Категория:Электромонтажные работы
Источником электроснабжения большинства промыш-_ ленных предприятий обычно являются энергетические системы; в редких случаях предприятия получают энергию от собственных заводских электростанций. Электроснабжение и распределение энергии в пределах предприятия от собственных электростанций производится в основном на генераторном напряжении 6 и 10 кВ.
Большинство предприятий получает питание от районных подстанций, входящих в состав энергосистемы, по линиям электропередачи высокого напряжения через понижающие трансформаторы, установленные на подстанциях потребителя. Электроснабжение предприятий производится через пункты приема и распределения электроэнергии (ГПП, ЦРП, РП и ТП), максимально приближенные к потребителям. Электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы, называется распределительным устройством (РУ).
Распределительные устройства разделяются на открытые ОРУ (все или основное оборудование расположено на открытом воздухе) и закрытые ЗРУ (оборудование расположено в здании), а также комплектные КРУ. Комплектным называется распределительное устройство, состоящее из полностью либо частично закрытых шкафов или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, поставляемое в собранном или полностью подготовленном для сборки виде.
Электроустановку, служащую для преобразования и распределения электроэнергии и состоящую из трансформаторов или других преобразователей энергии, распределительных устройств, устройств управления и вспомогательных сооружений, называют подстанцией. В зависимости от преобладания той или иной функции подстанции разделяются на трансформаторные и преобразовательные.
Подстанция, получающая питание непосредственно от энергетической системы (или заводской электростанции), называется главной понизительной подстанцией (ГПП) предприятия. Распределение энергии на пониженном напряжении от ГПП производится по всему предприятию или его значительной части через цеховые трансформаторные подстанции (ТП), распределительные пункты (РП) и центральные распределительные пункты (ЦРП).
Трансформаторные и преобразовательные подстанции, как и распределительные устройства, изготовляют и поставляют комплектными (КТП, КПП), в собранном или полностью подготовленном для сборки виде.
Выработка, передача и потребление электрической энергии производятся на различных уровнях напряжения. Для электрических сетей общего назначения переменного напряжения частотой 50 Гц и присоединяемых к ним приемников электрической энергии установлены следующие номинальные напряжения: до 1000 В —40, 220, 380 и 660 В; выше 1000 В-(3), 6, 10, 20, 35, 110, (150), 220, 330, 500, 750 и 1150 кВ (напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются).
Электромонтажные работы- Прием и распределение электрической энергии
Дизельная электро станция
Вырабатываемая станциями электронная энергия, поступает к месту употребления через систему взаимосвязанных передающих, распределяющих и модифицирующих электроустановок. Передача электроэнергии осуществляется по воздушным линиям электропередачи с напряжением от нескольких сот до сотен тыщ вольт. Электронная энергия по системным воздушным сетям передается с напряжением 35, 110, 150, 220 кВ и выше по шкале номинальных напряжений.
Установки, служащие для приема и рассредотачивания электроэнергии, именуютсяраспределительными устройствами (РУ). Они содержат коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и другие), также устройства защиты, автоматики и измерительные приборы. К РУ относятся центры питания(ЦП), распределительные пункты (РП), распределительные полосы (РЛ).
Строительство Электростанции
Центром питанияименуются РУ генераторного напряжения электростанции либо РУ вторичного напряжения понижающей подстанции энергосистемы с системой регулирования, к которым присоединяются распределительные сети определенного района.
Распределительным птименуется подстанция промышленного предприятия либо городской электронной сети, созданная для приема и рассредотачивания электроэнергии с одним напряжением без ее преобразования.
Распределительнойименуется линия, питающая ряд трансформаторных подстанций от ЦП либо РП также большие электроустановки.
Распределительные устройства могут быть открытые (ОРУ— все либо основное оборудование размещено на открытом воздухе) и закрытые (ОРУ— оборудование размещено в здании). Особо нужно выделить более всераспространенные комплектные распределительные устройства (КРУ), состоящие из стопроцентно либо отчасти закрытых шифанеров или блоков со встроенными в их аппаратами, устройствами защиты и автоматики, поставляемые в собранном либо стопроцентно приготовленном для сборки виде и выпускаемые как для внутренней, так и для внешней установки.
Блочная комплектная трансформаторная подстанция
Подстанциейименуют электроустановку, служащую для преобразования и рассредотачивания электроэнергии и состоящую из трансформаторов либо других преобразователей энергии, распределительных устройств, устройств управления и вспомогательных сооружений.
Подстанция, на которой напряжение переменного тока преобразуется при помощи трансформатора, именуется трансформаторной (ТП). Если напряжение переменного тока на ТП преобразуется в более низкое, ее именуют понижающей, а если в более высочайшее — повышающей.
На трансформаторных подстанциях устанавливают трансформаторы, служащие для конфигурации напряжения. Сразу с трансформацией напряжения обычно меняется и число линий. К примеру, подходят к ТП одна либо две полосы высочайшего напряжения, а отходят от нее несколько линий низкого напряжения.
