Источники постоянного тока: виды, характеристики, сферы применения


Источники постоянного электрического тока

Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

  • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
  • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
  • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
  • световые, превращающие энергию солнечного света в электрическую энергию.

В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

Обозначения [ править | править код ]

Существуют различные варианты обозначений источника тока. Наиболее часто встречаются обозначения (a) и (b). Вариант (c) устанавливается ГОСТ [1] и IEC [2] . Стрелка в кружке указывает положительное направление тока в цепи на выходе источника. Варианты (d) и (e) встречаются в зарубежной литературе. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками напряжения.

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

Читать также: Шина для пилы хускварна

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Помогите пожалуйста , очень надо 1) движение каких частиц создает электрический ток в газах ?

Помогите пожалуйста , очень надо 1) движение каких частиц создает электрический ток в газах ?

А) электронов б)молекул в) электронов , положительных и отрицательных ионов 2) движение каких частиц создает электрический ток в жидкостях?

А) электронов б) положительных и отрицательных ионов в) электронов , положительных и отрицательных ионов 3) движение каких частиц создает электрический ток в металлах ?

А)электронов б)положительных и отрицательных ионов в)электронов , положительных и отрицательных ионов 4)движение каких частиц создает электрический ток в вукууме?

А)электронов б)молекул в)положительных и отрицательных ионов 5) Укажите прибор в котором можно создать ток только в одном направлении а)резистор б)конденсатор в)полупроводниковый диод.

Световые источники

Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

Читайте также

Анализ цепей переменного тока

Анализ цепей переменного тока Пример для цепи переменного тока показывает некоторые свойства установившегося режима цепи при гармоническом воздействии.На рис. 0.4 показана схема с источником питания 100 В при частоте 100 Гц. Можно считать, что во входном файле приведено

Анализ цепей на постоянном токе

1. Анализ цепей на постоянном токе Цепи постоянного тока важны не только сами по себе, но и потому, что многие приемы, применяемые при их анализе, используются и при анализе цепей переменного тока. В действительности анализ большинства электронных цепей и приборов может

Анализ для цепей с источниками тока с помощью Spice

Анализ для цепей с источниками тока с помощью Spice Решения для цепей, содержащих источники тока, могут быть получены методом узловых потенциалов проще, чем методом контурных токов. Моделирование с помощью Spice основано на методе узловых потенциалов. Вспомните, что каждый

Анализ цепей на переменном токе (для установившихся синусоидальных режимов)

2. Анализ цепей на переменном токе (для установившихся синусоидальных режимов) Spice показывает напряжения узлов на постоянном токе без всяких специальных команд, поскольку определение напряжений постоянного тока является необходимым для получения рабочих точек в

Частотный анализ в последовательно-параллельных цепях переменного тока

Частотный анализ в последовательно-параллельных цепях переменного тока На рис. 2.13 приведена еще одна цепь на переменном токе. Значения параметров: V=100?0° В; R1=10 Ом; R2=10 Ом, L=100 мГн и С=10 мкФ. Предположим, что резонансная частота неизвестна, и ее необходимо предварительно

Подключение источника постоянного напряжения к RC -цепи

Подключение источника постоянного напряжения к RC-цепи В конденсаторе, показанном на рис. 6.6, при замыкании ключа происходит начальный скачок тока. Входной файл для этого случая:Switch Closing in RC CircuitV 0 PWL(0,0 1us,1V 10ms,1V)R 1 2 10kС 2 0 0.1uF.TRAN 1ms 10ms.PROBE.END Рис. 6.6. Замыкание ключа в

Анализ цепей смещения

Анализ цепей смещения Схема с более устойчивой точкой покоя, чем в предыдущем случае, показана на рис. 10.7. Она называется схемой с эмиттерным или автоматическим смещением. Входной файл:Biasing Case StudyVCC 2 0 12VR1 2 1 40kR2 1 0 3.3kRC 2 3 4.7kRE 4 0 220Q1 3 1 4 Q2N2222.LIB EVAL.LIB; команда вызывает библиотечный

Z -параметры для цепей переменного тока

Z-параметры для цепей переменного тока Z-параметры для схемы переменного тока, подобной показанной на рис. 12.14, могут быть найдены с использованием PSpice. Мы найдем параметры холостого хода для этой схемы при частоте f=500 Гц. Удобно использовать источник тока в 1 А с нулевым

Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала

Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала Решим теперь предыдущую задачу, применяя компоненты VSIN вместо VAC для источников напряжения V1, V2 и V3. При этом проводится исследование переходного процесса во временной области.

Урок 2 Моделирование цепи постоянного тока

Урок 2 Моделирование цепи постоянного тока Освоив материал этого урока и выполнив предлагаемые предложения; вы научитесь моделировать цепи постоянного тока и определять значение потенциалов. Также вы узнаете, как выводить на экран выходной файл программы и находить в

2.1. Токи и напряжения в цепях постоянного тока

2.1. Токи и напряжения в цепях постоянного тока Все напряжения, которые вычисляет PSPICE, являются напряжениями между отдельными точками электросхемы и одной опорной точкой, местоположение которой определяете вы сами, размещая на чертеже схемное обозначение «земли». В

Урок 3 Анализ цепи переменного тока

Урок 3 Анализ цепи переменного тока Изучив материал этого урока, вы научитесь использовать программу PSPICE для расчета линейных цепей переменного тока. Вы сможете моделировать работу электросхем, состоящих из резисторов, катушек и конденсаторов (RLC-схем), находящихся в

Урок 7 Анализ цепи постоянного тока DC Sweep

Урок 7 Анализ цепи постоянного тока DC Sweep В этом уроке рассказывается, как выполнять анализ цепи постоянного тока с различными изменяемыми переменными: источниками напряжения и постоянного тока, температурой компонентов, значениями сопротивления. Особое внимание

7.2. Источник постоянного тока в качестве изменяемой переменной

7.2. Источник постоянного тока в качестве изменяемой переменной Согласно теории о построении электрических цепей, любой источник напряжения с заданным напряжением истока Uq и заданным внутренним сопротивлением R можно заменить на соответствующий источник тока Iq с

9.4.2. Анализ передачи тока в режиме малого сигнала

9.4.2. Анализ передачи тока в режиме малого сигнала В ходе анализа передачи постоянного тока в режиме малого сигнала программа PSPICE определяет малосигнальное усиление, входное и выходное сопротивление схемы по переменному току в рамках DC-анализа. При этом, как и всегда при

9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов

9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов Анализ чувствительности позволяет установить, какое влияние оказывают изменения отдельных параметров схемы на выходное напряжение. Таким образом, вы можете

Источник

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Физические процессы в электрической цепи

Электрической цепью называется совокупность технических устройств, образую­щих пути для замыкания электрических токов и предназначенных для производства, пе­редачи, распределения и потребления электрической энергии. Любая электрическая цепь предпола­гает наличие в своей структуре как мини­мум трех элементов, а именно: источни­ков энергии, приемников энергии и со­единяющих их проводов или линий электропере­дачи. Как известно, носителем энергии является электромагнитное поле, которое сосредо­точено как внутри так и вне проводов. Таким образом, для рассмотрения физических яв­лений в электрической цепи во всей полноте необходимо проводить расчет и исследова­ние электромагнитного поля за­данной цепи. При физическом решении этой за­дачи поль­зуются дифференциальными поня­тиями и параметрами, характери­зующими электромаг­нитное поле в рассматриваемой точке, такими как `Е

,`
Н
,`
d
, `
В
,`
D
,
m
, g,
e
. Математи­че­ское описание электромагнитных полей на основе дифференциальных понятий оказы­ва­ется сложной задачей.

Электрическая цепь состоит, как правило, из отдельных однородных уча­стков. В этом случае предоставляется возможность с достаточной для инженер­ных расчетов точ­но­стью описывать процессы на отдельных участках с помо­щью интегральных понятий:

электродвижущая сила (ЭДС) источника энергии;

Применение интегральных понятий к расчетам электрических цепей по­зволяет по­лу­чать сравнительно простые решения задач с допустимой методи­ческой погрешностью.

В каждой реальной электрической цепи можно одновременно наблюдать следую­щие физические процессы:

1) процесс генерирования электрической энергии, который происходит в источни­ках (генераторах) в результате преобразования одного из видов энергии (механической, химиче­ской и др.) в электрическую;

2)процесс преобразования электрической энергии в другие виды, который проте­кает в приемниках энергии;

3)процесс накопления (или возврата) энергии в объеме магнитного поля:

4)процесс накопления (или возврата) энергии в объеме электрического поля:

Перечисленные физические процессы в том или другом сочетании при­сущи всем эле­ментам электрической цепи, протекают одновременно и связаны между собой законом со­хранения энергии.

При расчете режима электрической цепи она представляется некоторой условной схемой или схемой замещения, состоящей из комбинации идеальных схемных элементов. Каждый идеальный схемный элемент отображает на схеме один из физических процессов. Таких схемных элементов всего 5.

Механические источники постоянного тока

Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

  • однополупериодые выпрямители;
  • двухполупериодные выпрямители.

В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

Физика. 10 класс

Источник тока

Что происходит в источнике тока?

Разделение молекул вещества

Преобразование энергии упорядоченного движения заряженных частиц в тепловую

Преобразование электрической энергии в механическую

Разделение на положительные и отрицательные электрические заряды

Подстановка элементов в пропуски в тексте

Заполните пропуски в тексте.

Нагревание металлического проводника происходит в результате столкновения электронов с . Они передают свою энергию.

Формулы физических величин

Установите соответствие между физическими величинами и единицами измерения этих величин.

Работа электрического тока

Мощность электрического тока

Работа электрического тока

Заполните пропуск в тексте, выбрав правильный вариант ответа из выпадающего меню.

В проводнике под напряжением 200 В в течении 2 минут проходит ток при силе тока 4 А. При этом током совершена работа .

Закон Джоуля – Ленца

Заполните пропуск в тексте, выбрав правильный вариант ответа из выпадающего меню.

Если уменьшить в 2 раза время прохождения тока по проводнику и сопротивление проводника уменьшить 2 раза, то количество теплоты, выделяемое проводником с током .

Электрический ток

Выделите мышкой 4 слова, которые относятся к теме урока.

1. Элементарная частица, имеющая наименьший отрицательный заряд.

2. Русский физик, работавший в области электромагнетизма.

3. Какое ещё действие, кроме магнитного и химического, оказывает электрический ток?

4. Итальянский ученый, в честь которого названы элементы – химические источники тока.

Сопротивление, мощность и работа тока

Соедините попарно пятиугольники с овалами так, чтобы каждая пара была ответом на вопросы в следующей задаче.

Сила тока в электрической лампе 0,2 А при напряжении 120 В. Найдите её сопротивление, мощность и работу тока за три минуты (в единицах СИ).

Электрический ток
Электрический ток

Соедините попарно геометрические фигуры так, чтобы каждая пара была ответом на вопросы задачи.

К концам длинного однородного проводника приложено напряжение U

. Проводник заменили на другой, сделанный из такого же материала, такой же длины, но с меньшей площадью поперечного сечения и приложили к нему прежнее напряжение
U
. Какими станут при этом напряжение, мощность тока и сопротивление проводника?

Работа электрического тока

Ответьте на вопросы, чтобы решить кроссворд.

Сопротивление лампы 60 Ом, сила тока в ней 3,5 А.

Закон Джоуля – Ленца

Ответьте на вопросы, чтобы решить кроссворд.

Сила тока в электрической лампе 0,2 А при напряжении 220 В. Вычислите:

Мощность электрического тока

Заполните пропуск в тексте. Ответ дайте целым числом.

На штепсельных вилках некоторых бытовых электрических приборов имеется надпись: «6 А, 250 В». Максимально допустимая мощность электроприборов, которые можно включать, используя такие вилки равна Вт.

Регулирование источника

Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

В ней выходное напряжение сравнивается с эталонным (опорным) значением.

При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

Импульсные источники

Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

Сравнение источников

Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Источник

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]