Чем «жгут» высоковольтные кабели?
Сравнение установок для прожига высоковольтных кабелей российского и украинского производства
Продолжаем серию статей, посвященных анализу рынка испытательного и диагностического оборудования.
Российский рынок оборудования постоянно растет, предложений аналогичных по свойствам и назначению приборов и установок становится все больше. С одной стороны, конкуренция между производителями очень выгодна потребителю, так как способствует появлению на рынке современного высокотехнологичного оборудования по адекватной цене. С другой стороны, такое разнообразие сильно затрудняет процесс выбора: чем больше предложений, тем сложнее принять решение в пользу того или иного варианта. Для того, чтобы вы могли свободно ориентироваться в огромном море предложений, поступающих от производителей, мы пригласили на роль эксперта и автора данной рубрики руководителя отдела маркетинга , специализирующейся на комплексных поставках оборудования для нужд энергетики, Ирину Кузьменко. В одном из прошлых номеров журнала мы говорили о трассоискателях, предназначенных для определения мест повреждения кабельных линий. Статья этого номера посвящена анализу рынка и сравнению прожигающих установок, без которых просто невозможно производить комплекс работ по поиску и отысканию мест повреждений высоковольтных кабельных линий.
Самой популярной схемой поиска повреждений на энергетических кабелях в России является традиционная схема «прожиг — импульсная рефлектометрия — индукционный поиск — подтверждение акустикой».
Для эффективного отыскания повреждений с помощью импульсной рефлектометрии и индукционного поиска необходим качественный прожиг, обеспечивающий преобразование высокоомных однофазных повреждений кабеля в низкоомные двух- или трехфазные с появлением надежного металлического мостика в месте повреждения. Если при прожиге удается достичь замыкания жилы на жилу то дальнейших проблем с отысканием точного места повреждения, как правило, не возникает.
Специалисты по обслуживанию кабельных линий нередко сталкиваются с таким неприятным явлением, как замыкание одной жилы на оболочку кабеля, при котором методы импульсной рефлектометрии и индукционного поиска не позволяют обнаружить точное местоположение дефекта. В данном случае необходимо сначала разрушить металлический спай между жилой и оболочкой, что на практике не всегда удается осуществить без ущерба для состояния всего кабеля.
Технология процесса прожига
Первый этап — предварительный высоковольтный прожиг осуществляется с помощью высокого напряжения и низких токов до момента образования пробоя в кабеле. Стандартная прожигающая установка выдает максимальное напряжение порядка 20-25 кВ. Процесс высоковольтного прожига происходит следующим образом: на поврежденный кабель подается минимальное напряжение и затем происходит его плавный подъем до 20-25 кВ или до того значения, на котором удается добиться пробоя, после чего начинается процесс прожига.
Считается, что максимальное напряжение при прожиге не должно превышать 0,5-0,7 U исп., однако на практике такого напряжения не всегда хватает, чтобы осуществить предварительный прожиг. Если прожигающая установка, выдающая максимальное напряжение 20–25 кВ, не в состоянии обеспечить пробой кабеля, дополнительно в комплексе с ней используют установку с максимальным напряжением 60–70 кВ, но с меньшей мощностью. Оборудование данного типа называют установками для испытаний и прожига высоковольтных кабелей, они могут подключаться к прожигающей установке, либо использоваться обособленно.
Второй этап — прожиг, начинается с момента пробоя кабеля и возникновения короткого замыкания и осуществляется с помощью понижения напряжения и увеличения силы тока до момента преобразования однофазного замыкания в двух- или трехфазное (сваривания жилы с жилой). Вначале источник высокого напряжения разрушает изоляцию кабеля минимальным током, затем, по мере того как осуществляется прожиг, значения напряжения постепенно снижаются, а значения тока увеличиваются.
В случае дополнительного использования установки для испытания и прожига с максимальным напряжением 60– 70 кВ, она производит процесс прожига напряжением от 60–70 кВ до 20–25 кВ, после чего в работу автоматически включается основная прожигающая установка, обладающая большей мощностью.
Третий этап — дожиг, является завершающим этапом прожига и производится на низких напряжениях и высоких токах порядка 20–60 А в зависимости от модели прожигающей установки. Данный этап осуществляется с помощью низковольтного источника, который автоматически подключается при падении напряжения до определенных значений.
