Симисторные и тиристорные стабилизаторы: что выбрать?


Устройство и принцип действия тиристорных и симисторных стабилизаторов

Основными узлами этих стабилизаторов напряжения являются:

  • силовой автотрансформатор – используется для коррекции сетевого напряжения;
  • электронная схема управления (как правило, реализованная на базе микропроцессора) – управляет всеми функциями стабилизатора в соответствии с сигналами датчиков параметров сети и мощности потребления нагрузки;
  • блок коммутирующих силовых полупроводниковых ключей (тиристоров или симисторов) – используются для коммутирования отводов обмоток силового автотрансформатора;
  • устройства фильтрации сетевых помех – подавляют импульсные и высокочастотные помехи.

На корпусе электронных стабилизаторов, как правило, располагаются ЖК-дисплей и светодиодные индикаторы, которые отображают значения рабочих параметров устройства: величины напряжения на входе и выход, мощность подключенной нагрузки.

Принцип действия тиристорных и симисторных стабилизаторов одинаков. Входное переменное сетевое напряжение поступает на преобразующий автотрансформатор – разновидность трансформатора, первичная и вторичная обмотки которого соединены, то есть имеют не только электромагнитную связь, но также и электрически связаны. Вторичное напряжение снимается с одного из нескольких выводов обмотки автотрансформатора. Подключение к каждому выводу задействует разное количество витков катушки трансформатора, чем и будет определяться коэффициент трансформации и, соответственно, выходное напряжение. Наиболее похожим по принципу работы можно назвать релейный тип стабилизаторов.

Параметры входного и выходного напряжения автотрансформатора постоянно контролируются микропроцессором платы управления. Если они отклоняются от нормы в любую сторону, микропроцессор подает управляющий сигнал на включение определенного силового коммутационного устройства – полупроводникового ключа. В зависимости от типа используемых силовых ключей различают тиристорные (с применением тиристоров) и симисторные (соответственно, с применением симисторов) устройства.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.


Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.


Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Читать также: Чем отличается лоток от короба

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Тиристоры и симисторы. В чём разница?

Тиристоры и симисторы – полупроводниковые элементы, управление которыми (изменение их коммутационного состояния) осуществляется подачей положительного потенциала на управляющий электрод. Их отличие заключается в количестве слоев с различной проводимостью в пластине элемента.

Тиристор является преобразователем переменного тока однонаправленного действия. В своей структуре элемент имеет управляющий электрод, анод и катод.

Симистор представляет собой два встречно включенных тиристора, которые располагаются параллельно друг другу. У симистора каждый электрод является анодом и катодом одновременно, благодаря чему этот полупроводниковый переключатель способен проводить ток в двух направлениях.

Далее рассмотрим особенности и отличия устройств с коммутацией, реализованной на тиристорных и симисторных ключах.

Характеристики

К основным характеристикам можно отнести следующие:

  • Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение — наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Схема работы, сильные и слабые стороны тиристорных стабилизаторов

Рассмотрим подробнее алгоритм работы тиристорного стабилизатора:

  1. При изменении параметров входного тока фаза задержки (длительностью до 20 мс) используется для измерения значения входного напряжения сети.
  2. Сравнив фактические и допустимые токовые характеристики, при необходимости процессор платы управления подает команду на коррекцию напряжения на выходе:
  • в случаях, когда отклонения входного напряжения находятся в рамках допустимого диапазона, происходит его коррекция до необходимого значения;
  • при скачках напряжения, выходящих за рамки допустимого диапазона, система защиты обеспечивает аварийное отключение устройства.

Тиристорные стабилизаторы напряжения обладают следующими преимуществами:

  • относительно высокое быстродействие – 20 мс (в сравнении с релейными приборами);
  • высокий КПД, который достигается благодаря отсутствию реле и подвижных элементов;
  • возможность функционирования во внешней среде с высокими или низкими температурами;
  • долговечность и надежность за счёт отсутствия механических деталей;
  • бесшумное функционирование;
  • устойчивость к перегрузкам.

Тиристорные приборы также отличаются достаточно высокой точностью стабилизации напряжения на выходе (от 5 до 10 %) по сравнению с релейными моделями, а также относительно широким диапазоном напряжения на входе, который позволяет их использовать в сетях с крайне некачественным напряжением.

Серьезным недостатком тиристорных стабилизаторов является дискретность (ступенчатость) коррекции напряжения. Ступенчатые скачки напряжения, которые появляются при переключении трансформаторных обмоток, ухудшают точность стабилизации и снижают скорость работы прибора.

Из-за указанных недостатков тиристорные стабилизаторы нельзя использовать для питания нагрузок, особо чувствительных к перепадам напряжения (например, ПК и периферийных устройств, профессиональных аудио- и видеоприборов, а также приборов с электронным управлением).

Кроме того, выходное напряжение тиристорных стабилизаторов имеет форму, отличную от синусоидальной (трапециевидную или с другими искажениями, в зависимости от конкретной модели), что делает нежелательным их использование для питания нагрузок с электродвигателями (например, насосов, систем отопления).

Состояние проводимости, dIT/dt

Когда триак (тиристор) находится в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла, смежном с затвором, и затем быстро распространяется на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдет короткое замыкание между T1 и T2.

При работе в квадранте 3+ еще больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведет к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в квадранте 3+.

Значение dIT/dt связано со скоростью нарастания тока затвора (dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальной мощности затвора) дают более высокое значение dIT/dt.

Самый простой пример нагрузки, создающей высокий начальный бросок тока, — лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значения при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значения dIT/dt триака, необходимо ограничить это включением катушки индуктивности или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.

Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.

Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.

Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе или схема управления фазой включения.

Схема работы, преимущества и недостатки симисторных стабилизаторов

Симисторные стабилизаторы напряжения имеют принцип работы, схожий с тиристорными устройствами.

К их очевидным преимуществам, безусловно, можно отнести перечисленные выше достоинства, которыми отличаются тиристорные устройства:

  • скорость и точность регулирования напряжения;
  • высокое значение КПД;
  • бесшумная работа (что особенно важно при установке в жилых помещениях);
  • многолетний срок эксплуатации;
  • надежность работы, обусловленная полным отсутствием механических движущихся частей.

Современные симисторные стабилизаторы напряжения, как и тиристорные аналоги, отличаются широким диапазоном входного напряжения и возможностью работы при достаточно низкой температуре.

Существенными их недостатками являются высокая стоимость в сравнении с релейными моделями и ступенчатое регулирование выходного напряжения. К минусам также следует отнести большую громоздкость силовых ключей по сравнению с тиристорными аналогами: один симистор занимает площадь, достаточную для размещения нескольких тиристоров. Разумеется, это не в лучшую сторону отражается на габаритных размерах и массе устройств.

Сравнивая используемые типы полупроводниковых ключей, добавим, что симисторы менее стойки к токовым перегрузкам и в процессе работы могут нагреваться значительно сильнее, что увеличивает риск их выхода из строя.

Симисторные стабилизаторы имеют такие же ограничения по применению, что и тиристорные. Их нельзя назвать удачным решением для организации защиты электродвигателей или нагрузки с электроприводом из-за искажения формы сигнала на выходе: как правило, это модифицированная синусоида. Говоря об ограничениях в использовании, стоит добавить и их низкую стойкость при работе с индуктивной нагрузкой.

Внимание!

При покупке симисторного стабилизатора для питания чувствительных к напряжению электроприборов необходимо уточнить количество силовых полупроводниковых ключей, задействованных в схеме стабилизатора – чем их больше, тем на выходе устройство сможет обеспечить более приближенное к номинальному значение напряжения.

Открытое состояние тиристора

Тиристор переходит в открытое состояние при подаче на затвор положительного смещения относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс) пиковое значение порогового напряжения необходимо увеличить.

После достижения тока нагрузки значения IL тиристор будет оставаться в открытом состоянии при отсутствии тока затвора.

Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25 °C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.

Чувствительный затвор тиристоров, таких, как BT150, при увеличении температуры перехода выше Tj max может вызывать ложное срабатывание за счет тока утечки от анода к катоду.

Во избежание ложных срабатываний можно посоветовать следующие рекомендации:

  1. Рабочая температура перехода должна быть меньше значения Tj max.
  2. Использовать тиристоры с меньшей чувствительностью, такие, как BT151, либо уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1 кОм или менее между затвором и катодом.
  3. При невозможности использования менее чувствительного тиристора необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.

Подводим итог

Сравнивая симисторные и тиристорные стабилизаторы напряжения между собой и с другими видами устройств, можно прийти к следующим выводам:

  • оба типа приборов имеют как схожие возможности по стабилизации напряжения, так и почти одинаковые недостатки, одним из которых является ступенчатая корректировка и, как следствие, несинусоидальная форма выходного сигнала;
  • данные стабилизаторы не справляются с защитой чувствительного к качеству сети оборудования, а также приборов с электродвигателями;
  • оба устройства по своим рабочим параметрам ненамного превосходят релейные стабилизаторы напряжения, но стоимость их гораздо выше;
  • при поломке тиристорных и симисторных устройств ремонт их электронных компонентов обойдется дороже, чем стабилизаторов напряжения предыдущих поколений, работающих по аналогичному принципу.

Несмотря на то, что симисторные и тиристорные стабилизаторы пока пользуются достаточной популярностью, их постепенно но уверенно вытесняет с рынка новый тип устройств – инверторные стабилизаторы напряжения. Разработанные на в 2015 году, эти приборы получили самые высокие технические характеристики, среди которых:

  • более высокая точность стабилизации (2%);
  • непрерывное регулирование сетевого напряжения и, как следствие, чистый синус на выходе;
  • расширенный диапазон входного напряжения сети (90-310 В);
  • мгновенная скорость срабатывания;
  • универсальное применение.

Некоторые особенности триаков Hi-Com

Триаки Hi-Com имеют отличную от обычных триаков внутреннюю структуру. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:

  1. Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без использования демпфирующего устройства, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость и устраняет потери на рассеивание энергии демпфирующим устройством.
  2. Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
  3. Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счет dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.

Из-за особой внутренней структуры работа триаков Hi-Com в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com возможна почти всегда.

Более подробную информацию по триакам Hi-Com можно найти в специальной документации Philips: «Factsheet 013 — Understanding Hi-Com Triacs» и «Factsheet 014 — Using Hi-Com Triacs».

Номенклатура и корпуса

Промышленный ряд тиристоров Philips начинается с 0,8 A в SOT54 (TO92) и заканчивается 25 A в SOT78 (TO220AB).

Промышленный ряд триаков (симисторов) Philips начинается с 0,8 A в SOT223 и заканчивается 25 A в SOT78.

Самый маленький корпус триака (тиристора) для поверхностного монтажа — SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.

Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса позволяет использовать его при более высоких номинальных токах и большей мощности.

На рис. 12 показан наименьший корпус для обычного монтажа — SOT54. В этот корпус ставится кристалл, которым оснащаются SOT223.

SOT78 — самый распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).

На рис. 15 показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1500 В между прибором и теплоотводом.

Один из последних корпусов — SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типами:

  1. Корпус имеет те же размеры, что и корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78 без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2500 В между прибором и теплоотводом.

Полное тепловое сопротивление

Все расчеты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше 1 с. Для импульсных токов или длительных переходных процессов меньше 1 с эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях нагрев перехода зависит от полного теплового сопротивления «переход — корпус прибора» Zth j–mb. Поэтому Zth j–mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 с Zth j–mb увеличивается до значения, соответствующего установившемуся режиму Rth j–mb. Характеристика Zth j–mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 с.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]