Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода.


Примеры применения

Высокотемпературные изоляторы.} В виде фарфоровых бус для изоляции концов нагревательных спиралей. Чешуеподобная конструкция бусин позволяет изгибаться не обнажая проводник. Иногда нагревательную спираль прячут защитные фарфоровые бусины.

Корпус ртутной дуговой лампы от светолучевого осциллографа. Рама из алюминиевого сплава, чёрный корпус — карболит, фарфоровые бусы изолируют проводники, которыми подключается лампа. Лампа очень сильно нагревается во время работы. Рядом кучка цилиндрических фарфоровых бус от различных нагревателей.

Проводники в изоляции из фарфоровых бус для работы рядом с мощной дуговой ксеноновой лампой кинопроектора

Детали электроизделий. Если заглянуть внутрь патрона для лампы, то часть, которая содержит ламели подключения скорее всего сделана из фарфора, он может длительное время работать при повышенной температуре лампы накаливания без потери свойств. Корпуса предохранителей, розеток, держатели контактов ламп — везде, где есть опасность нагрева, фарфор вне конкуренции.

Держатели ламелей розетки, патрона изготовлены из фарфора. Чёрный корпус патронов — карболит.

Изоляторы на столбах. На фото изолятор со столба, ликвидированного в ходе реконструкции линии. Тридцать лет солнца, ветра, птичьего помета, дождей, морозов нисколько не повлияли на фарфор, он по прежнему выглядит как новенький, достаточно было помыть изолятор с мылом. (Срок службы фарфоровых изделий ограничен из-за появления микротрещин в процессе эксплуатации.)

Фарфоровые изоляторы линий электропередач. Между фарфоровым изолятором и стальным крюком втулка из полиэтилена, для защиты фарфора от трещин. Дисковая форма изоляторов позволяет воде стекать не образуя сплошного слоя, замыкающего проводник на опору. Фарфоровые изоляторы, в отличии от стеклянных, непрозрачны, что затрудняет визуальную проверку изолятора на наличие трещин.

Мощные резисторы имеют основу из фарфоровой трубки. У зеленого резистора обмотка скрыта под эмалью.

Свечи зажигания от двигателя внутреннего сгорания. Центральный электрод изолирован фарфором. Ни один другой диэлектрик не способен выдержать длительное воздействие температуры, давления, горючего внутри камеры сгорания.

Преимущества и недостатки самодельной жидкости

Процесс дистилляции считается чуть ли не единственным способом эффективного очищения воды, независимо от ее происхождения. В отличие от других фильтрующих систем здесь не играет роли состав воды, а на результат не влияют основные параметры перегонки: давление, температура.


Такая вода имеет следующие полезные свойства при употреблении внутрь:

  • помогает бороться с лишним весом;
  • очищает почки и печень от солевых отложений;
  • восстанавливает работу почек;
  • повышает иммунитет;
  • не вызывает аллергии;
  • снимает интоксикацию организма.

Но регулярное питье дистиллированной воды может принести вред здоровью. Это обусловлено тем, что в большом количестве она способна нарушить водно-солевой обмен, гормональный фон и привести к стоматологическим патологиям из-за нехватки минералов.

Кроме этого, дистиллированная вода не особо приятная на вкус и вызывает чувство жажды.

Примеры применения

Корпуса радиоламп, осветительных ламп, предохранителей.

Стеклянный и фарфоровый изолятор линий электропередач проработавший на улице более 30 лет.

Кварцевые трубки — корпуса нагревателей, электрогрилей

Кусочек технического кварцевого стекла. Видно большое количество пузырьков в стекле.

Типичный признак (но не обязательный!) технического кварцевого стекла — большое количество пузырьков в направлении экструзии стекла. Более дорогое оптическое кварцевое стекло абсолютно прозрачно. Торец такого стекла белый, без зеленого оттенка.

Корпуса маломощных полупроводниковых диодов, изоляторы выводов радиоэлементов.

Корпуса этих полупроводниковых диодов изготовлены из стекла.

Недостатки: Хрупкое, не выносит ударов. Некоторые сорта стекла растрескиваются при резком неравномерном нагреве.

Интересные факты о стекле

Здесь стоит дополнительно сказать про сапфировое стекло, закаленное стекло и химически закаленное стекло. В рекламных описаниях множества электронных устройств для массового потребления можно встретить упоминания этих видов стекол.

Сапфировое стекло формально стеклом не является (оно не аморфное, как стекла, а кристаллическое), но, в силу внешнего сходства, так именуется. Сапфировое стекло — это тонкие пластинки лейкосапфира (чистый Al2O3} — оксид алюминия). Лейкосапфир тверже обычных стекол, поэтому используется для защиты оптики от абразивного истирания песчинками пыли в военной технике, в дорогих устройствах бытового назначения. Стекло наручных часов из сапфира дольше останется нецарапанным. При этом, получение сапфировых стекол большого размера по вменяемой цене затруднительно, поэтому планшеты с сапфировым стеклом мы увидим нескоро.

Закаленное стекло. Стекло хорошо сопротивляется сжатию и плохо — растяжению. Повысить механическую прочность стекла можно его закалкой — стекло разогревают до высоких температур и резко и равномерно охлаждают. В результате в стекле образуются механические напряжения, которые увеличивают механическую прочность. Чаще всего закалку стекла делают для безопасности. Обычное стекло, если в него кинуть камнем, разбивается на несколько довольно крупных осколков, которые могут нанести серьезную травму. Закаленное стекло при разрушении дает много мелких осколков, которые значительно безопаснее. Поэтому все (Кроме лобового, иначе оно разрушалось от первого прилетевшего из под колес камушка. Лобовое стекло для безопасности трехслойное — средний слой из полимерной пленки с клеем. При ударе все осколки оказываются приклеенными к пленке.) стекла в автомобиле, в торговых центрах, стеклянные полки мебели — закалены. Изделие из закаленного стекла обработке не подлежит, если попытаетесь стеклянную полочку для ванной подрезать, она с хлопком рассыпется в крошку, поэтому закалка производится после обработки. Классической демонстрацией свойств закаленного стекла являются батавские слёзки.

Химически закаленное стекло. Например, часто упоминаемое Gorilla glass. Для тонких пластинок стекла термический способ закалки не подходит, поэтому пластинки стекла обрабатывают в растворе, который, к примеру, замещает ион натрия на ион калия. Так как ион калия крупнее, то поверхностные слои стекла как бы «распирает» более крупными атомами в решетке, создавая как раз требуемые механические напряжения. Как итог — такое стекло прочнее, лучше сопротивляется царапинам.

Термостойкое стекло. Обычное оконное стекло при нагревании сильно расширяется. Если нагрев неравномерный, то части стекла из-за разного расширения создадут механические напряжения, что может привести к растрескиванию. Введением добавок коэффициент теплового расширения стекла уменьшают, получая термостойкие сорта. Такие стекла при неравномерном нагреве не образуют трещин. Наиболее крутое в этом отношении кварцевое стекло, поэтому из него делают корпуса нагревателей в электрогрилях.

Чистая дистиллированная вода

Чистая дистиллированная вода в отсутствие воздуха не растворяет свинец, поскольку положительный потенциал этого металла лишь немного больше, чем у водорода. Обычная питьевая вода, содержащая бикарбонаты кальция и магния, а также сульфат, образует на поверхности металла тонкий и твердый слой карбоната и сульфата свинца ( П), препятствующий растворению.  

Чистая дистиллированная вода в небольшой степени проводит электрический ток.  

Чистая дистиллированная вода – практически диэлектрик. Это можно показать с помощью следующего опыта: если последовательно с лампой накаливания соединить ванну с дистиллированной водой, в которую опущены металлические пластины, и включить лампу и ванну в сеть, то лампа не горит. Оказывается, раствор сахара в воде тоже не проводит тока. Если же с помощью пипетки ввести в ванну с водой несколько капель кислоты, то лампа ярко загорается. Значит, раствор кислоты в воде – хороший проводник тока.  

Химически чистая дистиллированная вода обладает ничтожно малой проводимостью. Это легко проверить на опыте, составив электрическую цепь из источника тока, амперметра и электродов, погруженных в стеклянный сосуд с дистиллированной водой. При этом в цепи не протекает электрический ток.  

Чистую дистиллированную воду получить можно перегонкой, но и она в зависимости от перегонного куба может содержать следы некоторых элементов.  

Чистую дистиллированную воду получить можно путем перегонки, но и она в зависимости от перегонного куба может содержать следы некоторых элементов.  

Самая чистая дистиллированная вода содержит в 1 мл 20 000 – 30 000 частичек пыли.  

В литре чистой дистиллированной воды при 22 содержится 1 – Ю 7 г Н – ионов и 1 – 10 – 7 ОН-ионов.  

Подвергать электролизу чистую дистиллированную воду нецелесообразно.  

О получении оптически чистой дистиллированной воды см. S yy rny К.  

При добавлении к чистой дистиллированной воде Щелочи в ней появятся в некотором количестве ионы ОН, что приведет к подщелачиванию воды.  

Делаем вывод, что чистая дистиллированная вода, органические растворители ( спирт и ацетон), а также растворы солей в органических растворителях электрический ток не проводят.  

Дистилляционный аппарат служит для получения чистой дистиллированной воды путем ее перегонки. Прибор собирается на шлифах.  

Подкисление станет заметнее, если в чистую дистиллированную воду внести немного более крепкой, чем угольная, кислоты, например соляной. Угольная кислота распадается на ионы только частично, а соляная полностью; поэтому если даже внести в воду равное количество этих кислот ( скажем, по 1 мг.  

Температурная зависимость частотно-независимого коэффициента a / f2 затухания ультразвука в воде.  

Слюда

Слюда. Природный слоистый материал, обладает термостойкостью, прочностью, прекрасный диэлектрик. Слюды — большой класс слоистых минералов, из них в технике используется в основном мусковит и иногда биотит и флогопит.

По английски слюда — Mica, отсюда производные названия материалов на базе слюд — миканиты, микалента, микафолий, микалекс и т.д.

Слюда, добытая в руднике, разбирается, сортируется. Крупные куски вручную расщепляются на пластинки — так получается щипаная слюда — прозрачные однородные пластинки. Такая слюда обладает самым высоким качеством и идет на ответственные применения — в вакуумной технике, окна ввода/вывода излучения и т.д. К сожалению, крупные однородные куски слюды без дефектов — редкость, поэтому пластинки из слюды разной формы склеивают воедино, так получается миканит. Если в качестве подложки для наклеивания пластинок слюды использовать ткань (стеклоткань, бумагу) получается микалента, микафолий, стекломиканит. Совсем мелкие отходы слюды размалываются, и в виде водной пульпы отливаются на сетку, также как бумага. После удаления воды частички слюды слипаются в единое полотно — получается слюдяная бумага (слюдинит, слюдопласт). Получившееся полотно для прочности может пропитываться органическим связующим. Гибкость слюдяной бумаги позволяет наматывать её в качестве изоляции. Также намоткой можно получить стержни, трубки. Если пропитать слюду расплавленным стеклом, то получившийся прочный материал называется микалекс.

Перемолотая в пыль слюда — компонент пигментов, благодаря своей «чешуйчастости» дает перламутровый эффект. В пигментах используется в основном биотит.

Синтетический материал — фторфлогопит (synthetic mica) — это слюда (флогопит) где -OH группы заменены фтором. Фторфлогопит более прочен и термически стоек, выглядит также как слюда, тоже слоистый но абсолютно прозрачный/белый, а не желтоватого оттенка, как природная слюда. Увы, пока с этим материалом живьем не сталкивался.

Примеры применения

Конструктивные элементы для удержания нагревательных элементов в фенах, калориферах, тепловентиляторах, паяльниках и т.д.

Нагреватели бытовых тепловентиляторов. Конструкция слева менее материалоемкая, но значительно менее надежная, особенно в условияхмеханических нагрузок.

Как защитное окошко выхода микроволнового излучения от магнетрона в микроволновках. (обычно попадая на слюду еда обугливается, и становясь проводником, начинает бурно искрить, от чего владельцы микроволновки со страху микроволновку выбрасывают, хотя достаточно вырезать пластинку из листа слюды и заменить окошко.)

Слюдяное окошко в микроволновке. Иногда встречаются пластиковые, но только у моделей без гриля.

Благодаря тому, что тонкие пластинки слюды не пропускают газы, но пропускают энергичные заряженные частицы — слюдяные окошки используются в конструкциях счетчиков альфа и бета частиц.

Используется в конструкциях радиоламп — удерживает электроды на своих местах.

Восьмигранная пластинка изготовлена из слюды.

Используется как материал слюдяных конденсаторов. Слюда выступает диэлектриком, а электродами — проводящее напыление металла на пластинках слюды. Данный вид конденсаторов встречается всё реже и реже, вытесненный конденсаторами на базе полимерных пленок. Слюдяные конденсаторы могут работать при высокой температуре.

Слюдяные конденсаторы производства СССР полувековой давности.

Пластинки слюды в конденсаторе. Металлизация на пластинках формирует обкладки.

До появления и широкого распространения теплопроводящих изолирующих прокладок из полимерных материалов, вроде Номакон, слюдяные пластинки использовались для электрической изоляции компонентов при сохранении теплового контакта, например, когда необходимо на один радиатор закрепить несколько транзисторов, корпуса которых под разными напряжениями.

Пластинки природной щипаной слюды.

Природная слюда прозрачна. Слюдоматериалы полученные переработкой природной слюды как правило непрозрачны.

Вода и электрический ток

Чтобы вещество смогло проводить электрический ток, в нем должны присутствовать заряженные частицы, способные свободно перемещаться через весь его объем под действием приложенного электрического поля. В металлических проводниках, например, такими заряженными частицами выступают свободные электроны, а в электролитах — положительно и отрицательно заряженные ионы.

Диэлектрики вовсе не проводят постоянный электрический ток, поскольку заряженные частицы в их структуре хотя и есть, однако они связаны друг с другом, и не могут свободно перемещаться, образуя ток.

Но переменный ток пропускают даже диэлектрики, это называется током смещения, например конденсатор в цепи переменного тока на определенной частоте будет проводить ток так, словно является проводником.

Обычная неочищенная вода

Что касается обычной воды (речной, водопроводной, особенно — морской и т. д.), то в ней всегда присутствуют растворенные минеральные вещества, которые под действием приложенного электрического поля распадаются на ионы, способные двигаться как в электролите.

По этой причине обычная неочищенная вода проводит ток, ведя себя подобно слабому электролиту. Если через такую воду попытаться пропустить ток, то в течение небольшого времени он будет через нее идти, хотя и слабо.

Теоретически идеально чистая вода

Теоретически, если воду полностью очистить от примесей, то есть удалить из ее объема абсолютно все вещества, включая соли, газы, остатки кислот, то она станет диэлектриком, и будет вести себя как изолятор.

В ней не будет ионов, способных двигаться под действием электрического поля и образовывать ток, а сами молекулы воды — электрически нейтральны. Такую воду можно было бы использовать, например, в качестве диэлектрика между пластинами конденсатора.

Реальная дистиллированная вода

Но в реальности даже дистиллированная вода (вода, очищенная путем испарения с последующей конденсацией пара) не бывает абсолютно чистой.

Есть российский ГОСТ 6709-72, определяющий массовую концентрацию остатка примесей в такой дистиллированной воде — не более 5 мг на литр, и минимальное удельное сопротивление не менее 2 кОм*м.

То есть куб дистиллированной воды со стороной длиной в 1 метр, с приложенными к нему по краям электродами, будет иметь сопротивление минимум 2 кОм. А если представить разлитую по полу дистиллированную воду, скажем, в объеме одного стакана (200 мл), то ее сопротивление в лучшем случае окажется 200 кОм. Можно сказать, что это практически — диэлектрик.

Нет смысла пытаться использовать такую воду как проводник постоянного тока. С этой точки зрения дистиллированная вода не проводит электрический ток. Ее обычно используют для коррекции плотности электролитов.

Почему стоит опасаться контакта любой воды с электричеством

Однако люди не зря боятся контакта любой воды с электричеством, особенно — с переменным напряжением из розетки. Даже сетевое напряжение с провода, упавшего в лужу воды, на которую может случайно наступить человек, способно вызвать миллиамперный переменный ток, которого будет достаточно для причинения организму вреда.

Человеческое тело и фаза из розетки, соединенные через лужу разлитой воды, образуют цепь с реактивными элементами, и если человек в такой ситуации случайно коснется заземленного предмета, то его ударит током. Вот почему необходимо избегать контакта электричества с водой. Как вы понимаете, с дистиллированной водой риск причинения вреда меньше, но он все равно остается. Поэтому лучше избегать попадания любой воды на электрические приборы.

Источник

Интересные факты о слюде

Раньше, несколько веков назад, когда не умели делать тонкие оконные стекла, светопрозрачные конструкции делали расщепляя природную слюду. Так как большие куски слюды без дефектов были редкостью, то и окна принимали причудливую форму.

Слюда вместо стекла в оконной раме. Из экспозиции красноярского краеведческого музея.

Слюда — достаточно мягкий материал, слюдяная пластинка (как и большинство материалов на её базе) легко режется ножницами. В силу своей слоистой природы, склеивание слюды — занятие малонадежное, сила сцепления меж слоев невысокая, поэтому при производстве детали из слюды скрепляют механически — заклепки, люверсы, винты и т. д.

Электрические соединения с нагревательным элементом выполнены полыми заклепками.

Примеры применения

Корпуса микросхем, обычно ответственного применения.

Корпуса процессоров раньше делали керамическими, но рост тепловыделения и конкуренция по цене вынудили отказаться от этого материала. Именно с керамическим корпусом процессоров был связан анекдот про нового русского и плитку в ванной от Intel.

Корпуса электровакуумных приборов.}

Корпус вакуумной колбы магнетрона изготовлен из меди и алюмооксидной керамики. Керамика видна на фото, фиолетовый поясок между колпачком и корпусом.

Алюмооксидная керамика очень твёрдая, обрабатывается как и многие керамики алмазным инструментом. Обломок керамического корпуса микросхемы — отличное орудие для написания посланий на лобовом стекле автомобиля, оставляет четкие ровные царапины не хуже стеклореза.

Данный вид керамики плотный, не впитывает влагу, удерживает вакуум, не трескается при резком перепаде температур и тепловом ударе. При этом сцепление металлических пленок с поверхностью высокое, позволяет делать на керамике дорожки, герметично приваривать металлические детали.

Внешне очень похожа бериллиевая керамика — она превосходит алюмооксидную керамику по предельной рабочей температуре, по теплопроводности (сопоставимую с металлами!), но в силу дороговизны и токсичности пыли из нее применяется редко.

Асбест

Уникальный, непревзойденный класс материалов. Природное волокно, «горный лен». Является огнестойким диэлектриком. Использовалось во множестве применений, начиная от армирующей добавки в полимеры, заканчивая изоляцией нагревательных приборов. Выпускается в виде листов (асбестокартон), нити, пряжи. Чаще всего используется именно как теплоизолятор, как диэлектрик только в установках невысокого (до 1 кВ) напряжения.

Широко применялся в строительстве. Шифер — это цемент, упрочненный волокнами асбеста, практически вечный материал. Высоко ценилась его дешевизна и огнестойкость. Но есть одно но:

Асбест — канцероген. Причем канцероген 1-го класса (от МАИР), наравне с мышьяком, формальдегидом. (Степень опасности различных видов асбеста — вопрос дискусионный, и нет единодушного мнения на этот счет.) Длительное наблюдение показало, что изделия из асбеста пылят волокном, которое при вдыхании может провоцировать заболевание легких — асбестоз. Прежде всего в группе риска работники предприятий по добыче и переработке асбеста. В меньшей степени подвержены опасности те, кто ежедневно эксплуатируют изделия из асбеста. В остальных случаях нет причин для паники, если у вас на даче крыша покрыта шифером, а печь в бане прикрыта асбестокартоном, то вы скорее всего умрете не от асбеста, а от заболеваний сердечно-сосудистой системы (статистика смертности).

{Кусок асбестокартона и старый грязный асбестовый шнур. Асбест на ощупь очень мягкий и не колется как стеклоткани.

Асбест и изделия из асбеста до сих пор широко производятся, поскольку в некоторых задачах заменить асбест без потери свойств попросту нечем (или слишком дорого). Асбест отличный материал при конструировании экспериментальных устройств, содержащих нагреватели или раскаленные части. На куске асбестокартона можно спокойно газовой горелкой греть детали до 1000°С, при этом он сохранит свою форму. Асбестовая нить удобна для стягивания нихрома в нагревателях.

Магнитный усилитель и токовый шунт от блока питания 50-ВУК-120-1 на плате из материала на базе асбеста.

Байка (из Википедии): Давно существует легенда о том, как Акинфий Демидов привёз Петру I прекрасную белоснежную скатерть со своего уральского завода. Во время трапезы он демонстративно опрокинул на скатерть тарелку супа, вылил бокал красного вина, а затем скомкал скатерть и бросил её в камин. Затем, достав из огня, показал царю: на ней не осталось ни одного пятнышка. Эта скатерть была сделана из уральского хризотил-асбеста. И в самом деле, демидовские крепостные рабочие достигли совершенства в изготовлении асбестовых тканей. Из них делали ажурные дамские шляпки, перчатки, кошельки, сумочки и кружева. Они не требовали стирки, их кидали в огонь, и через несколько минут после охлаждения их можно было снова носить.

Вода как вещество

Молекула воды, как мы знаем, состоит из одного атома кислорода и двух атомов водорода. Ее формула записывается так: H 2 O. Данное вещество может иметь три состояния: твердое – в виде льда, газообразное – в виде пара, и жидкое – как субстанция без цвета, вкуса и запаха. Кстати, это единственное вещество на планете, которое может существовать во всех трех состояниях одновременно в естественных условиях. Например: на полюсах Земли – лед, в океанах – вода, а испарения под солнечными лучами – это пар. В этом смысле вода аномальна.

Еще вода – это самое распространенное вещество на нашей планете. Она покрывает поверхность планеты Земля почти на семьдесят процентов – это и океаны, и многочисленные реки с озерами, и ледники. Большая часть воды на планете соленая. Она непригодна для питья и для ведения сельского хозяйства. Пресная вода составляет всего два с половиной процента от всего количества воды на планете.

Вода – это очень сильный и качественный растворитель. Благодаря этому химические реакции в воде проходят с огромной скоростью. Это же ее свойство влияет на обмен веществ в человеческом организме. Общеизвестный факт, что тело взрослого человека на семьдесят процентов состоит из воды. У ребенка этот процент еще выше. К старости этот показатель падает с семидесяти до шестидесяти процентов. Кстати, эта особенность воды наглядно демонстрирует, что основой жизни человека есть именно она. Чем воды в организме больше – тем он здоровее, активнее и моложе. Потому ученые и медики всех стран неустанно твердят, что пить нужно много. Именно воду в чистом виде, а не заменители в виде чая, кофе или других напитков.

Вода формирует климат на планете, и это не преувеличение. Теплые течения в океане обогревают целые континенты. Это происходит за счет того, что вода поглощает очень много солнечного тепла, а потом отдает его, когда начинает остывать. Так она регулирует температуру на планете. Многие ученые говорят, что Земля давно бы остыла и стала камнем, если бы не наличие такого количества воды на зеленой планете.

Вода

Это абсолютно контринтуитивно, но этот пункт включен сюда, чтобы взорвать вам мозг. Вода не проводит ток! Везде учат, что вода хороший проводник электричества, и обычно это так. Но очень чистая деионизированная вода, которая не содержит ничего кроме H2O ток не проводит — её удельное сопротивление 18 МОм*см. Та вода, которая проводит ток — недостаточно чистая. Измерение электрической проводимости — довольно простой способ оценки качества и чистоты воды. (Актуально для постоянного тока и для переменного тока низкой частоты.)

Имея сильно полярные и подвижные молекулы, вода не только изолятор, но и имеет очень высокую диэлектрическую проницаемость — около 81 при комнатной температуре (у большинства обычных диэлектриков она не превышает 20–30). На этом основаны емкостные измерители влажности: небольшое количество воды между обкладками конденсатора резко повышает его емкость.

К сожалению, вода — прекрасный растворитель, а растворенные в ней вещества обычно образуют электролиты. Стоит постоять дистиллированной воде на воздухе, и она растворяет в себе углекислый газ, образуя электролит — слабый раствор угольной кислоты. Вода способна растворять и стенки сосуда, в котором находится. Малейшая примесь солей, особенно хлоридов и сульфидов натрия, калия, кальция, резко повышает проводимость воды. Поэтому на практике в роли диэлектрика вода никуда не годится.

Бутылка деионизированной воды из радиомагазина. Печатные платы электронных устройств стоит промывать только дистилированной или деионизированной водой, иначе соли, содержащиеся в воде, могут наделать бед.

Проект «Какие вещества проводят электричество при растворении в воде»

Электрический поток – результат движения электрически заряженных частиц(электричества) под действием сил приложенного к ним электрического поля. Чистая вода плохо проводит электричество, но некоторые элементы, растворенные в ней, позволяют ей проводить ток. Такие вещества при растворении образуют ионы (заряженные частицы), которые переносят заряд внутри раствора. Растворы, обладающие этим свойством, называются электролитами. Чем больше ионов в растворе, тем выше его проводимость. Неэлектролиты – растворы, не содержащие ионы и не проводящие ток. Электролиты могут быть слабыми или сильными. Это зависит от того, как они ионизируются: полностью или частично.

Проводимость раствора можно измерить при помощи устройства проводимости, состоящего из двух металлических электродов, обычно располагаемых на расстоянии 1 см (именно поэтому она измеряется в микросименсах или миллисименсах на сантиметр). На оба электрода подается постоянное напряжение. Это вызывает электрический ток в растворе. Поскольку он пропорционален количеству ионов в воде, проводимость можно измерить. Чем выше концентрация ионов, тем выше проводимость образца.

Устройство проводимости обычно используется в гидропонике, бассейнах, а также системах очистки воды для отслеживания количества питательных веществ, солей или загрязнений.

Раствор некоторых веществ в воде проводит электричество. Эти вещества при растворении образуют ионы, и эти ионы переносят заряд через раствор. Этот проект направлен на то, чтобы собрать устройство для выявления того, раствор каких веществ может проводить электричество, а каких – нет.

В фокусе этого проекта – создание устройства, которое позволило бы определить, какие вещества, будучи растворенными, могут проводить электричество – и каким типом электролита они в этом случае являются.

Что нам понадобится:

  • устройство проводимости;
  • пластиковые стаканчики;
  • большие скрепки;
  • изолента;
  • разные виды воды: дистиллированная, минеральная, газированная;
  • уксус;
  • сахар;
  • соль.

Ход эксперимента:

  1. Эксперименты с электричеством в домашних условиях требуют внимательности. Не глотайте вещества, используемые в этом опыте!
  2. Приготовьте разные виды воды.
  3. Приготовьте растворы соли и сахара, растворив их в дистиллированной воде.
  4. Налейте жидкость в стаканчик.
  5. Разогните скрепки, закрепив их изолентой на противоположных сторонах стаканчика.
  6. Не помещайте контакты прямо в раствор, иначе со временем они заржавеют. Вместо этого поместите их на скрепки, а скрепки опустите в раствор.
  7. Результаты наблюдений отобразите в таблице и в виде графика. В зависимости от того, какое устройство проводимости вы используете, отметьте, горят ли LED-лампы и степень их яркости. Ополаскивайте стаканчик и скрепки дистиллированной водой между опытами.
  8. Если неподалеку есть источник, проверьте воду из него на проводимость. Если она проводит электричество, подумайте, какие вещества могли быть в нем растворены и откуда они могли взяться.
  9. Отметьте галочкой поле, соответствующее свету, производимому LED-лампой. В зависимости от яркости лампы распределите жидкости на сильные, средние, слабые электролиты или неэлектролиты.
Интенсивность света/ жидкостьЯркийСредней яркостиСлабыйНет светаТип электролита
Дистиллированная
Из-под крана
Минеральная
Дождевая
Раствор соли
Раствор сахара
Газированная
Уксус

Вывод:

Что такое электричество? Что такое электролит? Что такое проводимость? Какие вещества оказались хорошими электролитами по результатам опыта? Посмотрите на этикетку бутылки минеральной воды. Как вы думаете, какие вещества в ее составе помогают проводить ток? Посмотрите на этикетку бутылки газированной воды. Как вы думаете, какие вещества в ее составе помогают проводить электричество? Жидкая паста внутри батареек для фонарика – электролит. Какие из протестированных веществ могли бы использоваться в качестве такого электролита? Подумайте, какие еще опыты с электричеством в домашних условиях можно провести на основе проведенного проекта.

Элегаз

Диэлектрики могут быть газообразными. Сухой воздух — хороший диэлектрик, но в некоторых задачах его электроизоляционные свойства недостаточны. Пример газообразного диэлектрика — гексафторид серы или «элегаз», он тяжелее воздуха и имеет пробивное напряжение в несколько раз выше, чем у воздуха, что позволяет сделать электрическую машину компактнее. Кроме того, элегаз обладает дугогасящими свойствами, и при контакте с дугой практически не деградирует, рекомбинируя обратно.

Довольно забавный опыт, когда вдохнув гелия голос человека становится выше с элегазом выглядит иначе — голос становится ниже. Другое видео: Пара гелий — гексафторид серы Так как элегаз тяжелее воздуха, в нем может плавать легкая лодка.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]