В случае возникновения замыкания одной жилы на оболочку для разрушения проводящего мостика между жилой и оболочкой используют специальные достаточно мощные прожигающие установки, способные выдавать большие значения токов (300 А). Нужно отметить, что использование установок данного типа может приводить к снижению ресурса кабеля и его повреждению в иных, «слабых» местах.
Таблица 1. Типы установок для прожига кабелей
Наименование оборудования | Город | Установки испытания и прожига (60–70 кВ) | Установки прожига (напряжение 20–25 кВ, ток от 20 А) | Установки дожига для разрушения мостика между жилой и оболочкой (ток 300 А) |
АИП-70 | г. Пенза | V | ||
ВПУ-60 (заменяет АИД-60П Вулкан М) | г. Обнинск | V | ||
АПУ 1-3М | г. Пенза | V | ||
ВУПК-03-25 | г. Тула | V | ||
МПУ-3 Феникс | г. Обнинск | V | ||
СВП-05Ц | г. Харьков | V | ||
УП-7-3М | г. Ярославль | V | ||
УД-300 | г. Пенза | V | ||
ВП-300 | г. Харьков | V | ||
ИПК-1 (ВПУ-60+ МПУ-3 Феникс) | г. Обнинск | V | V |
Типы прожигающих установок
Среди предлагаемого на российском рынке отечественного и украинского оборудования существуют три типа прожигающих установок (Таблица 1):
- Установки для испытания и прожига высоковольтных кабелей с максимальным напряжением 60–70 кВ, используемые как вспомогательное оборудование на начальных этапах прожига.
- Установки прожига с максимальным напряжением 20–25 кВ, с несколькими высоковольтными и одним низковольтным источником.
- Установки дожига, предназначенные для разрушения металлического мостика между жилой и оболочкой большими токами (300 А) в случае однофазного замыкания на жилу.
Прожигающая установка ВУПК-03-25
Прожигающая установка предназначена для прожига дефектной изоляции и создания металлического соединения между жилами кабеля в месте повреждения изоляции.
- снят с производства
- Запросить аналог
Устройства для испытаний электротехники, прожига дефектной изоляции и создания металлического соединения между жилами кабеля в месте повреждения изоляции.
1992-2019 © ООО «ТЕХНО-АС»
Адрес:
140406, г. Коломна, ул. Октябрьской революции, д. 406
Многоканальные телефоны:
, 8 (496) 615-16-90
Email:Часы работы:
с 8:00 до 18:00
Информация на сайте носит справочный характер и не является публичной офертой, определяемой положениями статьи 437 ГК РФ. Технические характеристики и комплект поставки товара могут быть изменены без предварительного уведомления. Уточняйте информацию у наших менеджеров.
Важные параметры прожигающих установок
Прожигающая установка состоит из нескольких высоковольтных источников и одного низковольтного. Максимальные значения тока и напряжения каждого источника называют ступенями, их количество может варьироваться от трех до шести у разных производителей (Таблица 3).
Таблица 3. Основные технические характеристики прожигающих установок разных производителей
Наименование оборудования | Максимальное выходное напряжение, кВ | Максимальный выходной ток, А | Количество ступеней | Характеристики ступеней, кВ |
АПУ 1-3М | 24 | 30 | 4 | 25; 5; 1; 0,3 |
ВУПК-03-25 | 25 | 55 | 5 | 20; 5; 1,05; 0,4; 0,15 |
МПУ-3 Феникс | 20 | 20 | 3 | 20; 5; 0,6 |
СВП-05Ц | 25 | 20 | 3 | 20; 5; 1 |
УП-7-3М | 22 | 65 | 6 | 22; 11; 5,5; 1,4; 0,55; 0,16 |
ИПК-1 (ВПУ-60+ МПУ-3 Феникс) | 60 | 20 | 4 | 60; 20; 5; 0,6 |
УД-300 | 0,25 | 300 | 1 | 0,25 |
ВП-300 | 0,25 | 300 | 1 | 0,25 |
В процессе прожига по мере снижения напряжения пробоя осуществляется переход на следующую ступень прожигания. Как только по параметрам установки представляется возможность включить на параллельную работу (или отдельно) более мощную ступень, она включается в работу. Под более мощной ступенью понимается установка с меньшим внутренним сопротивлением и большим током.
