Термоэлектрические датчики температуры (термопары)
Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.
Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.
Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.
Видео о датчиках температуры смотрите ниже:
Как работает датчик температуры?
Как работает датчик температуры?
Датчик температуры – довольно маленький, но очень важный. В первую очередь на его показатели водители обращаются внимание зимой. Как работают датчики температуры двигателя, где они находятся и можно ли их чинить – это нужно знать каждому автовладельцу.
Как работает датчик температуры двигателя?
Как и во многих подобных устройствах, принцип работы основан на свойствах некоторых материалов менять свое сопротивление при нагревании. Поэтому датчики температуры охлаждающей жидкости представляют собой корпус из цветного металла, легко проводящего тепло, и термистора, который плотно прижат к внешней оболочке. Сигнал передается по проводам либо на термометр на передней панели, либо напрямую в блок управления.
Датчики температуры двигателя погружаются в антифриз. Когда охлаждающая жидкость нагревается, то нагревается и датчик. При этом повышается и сопротивление термистора. Блок управления посылает на термистор сигнал, измеряет напряжение вернувшегося сигнала. Результат измерения сравнивается с эталонной таблицей в памяти устройства, и на экран выводится температура двигателя.
Виды датчиков, контролирующих температуру охлаждающей жидкости
Встречаются датчики температуры двигателя в двух исполнениях:
- Цифровом.
- Механическом.
Цифровые – современные устройства, работающие в тандеме с электронным блоком управления. У них нет отдельного табло для вывода результатов – их регистрирует и обрабатывает сам блок. Поэтому такие датчики температуры представляют собой капсулу из металла и провода.
Механические используют в старых моделях авто. Показания у них выводятся на обычный термометр.
Расположение термодатчиков
Датчики температуры двигателя размещаются как можно ближе к цилиндрам. Чаще всего они либо входят в комплект автомобильного термостата, либо устанавливаются в выпускном коллекторе.
Диагностика датчиков температуры автомобиля
Любое устройство имеет свойство ломаться. Датчики температуры охлаждающей жидкости не исключение. Периодически их нужно проверять и менять.
Возможные неисправности
Чаще всего датчики температуры могут ломаться из-за:
- физических повреждений – сорвалась резьба, треснул корпус, сгорел термистор;
- проблем с электрической частью – короткое замыкание, обрыв проводов;
- нехватки антифриза.
Проблемы с датчиком можно определить по работе двигателя и неправильным показаниям. Если есть сомнения в работе – его нужно снять и протестировать. Для этого датчик погружают в антифриз, нагревают и в процессе замеряют сопротивление. Если результаты опыта отличаются от эталона – датчик неисправен.
Если датчик температуры охлаждающей жидкости неисправен. Последствия
Проблемы с устройством обязательно скажутся на двигателе. Если в старых моделях этим можно было пренебречь – ну не работает термометр, и ладно, то в новых так не получится. Блок управления, опираясь на неправильные данные датчика, будет плохо выполнять свою работу. В результате двигатель может сбоить, не запускаться, топливо будет сгорать не полностью. Итоги могут быть печальны – износ деталей, нагар в цилиндрах, ремонт.
Датчики температуры двигателя – маленькие детали одного большого устройства. Но без них пришлось бы тяжело. Недаром они используются уже очень давно. За исправностью работы этих устройств лучше следить внимательно, периодически их тестировать и вовремя менять.
Предыдущая новость
Как проверить датчик температуры
Следующая новость
Датчик температуры двигателя
Комментарии
Терморезистивные датчики
Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.
Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.
Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.
Резистивные датчики температуры (RTD)
Резистивные датчики температуры, также известные как резистивные термометры, являются, пожалуй, самыми простыми для понимания датчиками температуры. RTD похожи на термисторы, поскольку их сопротивление изменяется с изменением температуры. Однако вместо использования специального материала, чувствительного к изменениям температуры (как в термисторах), RTD используют катушку из проволоки, накрученную вокруг сердечника из керамики или стекла.
Провод в RTD выполнен из чистого материала, как правило, из платины, никеля или меди, и этот материал обладает точной зависимостью сопротивления от температуры, которая используется для определения измеряемой температуры.
Полупроводниковые термодатчики
Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.
Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.
Как выбрать
Чтобы определиться с тем, какой датчик для измерения температуры нужен, стоит учесть ряд параметров. При правильном подборе, удастся обеспечить комфортную работу прибора. Внимания заслуживает:
- Рабочая температура. Устройства конкретного типа ориентированы на использование в определенном температурном диапазоне. При этом учитывается погрешность, с которой определяются результаты. При небольших перепадах, можно воспользоваться термисторами. Если эксплуатация будет производиться в достаточно жестких условиях, стоит выбрать приборы шумового типа;
- Условия проведения замеров. Схема подключения может отличаться. Одни устройства позволяют поместить термометр внутрь материала, другие допускают измерения только снаружи. Радиационные модели позволят снять показания через преграду. При наличии агрессивной среды предпочтительны модели в коррозионно-стойком корпусе либо выносные датчики бесконтактного типа;
- Время до замены либо калибровки. Зависит от условий работы. Датчик температуры воздуха может эксплуатироваться в обычных условиях, при повышенной влажности, пожароопасности, в условиях окислительной среды. Если калибровка невозможна, устройство придется заменить;
- Величина выходного сигнала. Его параметры должны соотноситься с возможностями электроприборов и учитывать порядок дальнейшей обработки. Параметры выходного сигнала зависят от показателей температуры, которые в дальнейшем будут преобразованы в энергию.
- Погрешность. Для измерения показателей с высокой точностью потребуется больше времени. Наибольшей точностью обладают цифровые модели датчиков, измеряющих температуру воздуха в помещении. Биметаллический термометр, использующий принцип ЯКР, позволяет снять показания быстрее прочих аналогов;
- Разрешение. Влияет на точность производимых измерений. При работе в малом режиме 0.5 °С, в максимальном — 0.625 °С;
- Напряжение. Сопротивление резистора существенно влияет на выходное напряжение. Последнее бывает линейным и нелинейным. Температура объекта влияет на эталонные величины, устанавливаемые на выводах термометра каждого датчика;
- Время сработки. Влияет на скорость получения замеров. Быстрые замеры получаются с большой погрешность. Если требуется точность, придется пренебречь временем срабатывания.
Пирометры (тепловизоры)
Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.
Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.
Беспроводной датчик температуры наружного воздуха
При оптимизации работы системы отопления стоит обращать внимание не только на подбор подходящих контроллеров — не менее важны дополнительные элементы для обеспечения наилучшей работы системы отопления. Одна из популярных тем — использование датчика наружной температуры и его оптимальное размещение. Для наиболее оптимального использования тепловой энергии стоит продумать выбор датчика, который представляет собой устройство, позволяющее сэкономить многие затраты.
Внешний датчик температуры, благодаря встроенному регулятору, на основе кривой нагрева может точно рассчитать, какую температуру должна иметь вода, что необходимо для установки наиболее оптимальной температуры для обогрева выбранных участков. Благодаря этому температура воды в отопительной системе постоянно меняется в зависимости от температуры снаружи здания.
Пьезоэлектрические датчики температуры
Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.
Ещё одно видео о разновидностях термодатчиков:
Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.
Аналоговые микросхемы термометров
Вместо использования термистора с постоянным резистором в делителе напряжения, альтернативным решением может стать аналоговый низкотемпературный датчик, такой как TMP36 от Analog Devices. В отличие от термистора, эта аналоговая микросхема обеспечивает выходное напряжение, которое почти линейно; наклон составляет 10 мВ/°C в температурном диапазоне от -40 до +125°C, а его точность равна ±2°C. Смотрите рисунок 6 ниже.
Рисунок 6 – График зависимости выходного напряжения TMP36 от температуры из технического описания
Хотя эти устройства и крайне просты в использовании, но они значительно дороже комбинации термистор-плюс-резистор.