудование электротехнологических установок
- Электрооборудование общепромышленных установок
- Электрооборудование подъемно-транспортных установок
- Электрооборудование металлообрабатывающих станков
- Электрооборудование выше 1000 В
- Электрические аппараты высокого напряжения
- Электротехника
- Электрическое поле
- Электрические цепи постоянного тока
- Электромагнетизм
- Электрические машины постоянного тока
- Основные понятия,отно сящиеся к переменным токам
- Цепи переменного тока
- Трехфазные цепи
- Электротехнические измерения и приборы
- Трансформаторы
- Электрические машины переменного тока
- Электромонтаж
- С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
- Монтаж электропроводки
- Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
- Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
- Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
- Электромонтаж и заземле ние розеток
- Электромонтаж уравнива ния потенциалов
- Электромонтаж контура заземления
- Электромонтаж модульного штыревого контура заземле ния
- Электромонтаж нагреватель ного кабеля для подогрева полов
- Электромонтажные работы по прокладке кабеля в зем ле
- Электричество в частном доме
- Проект электроснабжения
• Электротехника • |
- Электрическое поле
- Электрические цепи постоянного тока
- Электромагнетизм
- Электрические машины постоянного тока
- Основные понятия,отно сящиеся к переменным токам
- Цепи переменного тока
- Трехфазные цепи
- Электротехнические измерения и приборы
- Трансформаторы
- Электрические машины переменного тока
- …
ЭЛЕКТРОСПЕЦ
ЭЛЕКТРОСПЕЦ
При соединении обмоток трехфазного генератора треугольником (рис. 7-8) конец первой обмотки X соединяется с началом второй обмотки B, конец второй обмотки Y соединяется с началом третьей обмотки C и конец третьей обмотки Z с началом первой A. Три линейных провода,идущих к приемникам энергии, присоединяются к началам фаз A,B и C.
Из рис. 7-8 ясно, что при таком соединении обмоток фазные напряжения равны линейным, т. е.
При соединении треугольником три фазы генератора образуют замкнутый контур с весьма малым сопротивлением. Очевидно, такое соединение возможно только в том случае, если сумма э. д. с, действующих в этом контуре, будет равна нулю, так как в противном случае в контуре даже при отсутствии нагрузки возникнет значительный ток, могущий вызвать перегрев генератора. Сумма трех симметричных э. д. с, действующих в обмотках генератора, равна нулю. В этом легко убедиться, складывая векторы э. д. с. На рис. 7-9 даны три вектора э. д. с. Складывая EA и EB, получаем вектор, равный и противоположный вектору EC, т. е.
а следовательно, сумма трех векторов э. д. с. равна нулю, т. е.
Опасно неправильное соединение обмоток генератора треугольником.
На рис. 7-10 дана одна из возможных неправильных схем соединения, в которой конец первой фазы X правильно соединен с началом второй фазы B, но конец второй фазы Y соединен не с началом третьей фазы C, а с ее концом Z, и начало третьей фазы C соединено с началом первой фазы A, вследствие чего э. д. с. EC не складывается с остальными э. д. с, а вычитается из их суммы. Результирующая э. д. с. может быть определена из векторной диаграммы рис. 7-11, на которой произведено сложение векторов EA, EB и — EC. Сумма этих трех векторов, как видно из диаграммы, равна удвоенному вектору EC, т. е.
Таким образом, в этом случае э. д. с. замкнутого контура по абсолютной величине равна удвоенному значению фазной э. д. с, что при малом сопротивлении контура (обмоток генератора) равносильно короткому замыканию.
Соединение двигателя в звезду
Наиболее часто используемым является именно соединение в звезду, потому что в таком режиме обеспечивается необходимая мощность и гарантируется хороший крутящий момент на валу. Но стоит понимать, что недогруженный двигатель в 3-фазной сети будет потреблять лишнюю мощность, поэтому лучше использовать менее мощный мотор или регулировать частоту питающего трансформатора или привода, в зависимости от источника напряжения.
А чтобы определить электрические параметры сети, необходимо использовать соотношение √3. Первоначально следует отметить, что при соединении в звезду линейные и фазные токи одинаковы, а напряжение определяется по формуле U = √3 × U ф. Найти из нее фазное напряжение несложно. Соответственно, мощности определяются с учетом этого соотношения:
S = √3 × U × I
Следует помнить, что если на трансформаторе кроме 3-х фаз имеется также и 4-ый вывод со средней точки, то он должен быть подключен к электродвигателю .
Соединение фаз звездой
На рисунке представлена схема соединения фаз генератора звездой. Условное обозначение этой схемы Y . Концы К всех трех фаз соединяют в общую точку, называемую нулевой. Если отводят только три провода от генератора А, В, С, то такую систему называют трехфазной трехпроводной. Если отводят также четвертый, нейтральный, или «нулевой» провод N (О), то систему называют трехфазной четырехпроводной. Нулевую точку генератора, а следовательно, и нулевой провод надежно заземляют.