Установки для прожига и диагностики кабеля
Такие установки весят достаточно много, а поврежденный кабель приходится искать где угодно: и в тоннеле, и под землей и в кабельной сборке. Поэтому электролаборатории обычно оборудуют передвижные установки на базе автомобилей или автобусов. Кроме установки автомобиль оборудуется бензиновым или дизельным генератором.
Установки для прожига места повреждения силовых кабелей обычно не универсальны, рассчитаны под конкретный ряд напряжений, регулируемых ступенчато или не имеют ступеней регулировки. Приведем несколько примеров:
- Установка АПУ 1-3М, выдаёт напряжение до 24 кВ, а ток до 30 А.
- Установка ВУПК-03-25, напряжение 25 кВ, ток – 55А.
- Установка ИПК-1, комбинированная, состоит из ВПУ-60 и МПУ-3 Феникс, прожигает напряжением до 60 кВ, выходные токи до 20А.
Низковольтная дожигающая установка: УД-300 и ВП-300, выдает 250 Вольт с током до 300А. Не имеют ступеней регулировки.
На видео ниже наглядно показано, как работает установка для прожига кабеля УПИ-10:
Полезное по теме:
Возможность непрерывного прожига
Предыдущее поколение прожигающих установок использовало ручное переключение ступеней оператором, что нередко приводило к прерыванию горения дуги, увеличивало время прожига и создавало возможность для «заплывания» пробоев.
Современные устройства прожига снабжены автоматическими системами переключения ступеней прожига, исключающие разрыв дуги в месте прожига, что существенно сокращает затраты времени на подготовительные работы для отыскания мест повреждения. Часто такой прожиг называют «бесступенчатым», что не должно вводить специалистов в заблуждение: данное понятие вовсе не означает отсутствие нескольких силовых блоков (ступеней) — просто переключение между ними производится автоматически, без участия оператора.
Для генерации высокого напряжения в конструкции прожигающих установок используются либо масляные трансформаторы, либо «сухие» трансформаторы — силовые транзисторы (Таблица 4). Вопрос автоматического переключения ступеней без разрыва дуги решен в обоих типах устройств, однако существует мнение, что только сухие трансформаторы могут обеспечить непрерывный прожиг в любых условиях. Связано данное явление с разным энергопотреблением двух видов трансформаторов в режиме короткого замыкания. Масляные трансформаторы имеют существенно большее энергопотребление в режиме короткого замыкания, поэтому держать их включенными одновременно в процессе всего прожига неэффективно, следовательно, при понижении напряжения происходит отключение источника с масляным трансформатором, генерирующего более высокое напряжение.
Таблица 4. Вес и габариты оборудования в зависимости от типа трансформатора
Наименование оборудования | Тип трансформатора | Вес оборудования, кг |
АПУ 1-3М | масляный | 260 |
ВУПК-03-25 | сухой | 45 |
МПУ-3 Феникс | сухой | 55 |
СВП-05Ц | масляный | 215 |
УП-7-3М | масляный | 210 |
Очень часто переход на более мощную ступень прожигания приводит сначала к «заплыванию», т.е. к подъему пробивного напряжения, при этом следует вернуться к предыдущей ступени более высокого напряжения, а затем после снижения напряжения пробоя переходить на следующую ступень.
В ситуации, когда происходит «заплывание» пробоя и повторный рост напряжения, в типах устройств с масляными трансформаторами более высокий по напряжению источник может быть уже отключен, что приводит к прерыванию дуги. Напротив, «сухие трансформаторы» (силовые транзисторы) в режиме короткого замыкания имеют почти нулевое энергопотребление, что позволяет держать их включенными одновременно, благодаря чему дуга не прерывается ни при падении напряжения, ни при его росте («заплывании» пробоя). Считается, что в борьбе с заплывающими пробоями лучшими показателями обладают прожигающие установки, изготовленные с применением сухих трансформаторов.
Синхронизация работы с устройствами высоковольтного прожига
В начале статьи, рассматривая технологию процесс прожига, мы говорили о возможности подключения устройств высоковольтного прожига, которые могут начать прожиг с 60–70 кВ (Таблица 2). Сегодня все серьезные производители прожигающей техники применяют аналогичные решения, так как это существенно расширяет возможности при выполнении работ по поиску повреждений высоковольтных кабельных линий. Прожигающие установки используются не только стационарно, но и в составе передвижных электротехнических лабораторий, где всегда реализуется возможность высоковольтного прожига.
