Электрик в доме
Энциклопедия об электричестве от А до Я
Каталог мастеров
Найдите лучшего мастера или фирму в своем городе
Рабочий тахогенератор
Несомненно, развитие человечества в последние столетия неразрывно связано с освоением источников энергии и их эффективным применением. Более того, можно сказать, что уровень развития той или иной страны напрямую зависит от объема производимой энергии.
Первым источником энергии, совершившим промышленную революцию, стал пар, но вскоре его гегемония сменилась на власть электрических машин. Сегодня мы с вами поговорим про тахогенераторы постоянного тока — устройства, внесшие огромную лепту в прогресс человечества.
- Немного исторической информации
- Микромашины в электротехнике Принцип работы тахогенераторов и их строение
- Тахогенераторы Long Life
- Погрешности асинхронных тахогенераторов
Немного исторической информации
19 век стал для человечества поворотной точкой в истории. Он знаменателен величайшими научными открытиями, в том числе и в электротехнике.
Майкл Фарадей – открыватель закона об электромагнитной индукции
- В то далекое время известный английский физик-экспериментатор Майкл Фарадей открывает закон электромагнитной индукции. Это событие и можно считать отправной точной в электрификации планеты. Дальнейшее развитие и практическое применение этих знаний было лишь вопросом времени.
Борис Семенович Якоби – вклад русских ученых в развитие электричества, пожалуй, самый весомый
- В 1834 году русский физик Б.С. Якоби представил миру конструкцию первой электрической машины, ставшую, как потом оказалось, прототипом всех современных электродвигателей.
Павел Николаевич Яблочков
- Следующим существенным шагом стало появление трансформаторов и их практическое использование. В 1876 году это открытие сделал русский ученый П.Н. Яблочков. Он же изобрел электрические свечи и доказал практическую пользу и безопасность применения переменного тока.
Интересно знать! До изысканий Яблочкова всем научным мировым сообществом считалось, что использовать переменный ток невозможно и опасно.
Михаил Осипович Доливо-Добровольский
- В 1889 году русский инженер М.О. Доливо-Добровольский изобретает трехфазный асинхронный двигатель, благодаря чему электрические машины в промышленности стали применяться наиболее широко. Конструкция данного аппарата была крайне простой и одновременно надежной.
- В итоге к началу 20-го века уже были созданы все основные виды электрических машин, которые активно применяются и по сей день. Их используют в разных отраслях промышленности и приборах.
Микромашины в электротехнике
Помимо мощных агрегатов также потребовались и машины малой мощности, называемые еще микромашинами. Они активно применяются в устройствах вычислительной техники и автоматики в качестве функциональных элементов.
- Эти типы устройств принято делить на три группы: электромашинные усилители, исполнительные двигатели и информационные машины.
- Первые служат для усиления мощности электрических сигналов.
- Исполнительные двигатели занимаются преобразованием электрического тока в механическую силу. Эти аппараты могут быть асинхронными, шаговыми и постоянного тока.
На фото — тахогенератор
- Информационные машины состоят из тахогенераторов, сельсин, магнесин и вращающихся трансформаторов. Назначение этих устройств – преобразование величин неэлектрической природы в электрические сигналы. В частности, тахогенератор постоянного тока измеряет скорость вращения некоего объекта и применяется он в различных устройствах электропривода, станках, транспорте и прочем.
Принцип работы тахогенераторов и их строение
Схематическое строение тахогенератора постоянного тока
Тахогенератор – устройство оборудованное валом, которое, при его вращении, выдает на выходе электрическое напряжение, величина которого прямо пропорциональна скорости, с которой вал вращается. Эта особенность означает, что двигатель постоянного тока с тахогенератором, по сути, оснащен датчиком, с постоянными магнитами или независимым внешним возбуждением.
Бензиновый генератор постоянного тока работает по такому же принципу, что и тахогенератор
- Конструкция тахогенератора практически неотличима от конструкции других машин постоянного тока. Используют их для измерения частоты вращения по значению выходного напряжения и для получения электрического сигнала с частотой вращения вала в схемах авто регулирования.
На схеме – классический скользящий контакт
- Съемка напряжения происходит через скользящий контакт, который традиционно состоит из медного коллектора и графитовых щеток.
- У такой конструкции есть особенность, что, из-за того, что на меди образуется оксидная пленка, может с некоторой периодичностью меняться сопротивление контакта. По этой причине происходят колебания напряжения выдаваемого тахогенератором, которые воспринимаются в виде шума.
Интересно знать! На низких оборотах шумы тахогенератора сравниваются с полезным сигналом.
- Несмотря на этот недостаток, данная конструкция остается самой популярной, так как графит обладает отличными скользящими свойствами, а значит, устройство служит значительно дольше, чем аналоги.
- Если требуется тахогенератор, лишенный указанного недостатка, то на коллектор наносят контактную дорожку из серебра. Этот металл не окисляется, а значит, показания сопротивления всегда остаются на одном уровне.
Тахогенераторы Long Life
Тахогенератор Лонг Лайф
Особняком стоят тахогенераторы, собранные по «Long life». Эти устройства предназначены для работы в тех сферах, где требуется длительная бесперебойная работа. Они невероятно износоустойчивы, поэтому служат очень долго.
- Технические характеристики тахогенераторов переменного тока данного типа впечатляют. Диапазон рабочих температур от -50 до +100 градусов по Цельсию. Возможность измерения скорости вращения с точностью 1:100000 в режиме реального времени.
- Цилиндр у этих устройств может быть полым или цельным.
- Крепление вала фланцевое или лаповое.
Принцип работы тахогенератора
Большинство современных тахогенераторов относятся к типам с постоянными магнитами. В этих устройствах используется вращающийся якорь, один конец которого прикреплен к валу машины для измерения скорости вращения. Якорь вращается в фиксированном магнитном поле, так что его вращение вызывает электродвижущую силу (напряжение), пропорциональную скорости вала. Контакты якоря подключены к цепи вольтметра, преобразующей напряжение в значение скорости.
Тахогенераторы со скользящей крышкой — менее распространенный тип, в котором используется алюминиевая чашка, вращающаяся внутри электромагнитного статора с обмоткой, чашка прикреплена к валу. Переменный ток подается на одну обмотку статора, создавая вихревые токи вокруг чашки. Вращение чашки индуцирует пропорциональное напряжение в другой обмотке статора.
Схемы постоянной автоматики
Итак, мы уже говорили, что тахогенераторы используются в автоматических схемах, теперь давайте подробнее разберем, как они там задействованы.
Схема включения тахогенератора постоянного тока
- Выше показана принципиальная схема подключения тахогенератора.
- Обмотка ОВ подключается к источнику постоянного тока. При этом тахогенератор, приходя в состояние возбуждения, и если его якорь приводится в движение с некой частотой, на выходе он начнет выдавать постоянное напряжение.
- При этом чем больше сопротивление прибора Rh, тем круче характеристика Сu на выходе. Значение наибольшей крутизны будет соответствовать холостому режиму работы тахогенератора – случается это когда обмотка у якоря размыкается.
- Соответственно, при росте нагрузки наблюдается обратное явление.
- Тахогенератор выдает на выходе характеристику тока в виде постоянной линии, но соответствует это действительности только на низких оборотах вращения. Если их увеличить, характеристика станет криволинейной. Если при этом уменьшается сопротивление нагрузки RH эффект кривизны также будет расти.
- Объясняется это тем, что якорь оказывает размагничивающее действие.
Совет! Чтобы генератор не выдавал криволинейную выходную характеристику, не нужно запускать его на максимально возможных оборотах, а в качестве нагрузки использовать только приборы, внутреннее сопротивление которых небольшое.
Строение синхронного тахогенератора
- Также стоит учитывать момент, что в реальных условиях наблюдается падение напряжения в щетках, из-за чего выходная характеристика идет не из начала координат, а с некоторым смещением. Данное явление – причина появления у тахогенераторов зоны нечувствительности, в которой не создается напряжение.
- Чтобы уменьшить зону нечувствительности применяют щетки с малым сопротивлением, обычно медно-графитовые или серебряно-графитовые. В моделях высокой точности используют щетки с серебряными или золотыми напайками. Однако все равно эти приборы имеют некоторую погрешность, в пределах 0,2-0,5%.
Тахогенератор постоянного тока
2015-04-30 2987
Тахогенераторами
называются небольшие электрические машины, предназначенные для преобразования механического перемещения—вращения вала — в электрический сигнал — выходное напряжение.
Основное требование, предъявляемое к тахогенераторам,— линейность выходной характеристики, т. е. строгая пропорциональность между выходным напряжением Uтг
и частотой вращения
n
:
где k
– постоянная величина;
α – угол поворота.
Тахогенераторы используются в технике для различных целей: измерения частоты вращения; осуществления обратных связей по скорости в системах автоматического регулирования; выполнения электрического дифференцирования и интегрирования в схемах счетно-решающих устройств.
Тахогенераторами могут быть машины как переменного (синхронные и асинхронные), так и постоянного тока.
Тахогенераторы постоянного тока — это небольшие генераторы постоянного тока с независимым возбуждением (рис. 1.14, а
) или с возбуждением от постоянных магнитов.
Рис. 1.14. Тахогенератор достоянного тока
Конструктивно они не отличаются от обычных машин постоянного тока малой мощности. Выходное напряжение тахогенератора Uтг
может быть выражено через ЭДС якоря
Еа
, падение напряжения в обмотке якоря
Iаrа
и падение напряжения на щеточном контакте
ΔUщ
:
Выразим ЭДС якоря через магнитный поток возбуждения и частоту вращения n
:
а ток якоря Ia
через напряжение на выходе тахогенератора и сопротивление нагрузки
Rн
:
Подставив Еа
и
Ia
в выражение (1.40), получим
откуда найдем окончательное выражение выходного напряжения
Если пренебречь падением напряжения на щеточном контакте (принять ΔUщ
.=0), то выражение выходного напряжения примет вид
При постоянных Ф
,
rа
и
Rнвыходное напряжение строго пропорционально частоте вращения
:
Зависимость напряжения на выходе тахогенератора Uтг от частоты вращения п называется выходной характеристикой (рис. 1.14, б).
Величина k,
равная отношению выходного напряжения
Uтг
к частоте вращения
п
:
называется крутизной выходной характеристики
и является одной из основных величин, определяющих свойства тахогенераторов. У современных тахогенераторов крутизна составляет 3÷100 .
Чем больше се
,
Ф
и
Rн
и меньше
rа
, тем больше крутизна выходной характеристики. Наибольшая крутизна имеет место при холостом ходе, когда
Rн
= ∞ (прямая 1 рис. 1.14,
б
):
Чем меньше сопротивление нагрузки Rн
, тем меньше крутизна характеристики (прямая 2, рис. 1.14,
б
).
В реальном тахогенераторе ΔUщ
≠0, поэтому выходная характеристика
Uтг
=
f(n)
пересекает ось ординат (при
п
=0), как это следует из равенства (1.41), не в начале координат, а в точке
(прямая 3, рис. 1.14, б
).
За счет падения напряжения в щеточном контакте у тахогенератора появляется зона нечувствительности ε
— зона частот вращения от
п
=0 до
пmin
, при которых выходное напряжение тахогенератора равно нулю. Границу зоны нечувствительности
пmin
можно найти из выражения (1.41), подставив в него
Uтг
=0:
Если магнитная система тахогенератора насыщена и сопротивление нагрузки Rн
невелико, то магнитный поток
Ф
тахогенератора при его работе не остается постоянным — он уменьшается на величину
ΔФ
с увеличением частоты вращения за счет размагничивающего действия реакции якоря. При этом крутизна кривой выходной характеристики также уменьшается:
Асинхронный тахогенератор
Схематическое строение асинхронного тахогенератора
Конструкция асинхронного тахогенератора точно такая же, как у асинхронного электродвигателя с немагнитным ротором (полым).
- Обмотка возбуждения статора подключается к источнику переменного тока, а выходное напряжение снимается с генераторной обмотки (ГО).
- Его принцип действия состоит в следующем – обмотка возбуждения запитывается переменным током некоторой частоты, в результате чего возникает пульсирующий магнитный поток, постоянно меняющий направление.
Что такое асинхронный тахогенератор
- Из-за воздействия данного магнитного поля во вращающемся роторе индуцируется два типа ЭДС – вращения и трансформаторная.
- На контурах, что перпендикулярны оси обмотки возбуждения, также начинают протекать токи, вызываемые ЭДС вращения. Эти токи также, пульсируя, индуцируют новую ЭДС – выходную.
- Если не углубляться в физические расчеты, то можно сказать, что асинхронный тахогенератор является несимметричным двухфазным агрегатом, который может быть исследован симметричными составляющими.
Погрешности асинхронных тахогенераторов
Выходное напряжение, выдаваемое данным типом тахогенераторов – комплексная величина, что говорит о фазовой и амплитудной погрешностях.
Расчет погрешностей асинхронного тахогенератора
- Фазовая погрешность – это отклонение в градусах фазы напряжения на выходе от базовой фазы напряжения, то есть напряжения возбуждения. Возникает данный эффект в основном за счет индуктивного сопротивления статора и в большей части ротора. Данный тип погрешности может быть уменьшен, за счет правильной подборки характеристики применяемой нагрузки.
- Амплитудная погрешность – это отклонение показаний напряжения от частоты вращения от идеального значения, в котором они должны быть равны. Выражается этот показатель в процентах.
Чертеж тахогенератора
Также как и в случае фазовой погрешности, уменьшение данного эффекта возможно за счет правильной настройки и калибровки асинхронного тахогенератора.
- Физические причины амплитудной погрешности следующие. Во-первых, происходит падение напряжения в обмотке генератора. Во-вторых, меняется ток возбуждения, а следом за ним и магнитный поток, так как трансформаторная ЭДС ротора вызывает размагничивание. Третья причина – это то, что магнитный поток генераторной обмотки противостоит магнитному потоку вращения, из-за чего тот несколько уменьшается.
- Также стоит помнить, что ротор имеет некоторое индуктивное сопротивление, что также влияет на магнитный поток вращения, уменьшая его.
- И последнее – магнитный поток вращения индуцирует ЭДС вращения, а значит, появляются новый ток и магнитное поле, которое также противостоит потоку возбуждения. Данная электродвижущая сила является пропорциональной угловой скорости вращения, а значит, при увеличении частоты вращения ротора она тоже будет расти и противодействие усилится. Выражается это в падении напряжения в обмотке возбуждения и уменьшении магнитного потока вращения.
- Интересно, что одновременно понизить и фазовую и амплитудную погрешность невозможно. Поэтому схему подключения отлаживают так, чтобы снизить наиболее влияющие погрешности в конкретном случае.
Интересно знать! На практике доказано, что при низких оборотах вращения тахогенератора асинхронного типа оба типа погрешностей достаточно малы, из-за чего диапазоны вращения устройств ограничивают конкретными значениями.
Данные типы погрешностей хоть и являются основными, но они далеко не единственные:
- Нулевой сигнал – это напряжение, имеющееся на обмотке генератора в момент, когда ротор неподвижен. Данный параметр не остается постоянным, так как меняется при повороте ротора. Состоит он из двух составляющих: постоянно и переменной.
- Постоянная переменная возникает из-за неточного сдвига обмоток; присутствием короткозамкнутых контуров в обмотках и сердечнике; неодинаковой магнитной проходимости; неравномерного воздушного зазора; потоков рассеяния и прочего.
- Переменная составляющая обусловлена неравномерной толщиной стенок ротора, если он полый, из-за чего возникает разность активного сопротивления у контуров, а значит, и разность тока и магнитного потока.
- Чтобы ослабить постоянную составляющую нулевого сигнала, обмотки устанавливают на разных статорах: одна ставится на внутреннем, другая на наружном. При этом во время сборки асинхронного тахогенератора внутренний статор проворачивается, пока нулевой сигнал не достигнет минимального значения.
- Побороть переменную составляющую можно только калибровкой ротора, его симметричностью.
Выходные характеристики тахогенератора
- Следующая погрешность называется асимметрией выходного напряжения. Выражается она неравенством выдаваемых тахогенератором напряжений при вращении в разные стороны. Эффект особенно заметен при малых оборотах.
- Причина явления связана с остаточной ЭДС от нулевого сигнала, ведь его фаза остается постоянной, тогда как фаза вращения смещается на 180 градусов. Борются с проблемой за счет уменьшения нулевого сигнала.
- Последний вид погрешности является температурным. Влияние температуры окружающей среды, а также нагревания во время работы ротора, сказывается так, что изменяется активное сопротивление у обмоток на статоре и роторе. Все это сказывается, в свою очередь, на идеальном выходном напряжении, и увеличивает амплитудную и фазовую погрешности.
- Чтобы стабилизировать изменение сопротивления обмотки возбуждения, последовательно подключают терморезисторы. Ротор же изготавливается из материалов с максимально низким температурным коэффициентом.
Неисправности тахогенераторов
Каждый тахогенератор перед вводом в постоянную эксплуатацию должен быть подвержен нескольким этапам тестирования. Если не придерживаться рекомендаций производителя, то тахогенератор может не только прослужить мало времени, но и получить серьезную поломку уже в начале своей работы.
Из-за неисправностей может неверно определяться скорость вращения вала, что приведет к механической поломке. Большие нагрузки могут повредить не только тахогенератор, но и устройство, к которому он подключен.
Зачастую в тахогенераторах приходят в неисправность:
- шкив — в результате износа или механических повреждений;
- токосъемные щетки — в большинстве случаев из-за износа;
- износ токосъемных колец;
- проблемы с регулятором напряжения;
- короткое замыкание витков статорной обмотки;
- подшипник может разрушиться;
- повреждения диодного моста;
- провода зарядной цепи приходят в негодность.