Ток в нулевом проводе появится только тогда, когда три фазы будут нагружены неравномерно. Ток, протекающий по нулевому проводу, равен алгебраической сумме токов в трех фазах:
По абсолютной величине in всегда меньше, чем ток в любой из фаз, если нагрузка включена во все фазы. Поэтому сечение нулевого провода принимается меньшим, чем сечение фазных проводов.
Рис. 1. Схема соединения обмоток генератора в звезду.
Только в том случае, если нагрузка включена между одной из фаз и нулевым проводом, а к другим фазам нагрузка не включена, ток в нагруженной фазе равен току в нулевом проводе.
Напряжение между любой из фаз и нулевым проводом называется фазным напряжением и обозначается U ф . Оно равно напряжению между началом каждой из фаз и ее концом (рис. 2).
Напряжение между фазными проводами называется линейным напряжением и обозначается U л . Оно равно геометрической разности двух фазных напряжений (рис. 2), то есть линейные напряжения между фазами А и В, В и С, С и А
Рис. 2. Векторы линейных и фазных напряжений.
Абсолютная величина линейного напряжения может быть определена из треугольника векторов АОВ. Основание этого треугольника АВ равно линейному напряжению:
Таким образом, в трехфазной четырехпроводной системе получают два напряжения: U ф — фазное и U л — линейное. Линейное напряжение больше, чем фазное, в 1,73 раза. Сила тока в линейном проводе I л равна но величине и направлению току в фазной обмотке I ф .
Приняты следующие напряжения для низковольтных сетей (табл. 1).
Таблица 1 Стандартные напряжения в потребительских сетях
Как видно из таблицы 1, напряжение источника электроснабжения (генератора или вторичной стороны трансформатора) берут всегда па 5% больше номинального сетевого напряжения с учетом того обстоятельства, что около 5% напряжения будет потеряно в линии. Это делают для того, чтобы подать потребителям электроэнергию номинального напряжения и обеспечить их удовлетворительную работу.
В сельском хозяйстве наибольшее распространение получила трехфазная четырехпроводная система 380/220 В, то есть система с линейным напряжением в сети Uл =380 В и фазным Uф = 220 В. Три фазы с напряжением между ними 380 В используют для питания электрических двигателей и трехфазных нагревательных приборов, а напряжение между фазой и нулевым проводом 220 В используют для питания источников света и бытовых электроприборов.
Источник
Основные формулы
Перед тем, как ознакомиться с особенностями, как соединить электродвигатель звезда-треугольник, стоит вспомнить основные формулы расчета мощности и соотношения напряжений и токов между ними. При расчете устройств с питанием от сети переменного напряжения или отдельного трансформатора используют понятие полная мощность. Она обозначается большой буквой S и находится как произведение действующего значения напряжения и тока U × I . Также, есть возможность расчета, исходя из ЭДС, при котором S = E × I .
Кроме полной, также различают:
- активную;
- реактивную мощность.
В первом случае она обозначается буквой P = E × I × cos φ или P = U × I × cos φ . Во втором случае Q = E × I × sin φ или Q = U × I × sin φ . Где в формулах E – электродвижущая сила, I – ток, φ – угол между напряжением и током, создаваемым сдвигом фаз в обмотках.
Если обмотки двигателя одинаковы между собой по всем параметрам, то все виды мощностей определяются как произведение тока и напряжения, умноженного на 3.
Свойства звезды и треугольника
Дата публикации: 17 июля 2013 . Категория: Статьи.
Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях «Схема соединения «Звезда» и «Схема соединения «Треугольник». Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность.
В сетях переменного тока различают: полную (кажущуюся) мощность S = E × I или S = U × I; активную мощность P = E × I × cos φ или P = U × I × cos φ; реактивную мощность Q = E × I × sin φ или Q = U × I × sin φ, где Е – электродвижущая сила (э. д. с.); U – напряжение на зажимах электроприемника; I – ток; φ – угол сдвига фаз между током и напряжением 1 .
Конструкция двигателя
Обмотки располагаются на статоре, а ротор выполнен короткозамкнутым в виде беличьего колеса: алюминиевые или медные кольца по торцам соединены между собой параллельными перемычками. Статор намотан специальным образом с определенным количеством полюсов, что зависит от параметров мощности и питающей сети. Бытовые вентиляторы имеют всего 2 полюса, промышленные тяговые электродвигатели по 8 и более.
Преимущества использования асинхронных электродвигателей со схемой включения звезда или треугольник очевидны и заключаются в следующем:
- Повышенная выносливость – даже при превышающих номинальные нагрузки, двигатель будет работать без сбоев.
- Возможность работы в агрессивных средах. За счет отсутствия скользящих контактов в двигателе не может возникать искрения, а, следовательно, и проблем с ним связанных. При качественной изоляции электродвигатель может работать во влажной обстановке.
- Высокая продолжительность работы на высоких нагрузках. Двигатель способен на протяжении длительного промежутка времени работать под значительной нагрузкой на валу без перегрева и сгорания обмоток.
Новичкам, и не только, пригодится статья о параметрах, цоколевке и аналогах транзистора КТ815.
Как подобрать конденсаторы: 3 важных критерия
Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.
В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.
Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.
От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.
Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.
Обращаю внимание на три важных параметра:
- емкость;
- допустимое рабочее напряжение;
- тип конструкции.
Как подобрать конденсаторы по емкости и напряжению
Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.
Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.
Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.
Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.
Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.
Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.
Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.
Сейчас промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.
Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.
У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.
Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе
Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.
При параллельном подключении общая емкость суммируется, а напряжение не меняется.
Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.
Какие типы конденсаторов можно использовать
Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.
Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.
Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.
Без его использования они быстро выходят из строя.
Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.
Как управлять переключениями электродвигателя
Часто для пуска электрического двигателя большой мощности используется переключение соединения «треугольник» в «звезду», это необходимо для снижения параметров тока при пуске. Иными словами, пуск двигателя происходит в режиме «звезда», а вся работа осуществляется на соединении «треугольник». Для этой цели используется контактор на три фазы.
Необходимо при автоматическом переключении выполнить обязательные условия:
- сделать блокировку контактов от одновременного срабатывания;
- обязательное исполнение работы, с задержкой времени.
Задержка времени необходима для 100%-го отключения соединения «звезда», иначе при включении соединения «треугольник» возникнет между фазами КЗ. Используется реле времени (РВ), которое выполняет задержку переключения на интервал от 50 до 100 миллисекунд.
Какими способами можно сделать задержку времени переключений
Когда применяется схема «звезда и треугольник», надо обязательно выполнять задержку времени включения соединения (Δ), пока не отключится соединение (Y), специалистами отдается предпочтение трем методам:
- с помощью контакта нормально разомкнутого в реле времени, который проводит блокировку схемы «треугольник», когда происходит пуск электродвигателя, а момент переключения контролирует токовое реле (РТ);
- используя таймер в реле времени современного исполнения, который имеет способность переключать режимы с интервалом от 6 до 10 секунд.
Стандартная схема переключения
Классический вариант переключения со «звезды» на «треугольник» специалистами считается надежным способом, он не требует больших затрат, прост в исполнении, но, как и любой другой способ, имеет недостаток — это габаритные размеры РВ (реле времени). Этот тип РВ гарантированно выполняет задержку времени намагничиванием сердечника, а чтобы размагнитить его, требуется время.
Схема смешанного (комбинированного) включения работает следующим образом. Когда оператор включает трехфазный выключатель (АВ), пускатель электродвигателя приготовлен к действию. Через контакты кнопки «Стоп», нормально замкнутого положения и через нормально разомкнутые контакты кнопки «Пуск», которую нажимает оператор, электрический ток проходит в катушку контактора (КМ). Контакты (БКМ) обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.
Реле в схеме (КМ) обеспечивает способность отключения оператором кнопкой «Стоп» электрический двигатель. Когда «фаза управления» проходит через пусковую кнопку, она также проходит замкнутые нормально расположенные контакты (БКМ1) и контакты (РВ) — запускается контактор (КМ2), силовые контакты его обеспечивают подачу напряжения на соединение (Y), начинается раскрутка ротора электродвигателя.
Когда оператор осуществляет пуск двигателя, контакты (БКМ2) в контакторе (КМ2) размыкаются, это порождает неработающее состояние силовых контактов (КМ1), которые обеспечивают питание соединения двигателя Δ.
Токовое реле (РТ) срабатывает практически сразу из-за высоких значений тока, которое включено в цепь токовых трансформаторов (ТТ1) и (ТТ2). Управляющая цепь катушки контактора (КМ2) шунтируется контактами токового реле (РТ), что не дает сработать (РВ).
В цепи контактора (КМ1) блок контактов (БКМ2) размыкается при запуске (КМ2), что не дает сработать катушке (КМ1).
С набором нужного параметра оборотов вращения ротора двигателя контакты токового реле размыкаются, так как пусковой ток уменьшается в управлении контактора (КМ2), одновременно с размыканием контактов, подающих напряжение на соединение обмотки (Y), БКМ2 соединяются, что приводит в рабочее положение контактор (КМ1), а в его цепи блок контактов БКМ2 размыкается, и, как следствие, обесточивается РВ. Преобразование включения «треугольника» в «звезду» происходит после остановки двигателя.
Важно! Временное реле отключается не сразу, а с задержкой, что дает некоторое время в цепи (КМ1) контактам реле быть замкнутым, этим обеспечивается пуск (КМ1) и работа двигателя по схеме «треугольник»
Недостатки стандартной схемы
Несмотря на надежность работы классической схемы переключения с одного соединения на другое соединение электрического двигателя большой мощности, она имеет свои неудобства:
надо правильно делать расчет нагрузки на вал электродвигателя, иначе он будет долго набирать обороты, что не даст быстро сработать токовому реле и затем переключиться на работу по соединению Δ, а также в этом режиме крайне нежелательно долго эксплуатировать двигатель;
Практика — как выбрать схему для конкретного случая
Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.
В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.
Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.
Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.
Обычно маркировка имеет вид:
Δ/Y 220/380
Это расшифровывается так:
Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.
Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:
Преимущества
- Экономичность при передаче электричества на значительные расстояния, которое обеспечивает соединение звездой и треугольником.
- Малая материалоёмкость трехфазных трансформаторов.
- Уравновешенность системы. Данный пункт является одним из самых важных, поскольку позволяет избежать неравномерной механической нагрузки на электрогенерирующую установку. Из этого вытекает больший срок службы.
- Малой материалоёмкостью обладают силовые кабели. Благодаря этому при одинаковой потребляемой мощности в сравнении с однофазными цепями уменьшаются токи, которые необходимы, чтобы поддерживать соединение звездой и треугольником..
- Можно без значительных усилий получить круговое вращающееся магнитное поле, что необходимо для работоспособности электрического двигателя и целого ряда других электротехнических устройств, работающих по похожему принципу. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности. Это ещё один значительный плюс, который имеет соединение звездой и треугольником.
- В одной установке можно получить два рабочих напряжения – фазное и линейное. Также можно сделать два уровня мощности, когда присутствует соединение по принципу «треугольника» или «звезды».
- Можно резко уменьшать мерцание и стробоскопический эффект светильников, работающих на люминесцентных лампах, пойдя по пути размещения в нём устройств, питающихся от разных фаз.
Благодаря вышеуказанным семи преимуществам трехфазные системы сейчас являются наиболее распространёнными в современной электронике. Соединение обмоток трансформатора звезда/треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. К тому же неоценимой является возможность влиять на напряжение, передающееся по сетям к домам жителей.
Соединение трёхфазной системы «звездой»
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).
Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.
Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C.
Преимущества. Экономичность.
Экономичность передачи электроэнергии на значительные расстояния.
Меньшая материалоёмкость 3-фазных трансформаторов.
Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.
Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.
Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.
Шины для раздачи нулевых проводов (синяя) и проводов заземления(зеленая).
Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.
Различие в присоединении электродвигателя по указанным схемам состоит в соединении концов обмоток. В схеме «звезда», все окончания обмоток соединяются вместе, а в схеме «треугольник» завершение одной с началом следующей. При соединении по первой схеме («звезда») питание подаётся на начала обмоток статора, а при второй – на места соединения разных обмоток между собой. При соединении звездой к точке соединения всех концов обмоток рекомендуется присоединять нейтраль источника питания. Это делается для компенсации возможной асимметрии амплитуды различных питающих фаз, которая может быть из-за разного индуктивного сопротивления каждой из обмоток.
Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.
Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями: Uл = 2Uф cos 30°,Iл = IФ
Соединение обмоток звездой и треугольником
В таком случае, если из схемы исключено токовое реле, и переключение режимов осуществляется по уставке таймера, то в момент перехода на треугольник будут наблюдаться всё те же броски тока почти такой же продолжительности, как и при пуске с неподвижного состояния ротора.
Начало выводов присоединяют к соответствующим фазам питающей сети. Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели рубильники. Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости мкФ с рабочим напряжением не менее В.
Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат.
В ней нет нулевого провода, его просто некуда подключать. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Однако простота требует жертв.
Читайте дополнительно: Энергетический паспорт предприятия кто должен делать
Соединение «звездой» и его преимущества
Когда в обмотках появляется трех фазное напряжение , на их полюсах происходит образование магнит ных потоков. В общем, подключил он неправильно, потому двигатель и сгорел
Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции
Мягкий пуск двигателя. Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1. При цитировании материалов сайта активная гиперссылка на l При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Звезда и треугольник принцип подключения.
Соединение «звезда»
Рассмотрим схему соединения обмоток генератора «звездой». В ней концы трех обмоток соединяют в один узел, а начала служат для подключения нагрузок.
Схема соединения звездой показана на рис.1 (а). Такое соединение обмоток генератора позволяет использовать для передачи электроэнергии вместо шести проводов только четыре. Точка $O$ на схеме — точка общего потенциала (проводник, который соединен с точкой $О$ — нулевой провод). Такое соединение подобно соединению трех источников тока, которое показано на рис.1 (б).
Готовые работы на аналогичную тему
- Курсовая работа Соединение обмоток генератора «звездой » и «треугольником» 480 руб.
- Реферат Соединение обмоток генератора «звездой » и «треугольником» 260 руб.
- Контрольная работа Соединение обмоток генератора «звездой » и «треугольником» 220 руб.
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
Рисунок 1.
При таком способе соединения напряжение между фазой и нулевым проводом называют фазным напряжением. Напряжение между фазами $A-B$, $B-C$, $C-A$ называют линейным. Для того, чтобы определить как соотносятся фазное и линейное напряжения необходимо брать геометрическую (векторную) разность.
Допустим, что генератор разомкнут, то есть $R_1=\ R_2=R_3=\infty ,\ $найдем связь между фазным напряжением (существующим в каждой из обмоток $О_1,\ О_2,О_3$) и линейными напряжениями (между проводами $0,1,2,3$). Линейное напряжение между проводом $О$ и любым другим проводом равно фазному и его амплитуда $U_m.\ $Линейное напряжение между любой парой проводов $1,2$ и $3$ будет отличаться. Найдем напряжение между проводами $1$ и $3$, которое равно разности потенциалов между свободными концами обмоток $О_1,\ О_2$:
Появились вопросы по этой теме? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос
Из формулы (2) видно, что линейное напряжение имеет такую же частоту, что и фазное. Однако, амплитуда линейного напряжения в $\sqrt{3}$ больше, чем фазного.
Допустим, что генератор имеет симметричную нагрузку ($R_1=\ R_2=R_3$). В таком случае амплитуда токов в проводах $1,2,3$ одинакова ($I_m$). Сила тока будет изменяться в соответствии с:
В нулевом проводе сила тока ($I$) равна сумме линейных токов:
Так как:
${sin \left(\omega t-120{}^\circ \right)\ }+{sin \left(\omega t-240{}^\circ \right)\ }=2{sin \left(\omega t-180{}^\circ \right)\ }cos60{}^\circ ={sin \left(\omega t-180{}^\circ \right)\ }$=-${sin \left(\omega t\right)\ }.$
Мы получили, что при симметричной нагрузке сила тока в нулевом проводе всегда равна нулю. В таком случае (при симметричной нагрузке!) нулевой провод можно удалить совсем и линия будет работать (однако, надо помнить, что при этом на каждую из пар нагрузок будет действовать линейное напряжение в $\sqrt{3}$ раз больше фазного).
Соединение «звездой» и его преимущества
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
Недостатки:
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Устройство механизма
Асинхронный двигатель делят на две группы, которые зависят от метода исполнения обмотки ротора:
- Двигатели с фазной обмоткой. Имеют сложную конструкцию ротора, из-за чего производство прибора существенно дороже других типов двигателей. Их используют в тяжёлых пусковых условиях и при надобности плавной регулировки частоты вращения.
- Двигатели с короткозамкнутой обмоткой. Устройство имеет более низкую стоимость при производстве и его частота вращения меняется всего на 2- 3 процента при изменении нагрузки от 0 до минимальной частоты. Единственным недостатком является сложность плавной регулировки частоты вращения в больших пределах.
Прибор состоит из неподвижного цилиндра — статора, который состоит из листов электротехнической стали, изолированных друг от друга техническим лаком и собранных при помощи скоб, для сокращения вихревых токов. В пазах статора находится статорная обмотка, соединяющаяся в комбинацию треугольника либо звезды. Устройство также состоит из вращающей части — ротора, собранного из листов электротехнической стали, где в пазы под давлением заливается алюминий или медь. А также вместе заливаются замыкающие кольца, на которых расположены лопатки. Они необходимы для охлаждения ротора.
Ротор закрепляется на валу двигателя, на котором фиксируются подшипники. Вся эта конструкция располагается в подшипниковых щитах.
Принцип работы асинхронного двигателя
Если подать напряжение на статорную обмотку, то на ней начинает протекать переменный синусоидальный ток, создающий магнитное поле. Оно пересекает обмотку ротора, в котором индуцируется переменная электродвижущая сила. ЭДС образует переменный ток в обмотке ротора, а этот ток создаёт вращающее магнитное поле ротора.
Поле статора и ротора соединяются и образуют общее вращающее магнитное поле двигателя, которое взаимодействует с током в обмотке ротора и формирует усилие по правилу левой руки. Оно разворачивает ротор в сторону вращения магнитного поля.
Устройство называется асинхронным из-за того, что вращательная скорость магнитного поля в несколько раз больше скорости вращения ротора.
В чем разница
Если говорить о подключении однофазных потребителей, кратко разберем на примере трёх электротенов, то в «звезде», если сгорит один из них продолжат работать два оставшихся. Если сгорит два из трёх – вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение.
В схеме треугольника даже при перегорании 2 тэнов – третий продолжит работать. В ней нет нулевого провода, его просто некуда подключать. А в «звезде» его подключают к нейтральной точке, и нужен он для уравнивания токов фаз и их симметрии в случае разной нагрузки по фазам (например, в одной из веток подключен 1 ТЭН, а в остальных по 2 параллельно).
Но если при таком соединении (с разной нагрузкой по фазам) отгорит ноль, то напряжения будут неодинаковы (там, где больше нагрузка просядет, а где меньше – возрастёт). Подробнее об этом мы писали в статье о перекосе фаз.
При этом нужно учесть, что подключать обычные однофазные приборы (220В) между фазами, на 380В, нельзя. Либо приборы должны быть рассчитаны на такое питание, либо сеть должна быть с Uлинейным 220В (как в электросетях с изолированной нейтралью некоторых специфичных объектов, например, кораблей).
Но, при подключении трёхфазного двигателя, ноль к средней точке звезды часто не подключают, так как это симметричная нагрузка.
Выбор схемы соединения фаз электродвигателя
Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником.
Чтобы электродвигатель включить в сеть по схеме “звезда”, нужно все концы фаз (С4, С5, С6) соединить электрически в одну точку, а все начала фаз (C1, С2, С3) присоединить к фазам сети. Правильное соединение концов фаз электродвигателя по схеме “звезда” показано на рис. 1, а.
Для включения электродвигателя по схеме “треугольник” начало первой фазы соединяют с конном второй и начало второй — с концом третьей, а начало третьей — с концом первой. Места соединений обмоток подключают к трем фазам сети. Правильное соединение концов фаз электродвигателя по схеме “треугольник” показано рис. 1, б.
Рис. 1. Схемы включения трехфазного асинхронного электродвигателя в сеть: а – фазы соединены звездой, б – фазы соединены треугольником
Соединение фаз двигателя по схеме “звезда”
Соединение фаз двигателя по схеме “треугольник”
Дли выбора схемы соединения фаз трехфазного асинхронного электродвигателя можно использовать данные таблицы 1.
Таблица 1. Выбор схемы соединения обмоток
Напряжение электрического двигателя, В | Напряжение сети, В | |
380/220 | 660/380 | |
380/220 | звезда | – |
660/380 | треугольник | звезда |
Из таблицы видно, что при подключении асинхронного двигателя с рабочим напряжением 380/220 В к сети с линейным напряжением 380 В соединять его обмотки можно только звездой! Соединять концы фаз такого электродвигателя по схеме “треугольник” нельзя. Неправильный выбор схемы соединения обмоток электродвигателя может привести к выходу его из строя во время работы.
Вариант соединения обмоток треугольником предусмотрен для подключения двигателей 660/380 В к сети с линейным напряжением 660В и фазным 380 В. В этом случае обмотки двигателя могут соединяться по схеме, как “звезда”, так и “треугольник”.
Такие двигатели могут включаться в сеть при помощи переключателя схем со звезды на треугольник (рис. 2). Это техническое решение позволяет уменьшить пусковой ток трехфазного асинхронного короткозамкнутого электродвигателя большой мощности. При этом сначала обмотки электродвигателя соединяют по схеме “звезда” (при нижнем положении ножей переключателя), потом, когда ротор двигателя наберет номинальную частоту вращения, его обмотки переключают в схему “треугольник” (верхнее положение ножей переключателя).
Рис. 2. Схема включения трехфазного электродвигателя в есть при помощи переключателя фаз со звезды на треугольник
Снижение пускового тока при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы “треугольник” (660В) каждая обмотка двигателя включается на напряжение в √3 раза меньше (380В). При этом потребляемый ток снижается в 3 раза. Снижается также в 3 раза и мощность, развиваемая электродвигателем при пуске.
Но, в связи со всем вышесказанным, такие схемные решения можно использовать только для двигателей с номинальным напряжением 660/380 В и включении их в сеть с таким же напряжением. При попытке включения электродвигателя с номинальным напряжением 380/220 В по такой схеме он выйдет из строя, т.к. его фазы нельзя включать в сеть “треугольником”.
Номинальное напряжение электрического двигателя можно посмотреть на его корпусе, где в в виде металлической пластинки размещается его технический паспорт.
Для изменения направления вращения электродвигателя достаточно поменять местами две любые фазы сети независимо от схемы его включения. Для изменения направления вращения асинхронного электродвигателя применяют электрические аппараты ручного управления (реверсивные рубильники, пакетные переключатели) или аппараты дистанционного управления (реверсивные электромагнитные пускатели). Схема включения трехфазного асинхронного электродвигателя в сеть реверсивным рубильником показана на рис. 3.
Рис. 3. Схема включения трехфазного электродвигателя в сеть реверсивным рубильником
§60. Схема соединения «звездой»
Схема «звезда с нулевым проводом».
При соединении фазных обмоток источника трехфазного тока (например, генератора) по схеме «звезда с нулевым проводом» концы его трех обмоток соединяют в общий узел 0, который называется нулевой точкой, или нейтралью источника (рис. 206).
Рис. 206. Схема «звезда с нулевым проводом», направление в ней линейных и фазных токов и напряжений
Приемники электрической энергии объединяют в три группы ZA, ZB и Zc (фазы нагрузки), концы которых также соединяют в общий узел 0′ (нулевая точка, или нейтраль нагрузки). Обмотки источника соединяют с фазами нагрузки четырьмя проводами. Провода 1, 2 и 3, присоединенные к началам фазных обмоток (А, В, С), называют линейными. Провод 4, соединяющий нулевые точки 0 и 0′, называют нулевым, или нейтральным.
Напряжения uА, uв и uс между началами и концами обмоток отдельных фаз источника или фаз нагрузки ZA, ZB и Zc называют фазными. Они равны также напряжениям между каждым из линейных проводов и нулевым проводом. При отсутствии потери напряжения в обмотках источника (при холостом ходе) фазные напряжения равны соответствующим э. д. с. в этих обмотках.
Фазными токами iA, iB, ic называют токи, протекающие по обмоткам источника или фазам нагрузки ZA, ZB и Zc. Напряжения uAB, uBC, uCA между линейными проводами и токи, проходящие по этим проводам, называют линейными.
Примем условно за положительное направление токов iA, iB и ic в фазах источника — от конца соответствующей фазы к ее началу,в фазах нагрузки — от начала к концу, а в линейных проводах — от источника к приемнику.
Будем считать положительными напряжения uА, uB и uC в фазах источника и нагрузки, если они направлены от начала фаз к концам, а линейные напряжения uАВ, uBC, uСА — если они направлены от предыдущей фазы к последующей.
Из рис. 206 следует, что в схеме «звезда» линейные токи равны фазным, т. е. Iл = Iф, так как при переходе от фазы источника или нагрузки к линейному проводу нет каких-либо ответвлений.
Мгновенные значения напряжений согласно второму закону Кирхгофа:
Переходя от мгновенных значений напряжений к их векторам, имеем:
Следовательно, линейное напряжение равно разности векторов соответствующих фазных напряжений.
По полученным векторным уравнениям можно построить векторную диаграмму (рис. 207, а), которую можно преобразовать в диаграмму (рис. 207,б). Из этой диаграммы видно, что в симметричной трехфазной системе векторы линейных напряжений →uAB, →uВС, →uСА образуют равносторонний треугольник ABC, внутри которого расположена симметричная трехлучевая звезда фазных напряжений →uА, →uВ, →uС.
В равнобедренных треугольниках АОВ, ВОС и СОА основание равно Uл две другие стороны — Uф и острый угол между этими сторонами и основанием составляет 30°.
Рис. 207. Векторные диаграммы напряжений для схемы «звезда с нулевым проводом»
Таким образом, в трехфазной системе, соединенной по схеме «звезда с нулевым проводом», линейное напряжение больше фазного в √З раз. Величина √З = 1,73 положена в основу шкалы номинальных напряжений переменного тока: 127, 220, 380 и 660 В. В этом ряду каждое следующее значение напряжения больше предыдущего в 1,73 раза.
В нулевом проводе проходит ток i0, мгновенное значение которого равно алгебраической сумме мгновенных значений токов, проходящих в отдельных фазах: i0 = iA+iB+iC.
Переходя от мгновенных значений токов к их векторам, имеем:
Векторы токов →iА, →iВ и →iС сдвинуты относительно векторов соответствующих напряжений →uA, →uB, →uС на углы →iA, →iB, →iC (рис. 208, а). Значения этих углов зависят от соотношения между активным и реактивным сопротивлениями, включенными в данную фазу.
На этой же диаграмме показано сложение векторов →iА, →iВ и →iC для определения вектора тока →i. Обычно ток →i меньше токов
Рис. 208. Векторные диаграммы напряжений и токов в отдельных фазах для схемы «звезда с нулевым проводом» при неравномерной (а) и равномерной (б) нагрузках фаз
IA, 1В и IC в линейных проводах, поэтому нулевой провод имеет площадь поперечного сечения, равную или даже несколько меньшую площади сечения линейных проводов.
В схеме «звезда с нулевым проводом» приемники электрической энергии можно включать на два напряжения: линейное Uл (при подключении к двум линейным проводам) и фазное UФ (при подключении к нулевому и одному из линейных проводов).
Схема «звезда без нулевого провода».
При равномерной или симметричной нагрузке всех трех фаз, когда во всех фазах включены одинаковые активные и реактивные сопротивления (RA =RB = RC и ХA=ХВ=ХС), фазные токи iA, iB и iC будут равны по величине и сдвинуты от соответствующих фазных напряжений на равные углы. В этом случае получаем симметричную систему токов, при которой токи iA, iB, iC будут сдвинуты по фазе друг относительно друга на угол 120°, а ток i в нулевом проводе в любой момент времени равен нулю (рис. 208,б).
Очевидно, что при равномерной нагрузке можно удалить нулевой провод и передавать электрическую энергию источника к приемнику по трем линейным проводам 1, 2 и 3 (рис. 209).
Рис. 209. Схема «звезда без нулевого провода»
Такая схема называется «звезда без нулевого провода». При трехпроводной системе передачи электрической энергии в каждое мгновение ток по одному (или двум) проводу проходит от источника трехфазного тока к приемнику, а по двум другим (или одному) протекает обратно от приемника к источнику (рис. 210).
Рис 210. Кривые изменения токов в линейных проводах (а) при трехпроводной системе и направление в них токов в различные моменты времени (б в, г)
Векторная диаграмма напряжений для схемы «звезда без нулевого провода» при равномерной нагрузке фаз будет такая же, как и для схемы «звезда с нулевым проводом» (см. рис. 207).
Такими же будут и соотношения между фазными и линейными токами и напряжениями:
Следует отметить, что схема «звезда без нулевого провода» может быть применена только при равномерной нагрузке фаз. Практически это имеет место лишь при подключении к источникам трехфазного тока электрических двигателей, так как каждый трехфазный электродвигатель снабжен тремя одинаковыми обмотками, которые равномерно нагружают все три фазы.
При неравномерной нагрузке напряжения на отдельных фазах нагрузки будут различными. На некоторых фазах (с меньшим сопротивлением) напряжение уменьшится, а на других увеличится по сравнению с нормальным, что является недопустимым.
Практически неравномерная нагрузка фаз возникает при питании трехфазным током электрических ламп, так как в этом случае распределение тока между всеми тремя фазами не может быть гарантировано (отдельные лампы могут включаться и выключаться в индивидуальном порядке). Особенно опасны в схеме «звезда без нулевого провода» обрыв или короткое замыкание в одной из фаз.
Можно показать путем построения соответствующих векторных диаграмм, что при обрыве в одной из фаз напряжение в других двух фазах уменьшается до половины линейного, вследствие чего лампы, включенные в эти фазы, будут гореть с недокалом.
При коротком замыкании в одной из фаз напряжение в других фазах увеличивается до линейного, т. е. в √З раз, и все лампы, включенные в этих фазах, перегорят. Поэтому при схеме «звезда с нулевым проводом» во избежание разрыва цепи нулевого провода в ней не устанавливают предохранители и выключатели.
Источник
Отличия схем подключения
Схемы «звезда» и «треугольник» у электродвигателя — это единственные способы их подключения. Они отличаются между собой, обеспечивая разные режимы работы. Так, к примеру, подключение при помощи схемы Y обеспечивает более мягкую работу, если сравнивать с двигателями, соединенными в «треугольник». Данная разница играет ключевую роль при выборе мощности электрического устройства.
Более мощные двигатели эксплуатируются только на «треугольнике». Схема подключения электродвигателя «звезда-треугольник» отлично подходит для тех случаев, когда необходимо обеспечить плавный пуск. А в нужный момент переключиться между обмотками для получения максимальной мощности.
Здесь важно добавить: подключение Y гарантирует мягкую работу, но при этом двигатель не сможет набрать свою паспортную мощность. С другой стороны, схема соединения электродвигателя «треугольник-звезда-звезда» обеспечит большую мощность, но вместе с этим значительно возрастет и значение пускового тока для оборудования
С другой стороны, схема соединения электродвигателя «треугольник-звезда-звезда» обеспечит большую мощность, но вместе с этим значительно возрастет и значение пускового тока для оборудования.
Именно разница в мощности между подключением Y и треугольником является основным показателем. Электродвигатель со схемой звезды будет обладать мощностью примерно в 1,5 раза ниже, чем через треугольник, однако такое подключение поможет снизить значение пускового тока. Все соединения, которые имеют в своем составе два способа подключения, являются комбинированными. Обычно они применяются лишь в тех случаях, когда необходимо запустить в работу электрический двигатель с большой паспортной мощностью.
Схема пуска «звезда-треугольник» для электродвигателя отличается еще одним преимуществом. Включение осуществляется по схеме Y, что снижает значение пускового тока. Когда во время работы устройство набирает достаточные обороты, происходит переход на схему треугольника для достижения максимальной мощности.