Высоковольтное прожигающее устройство ВПУ-60
Высоковольтное прожигающее устройство ВПУ-60 предназначено для прожига поврежденной изоляции силовых кабелей номиналом 380 В – 10 кВ в диапазоне от 60 кВ до 0. От своего предшественника ВПУ-60 отличается большей мощностью и оптимизированной вольтамперной характеристикой. Эти обстоятельства позволяют существенно повысить эффективность и сократить время высоковольтного прожига. Кроме того, прибор более надежен и более удобен в эксплуатации.
- Цена: по запросу
- Купить
Мощность прожигающей установки
Мощность прожигающей установки является одной из важных характеристик, влияющей на время прожига и его эффективность. Также более мощные установки хорошо зарекомендовали себя в условиях, когда кабели сильно замокли и требуют «сушки» (Таблица 5).
Таблица 5. Примеры значений выходной мощности прожигающих установок
Наименование оборудования | Выходная мощность, кВА |
МПУ-3 Феникс | 6 |
СВП-05Ц | 8 |
Длительность работы без перегрева
На сложных и неудобных повреждениях прожиг может продолжаться несколько часов. Если при этом прибор перегревается, то процесс приходится прерывать, что может привести к повторному заплыванию места повреждения. Чем длительнее непрерывное время работы установки, тем лучше (Таблица 6).
Таблица 6. Время непрерывной работы прожигающих установок разных производителей
Наименование оборудования | Время непрерывной работы, заявленное производителем |
АПУ 1-3М | 5 минут в режиме прожига при заплывающем пробое, повторное включение через 30 минут |
ВУПК-03-25 | Цикличная работа: 1,5 минуты работы – 40 секунд перерыв |
МПУ-3 Феникс | Около 3 часов при температуре +20°С, без ограничений прожига по времени при температуре ниже 0°С |
СВП-05Ц | Наибольшее время непрерывной работы при токе нагрузки: 100% от максимального – 10 минут, повторное включение через 5 минут 70% от максимального – 30 минут, повторное включение через 15 минут |
УП-7-3М | Не более 20 минут, повторное включение через 20 минут |
Сравнение стоимости установок для прожига высоковольтных кабелей
В завершение статьи поговорим о таком немаловажном факторе, как стоимость оборудования.
Предложений прожигающих установок на рынке не так уж много, среди них условно можно выделить три основных ценовых сегмента: низкобюджетные (Харьков, Пенза, Тула), среднебюджетные (Обнинск, Ярославль), и высокобюджетные (Германия, Австрия и прочие импортные установки). В сегменте средне- и высокобюджетных установок производители ведут активную маркетинговую и рекламную деятельность с целью донести до потребителя информацию о выгодах приобретения той или иной модели и обосновать ее цену: участвуют в выставках, проводят технические семинары. Производители малобюджетных установок уделяют меньше внимания маркетингу и продвижению, делая ставку на ценовую доступность оборудования.
Установки, о которых идет речь в данной статье, трудно сравнивать только по цене, так как все они сконструированы по разным схемам, обладают разными возможностями, каждый производитель делает упор на некие индивидуальные преимущества, поэтому специалистам мы советуем, основываясь на материале нашей статьи, прежде всего разобраться в характеристиках оборудования, понять его возможности, выбрать оптимальный вариант для работы в ваших условиях, и только потом проводить собственный анализ «цена — мои преимущества при работе с данной установкой». Актуальные цены на сайте нашей компании — www.electronpribor.ru
Надеемся, что наша статья поможет вам сделать правильный выбор.
Подразделение аналитики и маркетинга ООО «ЭЛЕКТРОНПРИБОР»
источник
Что такое прожиг кабеля и для чего его применяют?
Если на высоковольтном кабеле имело место повреждение изоляции, то необходимо локализовать аварийный участок, после чего приступить к устранению аварии. Важным условием для применения методик поиска дефектной изоляции является уровень переходного сопротивления в месте аварии, оно не должно быть больше 3,0-5,0 кОм. В противном случае с локализацией повреждения возникнут проблемы.
В некоторых случаях не поможет даже низкое переходное сопротивление. Например, эффективный акустический метод может дать сбой при большой глубине прокладки кабеля или в случае проблем с определением ее прохождения. В таких случаях применяется аппарат прожига оболочки кабеля. С помощью прожигающей установки можно из однофазных замыканий жил кабеля создать межфазные, и локализировать их индукционным методом. Подробно о различных способах поиска повреждений, в том числе и обрывов в кабельных линиях, можно узнать на нашем сайте.