Различают два типа трансформаторных подстанций: открытые, в каких основное оборудование размещается на открытых площадках, и закрытые, оборудование которых располагается в помещениях.
Если на подстанции трансформация напряжения не делается, а меняется только число линий, то она именуется распределительной.
Преобразовательные подстанции служат для выпрямления переменного тока либо преобразования неизменного тока в переменный. На всех подстанциях устанавливают аппараты для переключения электронных сетей и разные контрольно-измерительные приборы.
Комплектная трансформаторная подстанция внешней установки
Электронные сети разделяются по напряжению насети низкого — до 1 кВ и высочайшего — более 1кВ напряжения.
Большая часть промышленных компаний получают электроэнергию от подстанций. На подстанциях устанавливается два и поболее трансформаторов, через которые энергия от энергосистемы по линиям высочайшего напряжения (35, 110 либо 220 кВ) передается на секционированные рабочие (либо запасные) шины с напряжением 6…10кВ.
Подстанция, питающаяся конкретно от энергетической системы (или заводской электростанции), именуется главной понижающей подстанцией (ГПП) предприятия, а подстанция, на которой напряжение снижается конкретно для питания электроприемников 1-го либо нескольких цехов, — цеховой трансформаторной подстанцией (ТП).
Трансформаторные и преобразовательные подстанции, как и распределительные устройства, поставляются комплектными (КТП, КПП) в собранном либо стопроцентно приготовленном для сборки виде.
Измерение тока и напряжения на шинах распределительных устройств и в электронных цепях делается при помощи трансформаторов тока либо трансформаторов напряжения, служащих для снижения тока либо напряжения первичных цепей электроустановок переменного тока, также для питания катушек измерительных устройств, устройств релейной защиты и автоматики, присоединяемых к их вторичным обмоткам.
Применение измерительных трансформаторов позволяет:
определять любые напряжения и токи обыкновенными измерительными устройствами со стандартными обмотками, рассчитанными на напряжение 100 В и ток 5 А;
отделять измерительные приборы и реле от напряжений выше 380 В, обеспечивая безопасность их обслуживания.
Первичная обмотка измерительного трансформатора находится под воздействием измеряемой величины, а вторичная — замкнута на измерительные приборы и приборы защиты.
Открытое распределительное устройство
Прикосновение к измерительным устройствам, конкретно включенным в цепь высочайшего напряжения, небезопасно для человека, потому в данном случае измерительные приборы и аппаратура автоматической защиты (реле) врубаются во вторичную цепь измерительных трансформаторов, связанную с цепью высочайшего напряжения только через магнитный поток в сердечнике. Не считая того, измерительные трансформаторы служат для расширения пределов измерения устройств переменного тока, подобно дополнительным резисторам и шунтам. Применение измерительных трансформаторов с разными коэффициентами трансформации позволяет использовать приборы со стандартными пределами измерений (100 В и 5 А) при определении самых разных напряжений и токов.
Различают два вида измерительных трансформаторов: трансформаторы напряжения и трансформаторы тока.
Трансформаторы напряженияпитают обмотки напряжения измерительных устройств и реле (вольтметров, частотомеров, счетчиков, ваттметров, реле напряжения, мощности и др.) в установках с напряжением 380 В и выше.
Трансформаторы токапитают токовые обмотки измерительных устройств и реле (амперметров, счетчиков, ваттметров, реле тока, мощности и др.).
Источниками электроснабжения большинства промышленных компаний являются энерго системы, но некие предприятия получают энергию от собственных промышленных электрических станций. Выработка и рассредотачивание энергии в границах предприятия от собственных электрических станций делается в главном в генераторном режиме с напряжением 6 и 10 кВ.
Распределительные устройства неизменного тока серии КВ на напряжение 3,3 кВ
Электронные цепи распределительных устройств и подстанций могут быть первичными и вторичными.
К первичным цепямотносятся шиноустройства и токоведущие части аппаратов, соединяемые в определенной последовательности.
Ко вторичнымотносятсяцепи, при помощи которых в первичных цепях РУ подстанций осуществляются электронные измерения, релейная защита, сигнализация, дистанционное управление и автоматизация, т.е. вторичные цепи обеспечивают контроль, защиту, комфортное и неопасное сервис первичных цепей.
На принципных схемах первичных цепей демонстрируют все главные элементы электроустановки: шиноустройства, разъединители, выключатели, предохранители, трансформаторы, реакторы и др., также соединения меж ними. Не считая того, чтоб лучше представить для себя работу установки и ее отдельных участков, в первичных схемах обычно демонстрируют без электронных соединений главные приборы и аппараты вторичных цепей, измерительные приборы, приборы релейной защиты и автоматики.
Современные РУ могут иметь разные схемы соединений.
Не считая того, нужно держать в голове, что отключение свободной от нагрузки полосы связано с разрывом ее зарядного тока, который тем больше, чем длиннее линия.
Установленный заместо разъединителя выключатель нагрузки позволяет отключать и включать линию при нагрузке в границах номинальной.
В данном случае на присоединении инсталлируются измерительные трансформаторы тока, а линейный и шинный разъединители служат для снятия напряжения с выключателя и трансформаторов тока при осмотре, ремонте, проверке и других работах.
Потому что деяния с разъединителями вероятны только при отключенном выключателе, который разрывает цепь тока, порядок отключения полосы последующий: поначалу отключают выключатель, потом линейный разъединитель и в конце концов шинный разъединитель. Порядок включения полосы оборотный. Таковой вариант присоединения к РУ применяется для линий с большенными нагрузками и огромным током недлинного замыкания.
ФСК ЕЭС окончила установка оборудования ЗРУ 10 кВ на подстанции 110 кВ “Роза Хутор” в Сочинском регионе
Обычно такая схема применяется для присоединения воздушных линий.
Заземляющие ножики в данном случае служат для заземления и закорачивания полосы после отключения, потому что в отключенной полосы может быть появление электронных зарядов, индуктируемых атмосферным электричеством либо рядом проложенными линиями. Разрядники созданы для отвода в землю электронных зарядов атмосферного электричества, создающих во включенной полосы значимые перенапряжения, небезопасные для всей установки. В открытых РУ разрядники присоединяются конкретно к основным шинам.
. Для отключения этого трансформатора от сети служит шинный разъединитель (отключение должно выполняться только при холостом ходе трансформатора); защита от высочайшего и низкого напряжений производится плавкими предохранителями.
В эту схему входят выключатель, созданный для оперативных переключений, и релейная защита (РЗ), приборы которой получают питание от измерительных трансформаторов тока.
Применение комплектных распределительных устройств и трансформаторных подстанций позволяет уменьшить сроки монтажных работ, понизить их цена и сделать лучше качество.
Каким образом происходит распределение электроэнергии и ее передача от основного источника питания к потребителю? Данный вопрос достаточно сложный, так как источником является подстанция, которая может находиться на значительном расстоянии от города, но при этом энергия должна доставляться с максимальным КПД. Этот вопрос стоит рассматривать более детально.
Общее описание процесса
Как говорилось ранее, начальным объектом, откуда начинается распределение электроэнергии, на сегодняшний день является электрическая станция.
В наше время существует три основных типа станции, которые могут снабжать потребителей электричеством. Это может быть тепловая электрическая станция (ТЭС), гидроэлектростанция (ГЭС) и атомная электрическая станция (АЭС). Помимо этих основных типов, есть также солнечные или ветровые станции, однако они используются для более локальных целей.
Эти три типа станция является и источником и первой точкой распределения электроэнергии.
Для того чтобы осуществить такой процесс, как передача электрической энергии, необходимо значительно увеличить напряжение. Чем дальше находится потребитель, тем выше должно быть напряжение. Так, увеличение может доходить до 1150 кВ.
Повышение напряжения необходимо для того, чтобы снизилась сила тока. В таком случае также падает и сопротивление в проводах. Такой эффект позволяет передавать ток с наименьшими потерями мощности.
Для того чтобы повышать напряжение до нужного значения, каждая станция имеет повышающий трансформатор. После прохождения участка с трансформатором, электрический ток при помощи ЛЭП передается на ЦРП. ЦРП – это центральная распределительная станция, где осуществляется непосредственное распределение электроэнергии.
Такие объекты, как ЦРП, находятся уже в непосредственной близости от городов, сел и т.
д. Здесь происходит не только распределение, но и понижение напряжения до 220 или же 110 кВ. После этого электроэнергияпередается на подстанции, расположенные уже в черте города.При прохождении таких небольших подстанций напряжение понижается еще раз, но уже до 6-10 кВ.
После этого осуществляется передача и распределение электроэнергии по трансформаторным пунктам, расположенным по разным участкам города.Здесь также стоит отметить, что передача энергии в черте города к ТП осуществляется уже не при помощи ЛЭП, а при помощи проложенных подземных кабелей. Это гораздо целесообразнее, чем применение ЛЭП. Трансформаторный пункт – это последний объект, на котором происходит распределение и передача электроэнергии, а также ее понижение в последний раз.На таких участках напряжение снижается до уже привычных 0,4 кВ, то есть 380 В.
Далее оно передается в частные, многоэтажные дома, гаражные кооперативы и т. д.Если кратко рассмотреть путь передачи, то он примерно следующий: источник энергии (электростанция на 10 кВ) – трансформатор повышающего типа до 110-1150 кВ – ЛЭП – подстанция с трансформатором понижающего типа – трансформаторный пункт с понижением напряжения до 10-0,4 кВ – потребители (частный сектор, жилые дома и т. д.).
Способы передачи электроэнергии
Осуществить передачу электроэнергии можно двумя способами:
- Методом прямой передачи.
- Преобразуя электричество в другой вид энергии.
В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.
Технологии беспроводной передачи электричества
К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.
Схема передачи электроэнергии от электростанции до потребителя
Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.
Пример наиболее распространенных конфигураций ЛЭП
Обозначения:
- Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
- Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
- Магистральная схема с питанием на обоих концах ЛЭП.
- Кольцевой тип конфигурации.
- Магистраль с резервной линией (двойная магистраль).
- Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.
Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.
Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током
Обозначения:
- Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
- Подстанция с повышающим трехфазным трансформатором.
- Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
- Отвод для передачи электироэнергии распределительному устройству.
- Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
- Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.
Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.
Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).
Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.
Наглядный пример структурной схемы электроснабжения
Обозначения:
- Электростанция, где электроэнергия производится.
- Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
- ЛЭП с высоким напряжением (35,0-750,0 кВ).
- Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
- Пункт распределения электроэнергии.
- Питающие кабельные линии.
- Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
- Радиальные или магистральные кабельные линии.
- Вводный щит в цеховом помещении.
- Районная распределительная подстанция.
- Кабельная радиальная или магистральная линия.
- Подстанция, понижающая напряжение до 0,40 кВ.
- Вводный щит жилого дома, для подключения внутренней электрической сети.
Передача электроэнергии на дальние расстояния
Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.
С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.
Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)
Напряжение ВЛ (кВ) | Протяженность (км) |
0,40 | 1,0 |
10,0 | 25,0 |
35,0 | 100,0 |
110,0 | 300,0 |
220,0 | 700,0 |
500,0 | 2300,0 |
1150,0* | 4500,0* |
* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).
Особенности процесса
Производство и распределение электроэнергии, а также процесс ее передачи обладает важной особенностью – все эти процессы являются непрерывными. Другими словами, производство электрической энергии совпадает по времени с процессом ее потребления, из-за чего электрические станции, сети и приемники связаны между собой таким понятием, как общность режима. Данное свойство вызывает необходимость организации энергетических систем, чтобы более эффективно заниматься производством и распределением электроэнергии.
Здесь очень важно понимать, что представляет собой такая энергетическая система. Это совокупность всех станций, линий электропередач, подстанций и других тепловых сетей, которые соединены между собой таким свойством, как общность режима, а также единым процессом производства электрической энергии. Кроме того, процессы преобразования и распределения на данных участках осуществляются под общим управлением всей этой системы.
Основная рабочая единица в таких системах – это электроустановка. Это оборудование предназначено для производства, преобразования, передачи и распределения электроэнергии.
Получение данной энергии осуществляется электрическими приемниками. Что касается самих установок, то в зависимости от рабочего напряжения, они делятся на два класса. Первая категория работает с напряжением до 1000 В, а вторая, наоборот, с напряжением от 1000 В и выше.
Кроме того, имеются также специальные устройства для получения, передачи и распределения электроэнергии – распределительное устройство (РУ). Это электроустановка, которая состоит из таких конструкционных элементов, как сборные и соединительные шины, аппараты для коммутации и защиты, автоматика, телемеханика, приборы для измерения и вспомогательные устройства.
Данные агрегаты также делятся на две категории. Первая – это открытые аппараты, которые могут эксплуатироваться на открытом воздухе, и закрытые, применяющиеся только при расположении внутри здания. Что касается эксплуатации в черте города таких устройств, то в большинстве случаев используется именно второй вариант.
Одним из последних рубежей системы передачи и распределения электроэнергии является подстанция. Это объект, который состоит из РУ до 1000 В и от 1000 В, а также силовых трансформаторов и других вспомогательных агрегатов.
Преобразование энергии тепла
Один из старейших с точки зрения освоения и самых важных для поддержания жизнедеятельности человека энергетических источников, без которых невозможно представить жизнь современного общества. В большинстве случаев тепло преобразуется в электроэнергию, причем простая схема такой трансформации не требует подключения промежуточных этапов. Однако в тепловых и атомных электростанциях в зависимости от условий их работы может применяться этап подготовки с переводом тепловой в механическую энергию, что требует дополнительных затрат. Сегодня все чаще для преобразования тепловой энергии в электричество используются термоэлектрические генераторы прямого действия.
Сам процесс трансформации происходит в специальном веществе, которое сжигается, выделяет тепло и в дальнейшем выступает источником генерации тока. То есть термоэлектрические установки могут рассматриваться как источники электроэнергии с нулевым циклом, так как их работа запускается еще до появления базовой тепловой энергии. В качестве основного ресурса выступают топливные элементы – как правило, газовые смеси. Они сжигаются, в результате чего происходит нагрев теплораспределительной металлической пластины. В процессе отвода тепла через специальный генераторный модуль с полупроводниковыми материалами происходит преобразование энергии. Электрический ток генерируется радиаторной установкой, подключенной к трансформатору или аккумулятору. В первом варианте энергия сразу поступает к потребителю в готовом виде, а во втором – накапливается и отдается по мере надобности.
Рассмотрение схемы распределения энергии
Для того чтобы более детально рассмотреть процесс производства, передачи и распределения электроэнергии, можно взять в пример структурную схему снабжения электрической энергией города.
В таком случае процесс начинается с того, что генераторы на ГРЭС (государственная районная электростанция)вырабатывают напряжение 6, 10 или 20 кВ. При наличии такого напряжения передавать его на расстояние более чем 4-6 км не экономично, так как будут большие потери. Для того чтобы значительно уменьшить потерю мощности, в линию передачи включается силовой трансформатор, который предназначен для повышения напряжения до таких значений, как 35, 110, 150, 220, 330, 500, 750 кВ.
Значение выбирается в зависимости от того, насколько далеко находится потребитель. После этого следует пункт понижения электрической энергии, который представлен в виде понижающей подстанции, находящейся в черте города. Напряжение уменьшается до 6-10 кВ.
Здесь стоит добавить, что такая подстанция состоит из двух частей. Первая часть открытого типа рассчитана на напряжение 110-220 кВ. Вторая часть – закрытая, включает в себя устройство распределения электроэнергии (РУ), рассчитанное на напряжение в 6-10 кВ.
Помимо тех устройств, что были перечислены ранее, в систему снабжения энергией входят также такие объекты, как питающая кабельная линия – ПКЛ, распределительная кабельная линия – РКЛ, кабельная линия с напряжением в 0,4 кВ – КЛ, распределительное устройство вводного типа в жилом доме – ВРУ, главная понижающая подстанция на заводе – ГПП, шкаф распределения электроэнергии или же щитовое устройство ЩУ, размещаемое в цехе завода, и рассчитанное на 0,4 кВ.
Также в схеме может присутствовать такой участок, как центр питания – ЦП. Здесь важно отметить, что этот объект может быть представлен в виду двух разных устройств.
Это может быть распределительное устройство вторичного напряжения на понижающей подстанции. Кроме того, в его состав будет также входить прибор, который будет выполнять функции регулировки напряжения и последующей поставки его к потребителям. Второй вариант исполнения – это трансформатор, для передачи и распределения электроэнергии, или же распределительное устройство генераторного напряжения непосредственно на электрической станции.
Стоит отметить, что ЦП всегда соединяется с распределительным пунктом РП. Линия, которая соединяет эти два объекта, не имеет распределения электрической энергии по всей своей длине. Такие линии обычно называют кабельными.
На сегодняшний день в энергосети может использоваться такое оборудование, как КТП – комплектная трансформаторная подстанция. Она представляет собой несколько трансформаторов, распределительное или же вводное устройство, рассчитанное на работу с напряжением в 6-10 кВ. Также в комплект входит распределительное устройство на 0,4 кВ.
Все эти приборы соединены между собой токопроводами, а поставляется комплект в уже готовом либо в готовом для сборки виде. Прием и распределение электроэнергии может также происходить на на высоких конструкциях или же на опорах линий электропередачи. Такие конструкции называются либо столбовыми, либо мачтовыми трансформаторными подстанциями(МТП).
Передача электрической энергии. Линии электропередач
Определение 1
Передача электрической энергии — это транспортировка электрической энергии от мест ее генерирования до потребителей.
В настоящее время применяются схемы передачи электрической энергии в состав которых входят:
- Понижающий трансформатор.
- Повышающий трансформатор.
- Электрический генератор.
- Линия электропередач.
Электрическая сеть представляет собой совокупность генератора, в котором генерируется энергия, линий передач, по которым движется ток, и трансформаторов различного назначения, входящих в состав электрических подстанций на пути линий электропередач.
Обычно, электроснабжение трехфазное, поэтому линия электропередач состоят из трех фаз, каждая из которой может состоять из нескольких проводов. По конструкции линии электропередач делятся на кабельные и воздушные.
Готовые работы на аналогичную тему
- Курсовая работа Передача и распределение электроэнергии 410 руб.
- Реферат Передача и распределение электроэнергии 220 руб.
- Контрольная работа Передача и распределение электроэнергии 250 руб.
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
Воздушные линии электропередач подвешиваются над поверхностью земли на специальных сооружениях, которые называются опорами. Главное достоинство воздушных линий заключается в их дешевизне в сравнении с кабельными. Данные линии обладают также лучшей ремонтопригодностью — нет необходимость в проведении земляных работ для замены провода; отсутствую затруднения при визуальном осмотре. К недостаткам воздушных линий можно отнести широкую зону отчуждения, низкую степень защищенности от внешнего воздействия и эстетическую непривлекательность. Воздушные линии электропередачи переменного тока делятся на несколько классов напряжений.
Кабельные линии электропередач прокладываются под землей. Применяемые кабели могут иметь различную конструкцию. Сердцевиной кабеля является токопроводящая жила. У кабелей линий передач может иметься, как внешняя, так и междужильная изоляция. Как правило, в качестве изолятора применяются промасленная бумага и трансформаторное масло, с внешней стороны кабеля покрываются битумом. Основное достоинство кабельных линий заключается в отсутствии зон отчуждения, а к недостаткам относятся высокая стоимость сооружения и эксплуатации.
— — Требуется помощь в составлении плана учебной работы? — Укажи тему и получи ответ через 15 минут — — — — — — получить помощь — —
Большая часть энергии передается по линиям переменного тока. Связано это с основным их преимуществом — понижающий трансформатор линии может передавать энергию в любом месте. А недостаток данных линий — индуктивное сопротивление, которое связано с электромагнитной индукцией. Индуктивное сопротивление способствует снижению напряжения на пути к потребителю от источника. Для его уменьшения в линию могут включаться батареи конденсаторов и расщепляться одни провод на несколько.
Линии передач постоянного тока имеют несколько преимуществ по сравнению с линиями переменного. Основное из них— отсутствие индуктивного сопротивления. К остальным относятся меньшая металлоемкость, меньшие потери на коронный разряд.
Первая категория электрических приемников
На сегодняшний день имеется три категории электроприемников, которые отличаются между собой степенью надежности.
К первой категории электрических приемников относятся те объекты, при нарушении электроснабжения которых возникают достаточно серьезные проблемы. К последним относят следующее: угроза жизни человеку, сильные ущерб народному хозяйству, повреждение дорогого оборудования из основной группы, массовый брак продукции, разрушение устоявшегося технологического процесса получения и распределения электроэнергии, возможное нарушение в работе важных элементов коммунального хозяйства.
К таким электроприемникам относятся здания с большим скоплением людей, к примеру, театр, универсам, универмаг и т. д. Также к этой группе принадлежит и электрифицированный транспорт (метро, троллейбус, трамвай).
Что касается снабжения электроэнергией данных сооружений, то они должны обеспечиваться электричеством от двух источников, которые независимы друг от друга.
Отключение от сети таких построек допускается лишь на срок, в течение которого будет запускаться резервный источник питания. Другими словами, система распределения электроэнергии должна предусматривать быстрый переход от одного источника на другой, в случае аварийной ситуации. Независимым источником питания в данном случае считается тот, на котором сохранится напряжение даже в том случае, если на других источниках, питающих один и тот же электроприемник, оно пропадет.
К первой категории также относятся устройства, которые должны питаться сразу от трех независимых источников.
Это особая группа, работа которой должна быть обеспечена в бесперебойном режиме.То есть не допускается отключение от электропитания даже на время включения аварийного источника. Чаще всего к такой группе относят приемники, выход из строя которых влечет за собой возникновение угрозы для жизни человека (взрыв, пожар и т. д.).
Вторая и третья категория приемников
Системы распределения электроэнергии с подключением второй категории электрических приемников включают в свой состав такое оборудование, при отключении питании которого возникнет массовый простой рабочих механизмов и промышленного транспорта,недоотпуск продукции, а также нарушения деятельности массового количества людей, проживающих как в черте города, так и за ее пределами. К такой группе электроприемников относятся жилые дома выше 4 этажа, школы и больницы, силовые установки, отключение питания которых не повлечет за собой выход из строя дорогостоящего оборудования, а также другие группы электрических потребителей с общей нагрузкой от 400 до 10 000 кВ.
В качестве источников энергии данной категории должны выступать две независимые станции. Кроме того, отключение от основного источника питания этих объектов допускается до тех пор, пока дежурный персонал не запустит в работу резервный источник, или же это не сделает дежурная бригада рабочих ближайшей электроснабжающей станции.
Что касается третьей категории приемников, то к ним принадлежат все оставшиеся устройства, которые могут питаться всего от 1 источника питания. Кроме того, отключение от сети таких приемников допускается на время ремонта или замены поврежденного оборудования на срок не более суток.
Принципиальная схема снабжения и распределения электрической энергии
Контроль распределения электроэнергии и ее передачу от источника к приемнику третьей категории в черте города легче всего осуществлять, применяя радиальную тупиковую схему.
Однако такая схема обладает одним существенным недостатком, который заключается в том, что при выходе одного любого элемента системы из строя без электроэнергии будут оставаться все приемники, подключенные к такой схеме. Так будет продолжаться до тех пор, пока не будет заменен поврежденный участок цепи. Из-за данного недостатка применять такую схему включения не рекомендуется.
Если говорить о схеме подключения и распределения энергии для приемников второй и третьей категории, то здесь можно использовать кольцевую принципиальную схему.
При таком подключении, если произойдет сбой в работе одной из линии электропередачи, можно восстановить электроснабжение всех приемников, подключенных к такой сети в ручном режиме, если отключить питание от основного источника и запустить резервный. Кольцевая схема отличается от радиальной тем, что у нее имеются специальные участки, на которых в отключенном режиме находятся разъединители или же выключатели. При повреждении основного источника питания их можно включить, чтобы восстановить подачу, но уже от резервной линии.
Также это будет служить хорошим преимуществом в том случае, если на основной линии необходимо провести какие-либо ремонтные работы. Перерыв в электроснабжении такой линии допускается на срок около двух часов. Этого времени хватает для того, чтобы отключить поврежденный основной источник питания и подключить к сети резервный, чтобы он осуществлял распределение электроэнергии.
Есть еще более надежный способ подключения и распределения энергии – это схема с параллельным включением двух питающих линий или же введение автоматического подключения резервного источника.
При наличии такой схемы поврежденная линия будет отключаться от общей системы распределения при помощи двух выключателей, расположенных с каждого конца линии. Снабжение же электричеством в таком случае будет осуществляться во все еще бесперебойном режиме, но уже по второй линии. Такая схема актуальна для приемников второй категории.
Схемы распределения для первой категории приемников
Что касается распределения энергии для питания приемников первой категории, то в данном случае необходимо подключение от двух независимых центров питания одновременно. Кроме того, в таких схемах часто используется не один распределительный пункт, а два, а также всегда предусмотрена система автоматического включения резервного питания.
Для электрических приемников, которые принадлежат к первой категории, автоматика переключения на резервное питание устанавливается на вводно-распределительных устройствах. При такой системе подключения распределение электрического тока осуществляется при помощи двух силовых линий, каждая из которых характеризуется напряжением до 1 кВ, а также подключаются к независимым трансформаторам.
Выбор схемы распределения электроэнергии
Общие положения. Система электроснабжения может быть выполнена в нескольких вариантах, из которых выбирается оптимальный. При её выборе учитываются степень надёжности, обеспечение качества электроэнергии, удобство и безопасность эксплуатации, возможность применения прогрессивных методов электромонтажных работ.
Основные принципы построения схем объектов:
— максимальное приближение источников высокого напряжения 35–220 кВ к электроустановкам потребителей с ПГВ, размещаемыми рядом с энергоёмкими производственными корпусами;
— резервирование питания для отдельных категорий потребителей должно быть заложено в схеме и элементах системы электроснабжения. Для этого линии, трансформаторы и коммутационные устройства в нормальном режиме должны нести постоянную нагрузку, а в послеаварийном режиме после отключения повреждённых участков принимать на себя питание оставшихся в работе потребителей с учётом допустимых для этих элементов перегрузок;
— секционирование шин всех звеньев системы распределения энергии, а при преобладании потребителей первой и второй категорий установка на них устройств автоматического ввода резерва (АВР).
Схемы строятся по уровневому принципу. Обычно применяется два-три уровня.
Первым уровнем распределения электроэнергии является сеть между источником питания объекта и ПГВ, если распределение производится при напряжении 110–220 кВ, или между ГПП и РП 6–10 кВ, если распределение происходит на напряжении 6–10 кВ.
Вторым уровнем распределения электроэнергии является сеть между РП (или РУ вторичного напряжения ПГВ) и ТП (или отдельными электроприёмниками высокого напряжения).
На небольших и некоторых средних объектах чаще применяется только один уровень распределения энергии – между центром питания от системы и пунктами приёма энергии (ТП или электроприёмниками высокого напряжения).
17 Схемы электрических сетей промышленных предприятий на напряжения 6–10
Электрические сети выполняются по магистральным, радиальным или смешанным схемам.
Радиальные схемы распределения электроэнергии применяются в тех случаях, когда пункты приёма расположены в различных направлениях от центра питания. Они могут быть двух- или одноступенчатыми. На небольших объектах и для питания крупных сосредоточенных потребителей используются одноступенчатые схемы. Двухступенчатые радиальные схемы с промежуточными РП выполняются для крупных и средних объектов с подразделениями, расположенными на большой территории. При наличии потребителей первой и второй категории РП и ТП питаются не менее чем по двум раздельно работающим линиям. Допускается питание электроприёмников второй категории по одной линии, состоящей не менее чем из двух кабелей.
При двухтрансформаторных подстанциях каждый трансформатор питается отдельной линией по блочной схеме линия–трансформатор.
При однотрансформаторных подстанциях взаимное резервирование питания небольших групп приёмников первой категории осуществляется с помощью кабельных или шинных перемычек на вторичном напряжении между соседними подстанциями.
Вся коммутационная аппаратура устанавливается на РП или ГПП, а на питаемых от них ТП предусматривается преимущественно глухое присоединение трансформаторов. Радиальная схема с промежуточным РП, в которой выполнены указанные выше условия, приведена на рис. 4.
Радиальная схема питания обладает большой гибкостью и удобствами в эксплуатации, так как повреждение или ремонт одной линии отражается на работе только одного потребителя.
Рис. 4. Радиальная схема электроснабжения
Магистральные схемы
напряжением 6–10 кВ применяются при линейном (упорядоченном) размещении подстанции на территории объекта, когда линии от центра питания до пунктов приёма могут быть проложены без значительных обратных направлений.
Магистральные схемы имеют следующие преимущества: лучшая загрузка кабелей при нормальном режиме; меньшее число камер на РП.
К недостаткам магистральных схем следует отнести усложнение схем коммутации при присоединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали, при ее повреждении.
Число трансформаторов, присоединяемых к одной магистрали, обычно не превышает трех при мощности трансформаторов 1000–2500 кВА и пяти при мощности 250–630 кВА.
Магистральные схемы выполняются одиночными и двойными, с односторонним и двусторонним питанием.
Одиночные магистрали без резервирования (рис. 5, а) применяются в тех случаях, когда отключение одного потребителя вызывает необходимость по условиям технологии производства отключения всех остальных потребителей (например, непрерывные технологические линии).
На рис. 6 показана схема, на которой близко расположенные трансформаторные подстанции питаются от разных одиночных магистралей с резервированием по связям на низшем напряжении. Такие магистральные схемы можно применять и для потребителей первой категории, если их мощность не превышает 20% от общей нагрузки трансформаторов. Трансформаторы подключаются к разным магистралям, присоединенным к разным секциям РП или РУ.
Рис. 5. Магистральные схемы с односторонним питанием: а – одиночные; б – двойные с резервированием на низком напряжении
Схемы с двойными (сквозными) магистралями (см. рис. 5, б) применяются для питания ответственных и технологически слабо связанных между собой потребителей одного объекта. Установка разъединителей на входе и выходе линии магистрали не требуется.
На крупных предприятиях применяются два или три магистральных токопровода (рис. 7), прокладываемые по разным трассам через зоны размещения основных электрических нагрузок. На менее крупных предприятиях применяются схемы с одиночными двухцепными токопроводами. На ответвлениях от токопроводов к РП устанавливаются реакторы для ограничения мощности короткого замыкания до значения мощности, отключаемой выключателями типа ВМП. От каждого трансформатора питаются два токопровода перекрестно, т.е. разные цепи каждого токопровода питаются от разных трансформаторов.
Рис. 7. Магистральная схема распределения электроэнергии с применением мощных токопроводов
Одиночные и двойные магистрали (рис. с двусторонним питанием (встречные магистрали) применяются при питании от двух независимых источников, требуемых по условиям обеспечения надёжности электроснабжения для потребителей первой и второй категории. При использовании в нормальном режиме обоих источников производится деление магистрали примерно посередине на одной из промежуточных подстанций. Секционные выключатели нормально разомкнуты и снабжены устройством АВР.
Рис. 8. Магистрали с двухсторонним питанием
Смешанные схемы питания, сочетающие в себе принципы радиальных и магистральных систем распределения электроэнергии, имеют наибольшее распространение на крупных объектах. Например, на первом уровне обычно применяются радиальные схемы. Дальнейшее распределение энергии от РП к цеховым ТП и двигателям высокого напряжения на таких объектах производится как по радиальным, так и по магистральным схемам.
18 Основные уравнения и математические модели линии электропередачи
Линия электропередачи является наиболее массовым элементом электрической системы, связывающим между собой отдельные узловые точки её схемы. В отличие от остальных элементов (синхронных электрических машин, трансформаторного оборудования, электроприемников и т.п.) она характеризуется одной существенной особенностью, а именно представляет собой элемент с распределёнными по длине параметрами.
Волновые свойства линии.
Передача электроэнергии по линиям электрической сети обусловлена распространением электромагнитного поля в проводах (жилах кабелей) и окружающем их пространстве. В воздушной линии под действием переменного напряжения возникает переменное магнитное поле вокруг проводов, а также переменное электрическое поле между фазными проводами и между каждым из проводов и землей. Возникновение переменного электрического поля приводит к появлению токов смещения (зарядных токов), значения которых зависят от свойств диэлектрика, окружающего проводник, и от разности потенциалов между проводом и землей, а для трехфазной линии – также и между фазными проводами. Зарядные токи, накладываясь на нагрузочный ток, определяют постепенное изменение общего тока вдоль линии. Обусловленная этим током напряженность магнитного поля также изменяется вдоль линии. Это, в свою очередь, приводит к тому, что наведённые ЭДС само- и взаимоиндукции оказываются неодинаковыми для различных элементов длины линии.
уравнения длинной линии
:
Рис. 1. Схематическое изображение линии электропередачи
Математические модели линии.
К числу упомянутых выше математических моделей относятся представления линии:
— симметричным пассивным четырехполюсником;
— схемой замещения (П- или Т-образной);
— собственными и взаимными проводимостями.
Рис. 2. Линия электропередачи (а) и её представления четырёхполюсником (б), П-образной схемой замещения (в) и собственными и взаимными проводимостями (г)