Прожиг осуществляется энергией, которая выделяется в месте КЗ (то есть, принцип работы такой же, как у нагревательного кабеля). В результате обугливается оболочка и понижается переходное сопротивление там, где имеется дефект изоляции.
Заметим, что с помощью данной методики можно определить повреждения на кабельных муфтах, концевиках. Если кабельная трасса незакрыта, то обнаружить проблемное место не составит труда тактильным способом или по выделяемой гари.
Главные показатели
Все изложенное выше свидетельствует, что основной характеристикой прибора будет рабочий ток и выходное напряжение. Не меньшее значение имеет также число ступеней.
Нужный результат может быть достигнут при таком условии – показатели переходного и внутреннего напряжения в зоне повреждения должны как-можно больше соответствовать друг другу. В реальности при значительном отличии данных параметров работа прибора просто невозможна.
Только применение многоступенчатой методики поможет решить подобную проблему. Суть процесса заключается в переключении при более низком переходном напряжении на источник с меньшими параметрами напряжения. 3-6 ступеней имеют современные образцы приборов прожига.
Несколько моделей подобного оборудования:
Типы установок для прожига кабелей
В России и странах ближнего зарубежья рассматриваемые установки принято классифицировать по назначению. В связи с этим аппараты для прожига разделяют на следующие три вида:
- Устройства, используемые как в процессе испытаний, так и при высоковольтном прожиге. Пиковое напряжение таких аппаратов около 60,0-70,0 киловольт.
- Приборы с рабочим диапазоном до 20,0-25,0 киловольт. Как правило, на них устанавливаются несколько высоковольтных источников и один низкого напряжения.
Прожигающий аппарат АПУ 1-3 М - Дожигающие аппараты, разрушают контакт (металлический мост), образующийся при однофазном КЗ одной из жил на оболочку кабеля. Для этой цели через поврежденный кабель пропускается ток величиной до 300,0 Ампер.
Установки для прожига кабеля
В странах СНГ и РФ оборудование для прожига классифицируется с учетом его назначения. Рассмотрим три основных вида:
- приборы для высоковольтного варианта прожига и выполнения испытательных мероприятий. В наивысшей точке напряжение данных устройств достигает 60-70 киловольт;
- в переделах 20-25 кВт работает аппаратура, применяемая с наличием в ней одного источника с низким номинальным напряжением и несколькими – с высоким;
- появившийся при замыкании однофазного типа на одном из токопроводников контакт на оболочку разрушают агрегаты дожигающей категории. Необходимый результат достигается пропуском через поврежденное место тока до 300 Ампер.
Важно внимательно учесть при выборе устройства прожига указанные в инструкции эксплуатационные характеристики и возможную несовместимость оборудования от разных производителей.
Технология выполнения процесса прожига
На практике чаще всего применяется три методики:
- Для прожига соединительных муфт.
- Снижения сопротивления изоляции кабеля.
- Разрушение спайки однофазного КЗ.
Прожиг муфт
Муфты, надеваемые на концы кабеля, могут подвергнуться разрушению. Причиной этого может быть как неправильный монтаж, так и деструктивное воздействие внешней среды. Для обнаружения таких повреждений регулярно проводятся испытания кабельных сетей с целью профилактики.
Методика испытаний следующая:
- Используя высоковольтный прибор на одну из жил подается напряжение пробоя. После серии пробоев должно уменьшиться напряжение и электрическая прочность. В противном случае все свидетельствует о том, что возникли проблемы с соединительными или концевыми муфтами (последнее маловероятно, чаще всего неисправность происходит в месте наращивания кабеля).
- Непрерывный прожиг продолжается до 10-и минут, если за этот период напряжение разряда не понизится, испытания прекращают и приступают к локализации повреждения.
Выбранный метод поиска места повреждения подбирается в зависимости от того, какая установилась величина сопротивления в месте пробоя.
Проверка кабеля
Как и в предыдущей методике проблемы с оболочкой кабеля чаще всего обнаруживают при профилактике, которую необходимо регулярно делать даже для внешне исправных кабелей. Если при проверке наблюдается серия разрядов с постепенным снижением напряжения, все указывает на повреждение изоляции, например, прокол кабеля. Как только установится минимальное напряжение разряда, выполняется прожиг на максимальной ступени, то есть повышенным напряжением.
В результате изоляция обуглиться и высохнет, высоковольтные импульсы разрядов сменяться устойчивым протеканием тока в месте КЗ, при этом будет наблюдаться падение сопротивления в аварийной точке. Это потребует понижения напряжения источника, то есть, снизить ступень. Если в процессе прожига величина сопротивления перехода начнет повышаться, ступень меняется на более высокую, пока ситуация не стабилизируется.
Теперь рассмотрим, схему подключения кабеля, когда необходимо из однофазного КЗ сделать межфазное.
Как из однофазного КЗ сделать двухфазное
Приведенная схема работает по следующему алгоритму:
- Используя прожигательный прибор «2» мы разрушаем контакт между поврежденной жилой «с» и металлической оболочкой кабеля.
- При этом подключение испытательного устройства «1» производится одним концом к двум целым жилам «a» и «b», а вторым к разряднику «3» (также подключенного к жиле «с»). Емкость, образуемая двумя жилами, накапливает заряд до тех пор, пока он не будет соответствовать напряжению разрядника (как правило, от 5,0 до 10,0 киловольт). При импульсном разряде разрушается контакт между поврежденной жилой и оболочкой.
- За счет наличия заряда на жилах «a» и «b» при переходных процессах с большой вероятностью может произойти пробой между целыми жилами и поврежденной «с». В этом случае напряжение испытательной установки «2» будет недостаточно для срабатывания разрядника.
Заметим, что при помощи данной схемы может не получиться создать межфазное КЗ. При этом попытки увеличения выходного напряжения испытательного прибора могут вызвать пробой совершенно в другой точке.
Порядок выполнения работ
В принципе выделяют два вида повреждений – обрыв кабеля или одной из его жил и замыкание. Однако, замыкание не столь однозначно, оно может быть низкоомным и высокоомным. В первом случае, обычная прозвонка покажет КЗ, во втором – нет. Для уменьшения сопротивления поврежденного места необходимо прожечь изоляцию до образования низкоомного замыкания или перевода однофазного замыкания в 2-3-фазное.
Начальный этап прожига кабеля происходит под высоким напряжением, но с низким током. Под действием высокого напряжения происходит пробой изоляции и начинает протекать ток. Постепенно напряжение пробоя изоляции снижается вместе с сопротивлением поврежденного участка. По мере роста тока и снижения сопротивления, понижают напряжение прожига и повышают ток. Так добиваются снижения сопротивления с десятков кОм до единиц-десятков Ом. Напряжение снижают для ограничения мощности прожига. Этот процесс проводят как при постоянном, так и при переменном токе, алгоритмы работы установки зависят от конкретной модели.
Прожиг кабеля позволяет локализировать поврежденный участок, как визуально, так и по запаху гари и прочим последствиям процесса.
Среди типовых ситуаций можно выделить пробой в соединительной муфте. Тогда для прожига характерно снижение сопротивления в процессе выполнения работ и обратное повышение после его завершения. Другой случай, когда поврежденное место находится под водой и протекает практически постоянное значение тока, а сопротивление поврежденного участка остается в пределах 2-3 кОм. После прожига проводят поиск поврежденного места акустическим или индукционным методом.
При прожиге кабелей под высоким напряжением происходят пробои, а после 5-10 минут повторения процедуры напряжение пробоя снижается, тогда установку переводят на другую ступень прожига.
Если в процессе проведения прожига места повреждения силовых кабелей напряжение пробоя обратно повысилось, установку вновь переводят на большее напряжение и так, пока не добьются устойчивых низкоомных результатов и образования надежного металлического мостика между жилами.
Для разрушения металлического соединения, возникшего в результате пробоя, используют импульсные электродинамические воздействия, например, путем разряжения ёмкости двух исправных жил на третью и экран. Или используют ёмкость батареи конденсаторов заряженных до высокого напряжения (порядка 5 кВ) и ёмкости до 200 мкФ. От ёмкости прямо пропорционально зависит энергия разряда.
При первичном высоковольтном прожиге токи составляют доли и единицы ампер, а при дальнейших понижениях напряжения ток возрастает до сотен ампер. Этой процедурой занимаются специалисты из электролаборатории.
На картинке изображена одна из схем прожига кабеля, где нижняя жила повреждена: