Советы профессионалов, как выбрать и рассчитать трансформатор тока


Описание и принцип действия

Трансформатор тока – электромагнитное преобразовательное устройство, конструктивно, состоящее из:

  • цельный магнитопровод;
  • две обмотки, обязательно изолированные между собой и от земли (первичная и вторичная);
  • пластиковый запаянный неразборный корпус;
  • контактные клеммы для подключения прибора для измерений;
  • крепежные элементы для монтажа прибора;
  • табличка на корпусе, бумажный паспорт.

Обмотки преобразователя делятся между собой на первичную и вторичную, включаются в энергетическую цепь строго по определенным правилам.

Первичная обмотка подключается к электрической цепи последовательно (рассекая токопровод). Вторичная обмотка замкнута на определенную нагрузку измерительных элементов, релейной аппаратуры и автоматики. Она пропускает через себя величину тока, которая пропорциональна токовому значению первичной обмотки.

Принцип действия любого из них основан на законе электромагнитной индукции, действующий в равной степени в электрических и магнитных полях электрических машин и механизмов.

Его суть – преобразование величины тока, протекающего через силовую цепь энергетической установки, к которой подключается первичная обмотка трансформатора тока с определенным количеством витков, во вторичное пониженное значение тока, соблюдая при этом пропорциональность значения.

Эта пропорциональная величина электротока на выходных клеммах вторичной обмотки трансформатора необходима для нормальной работы измерительной, релейной аппаратуры, приборов учета электроэнергии в системах силовых энергетических установках до и выше 1000 вольт.

Прослеживается прямая зависимость номинальной работы всех измерительных систем, приборов контроля и управления от правильного выбора трансформаторов тока.

Основные понятия о трансформаторах

Основным предназначением трансформатора (Т) является преобразование переменного напряжения (U) в необходимые номиналы. Т получил широкое применение как простейший преобразователь переменного U, хотя преобразовывать можно и постоянный ток, но этот способ является экономически невыгодным. Т работает только от переменного U, и это связано с принципом его действия.

Трансформатор (Т) — преобразователь переменного входного U в необходимый номинал или номиналы для питания потребителей. Большинство потребителей питаются от постоянного тока, который получается при преобразовании переменного U в постоянное при помощи диодного моста или какого-либо другого выпрямителя. Этот преобразователь переменного U является примитивным по своему устройству, однако есть некоторые особенности конструктивного плана.

Т состоит из магнитопровода и катушек, на которые намотан медный изолированный провод. Магнитопровод изготавливается из спецстали, которая обладает ферромагнитными свойствами и называется ферромагнетиком. Основное отличие ферромагнетиков от обыкновенной стали заключается в наличии атомов, обладающих постоянными спиновыми и орбитальными моментами (СиОМ). СиОМ зависят от температуры и магнитного поля, и благодаря этому обмотки Т при работе не перегреваются из-за отсутствия токов Фуко. Специальная трансформаторная сталь с ферромагнитными свойствами сводит образование токов Фуко к минимуму, которого недостаточно для перегрева обмоток.

Самыми распространенными материалами для изготовления магнитопровода являются электротехническая трансформаторная сталь (ЭТС) и пермаллой. ЭТС отличается от обыкновенной стали и физико-химическими свойствами, так как содержит значительную массовую долю кремния (Si), который при помощи специальных технологий, предусмотренных на заводе изготовителе, соединяется с углеродом под действием высокой температуры и давления.

Эта технология изготовления ЭТС получила широкое распространение, так как используется практически во всех Т. Еще одним видом ферромагнетика для изготовления магнитопровода является пермаллой, который представляет собой соединение сплава никеля и железа, использующийся для изготовления Т небольшой мощности. Площадь магнитопровода влияет мощность (P) Т.

Обмотки являются катушками с намотанным изолированным проводом со специальным лаковым покрытием. Диаметр провода и количество витков зависит от U и тока (I), а также это влияет и на P трансформатора. Количество катушек должно быть не менее 2, однако допускается одна катушка при условии, что на нее намотаны 2 обмотки (одна из которых первичная).

Принцип работы

Принцип работы Т достаточно прост и основан на нахождении проводника с количеством витков n в переменном магнитном поле. Переменное магнитное поле (ПМП) — поле, значение и направление линий магнитного потока (Ф) которого изменяется по закону изменения значений переменного I, генерирующего его с течением времени. При прохождении тока по виткам катушки первичной обмотки (КПО) образуется Ф, пронизывающий и катушку вторичной обмотки (КВО).

Классификация

Преобразователи, кроме описанных выше направлений функционирования, принято классифицировать по основным признакам, знание которых необходимо для их правильного выбора в различных силовых электроустановках.

Последовательные трансформаторы принято классифицировать по:

По роду установки

Класс измерительных токовых устройств делится на несколько вариантов общего или специального назначения:

  • Переносные – трансформаторы специального назначения, применяемые для контрольных измерений или испытаний в мобильных электротехнических лабораториях;
  • Накладные – устройства преобразования специального назначения, использующиеся на высоковольтных установках, наложением сверху проходных изоляторов цепей силового трансформатора сети;

  • Встроенные – измерительные трансформаторы специального типа, применяемые внутри различных электрических аппаратов и машин для преобразования величин внутренней цепи оборудования;
  • Внутренней установки – электротехнические устройства общего назначения применяемые на высоковольтных распределительных электросистемах, или силовых цепях низкого напряжение (400В);
  • Наружной установки – приборы преобразования общего назначения, применяемые открытых распределительных сетях высокого напряжения (свыше 1000В).

Точное определение оборудования на участке цепи, к которым будут подключены последовательные преобразователи становится одним из важных критериев их выбора.

По способу установки

Видовые различия корпусов последовательных трансформаторов электрической сети разделяет их по классу монтажа на:

  • Проходные – играют роль проходного изолятора сквозь определенное препятствие в системе электроустановки. Выводы первичных обмоток у них всегда расположен сверху, другой снизу;
  • Опорные – конструктивно имеют расположение всех первичных выводов на одной стороне. Их установка производится всегда на ровную опорную поверхность.

Правильное определение типа монтажа измерительного прибора для преобразования тока не допустит ошибок дальнейшего проектирования новой энергетической системы или ремонте уже созданной установки.

По типу изоляции

Группы измерительных приборов преобразования имеют различия в составе материала изоляции своих обмоток и корпуса, делятся на несколько основных:

  • Твердая – тип сухой изоляцией в виде фарфора, бакелита и подобных материалов;
  • Вязкая – изоляция, полученная путем заливки различным компаундом.
  • Смешанная – использование в виде изолирующего материала бумажно-масляных элементов;
  • Газовая – изолирование первичной от вторичной обмотки проводится воздушным зазором.

Изоляционный материал оборудования выбирается от типа электроустановок, где они применяются. Он зависит и от величины номинального напряжения на участке установки приборов, климатических условий, где будет эксплуатироваться распределительное устройство и других факторов.

По количеству ступеней трансформации

Трансформаторы делятся на два основных типа в этом разрезе классификации:

  • Одноступенчатые – такие устройства имеют одну первичную и одну вторичную обмотку в устройстве, один неизменяемый коэффициент трансформации;
  • Многоступенчатые – электромагнитный аппараты каскадного вида, устройство которых содержит или возможность изменения числа витков первичной или вторичной обмотки, или содержит сразу несколько вторичных обмоток с дифферентом их числа витков. Эта конструкция позволяет иметь несколько коэффициентов трансформации в одном устройстве;

Первый класс трансформаторов наиболее распространен в применении энергетических установок общего назначения. Второй тип применяется в специализированных участках распределительных сетей по необходимости.

По количеству вторичных обмоток

Соответственно, исходя из количества ступеней трансформации приборы делятся на:

  • С одной вторичной обмоткой;
  • С двумя и более вторичными обмотками.

Основной вид трансформаторов в таком делении относит первые его вид к приборам общего назначения, второй к типу специального назначения.

По назначению

Основное назначение этого электромагнитного прибора – трансформация тока из одной величины в другую. Существует два основных направления, использования трансформаторов:

  • Для измерений – передача измерительных параметров приборам, показания которых снимает персонал электроустановки с целью анализа работы энергетических установок высокого напряжения (>1000В). Первичная обмотка трансформатора тока включается в разрыв энергетической цепи, а к его вторичной обмотке подключается требуемый измерительный прибор, типа амперметра, обмоток ваттметров или счетчиков учета электроэнергии. Их монтаж производится в энергетических установках, где невозможно прямое подключение измерительной аппаратуры, обмоток электросчетчиков напрямую, но необходимо при этом их нормальное функционирование.
  • Для защиты – передача измерительной информации устройствам защиты, или любым модулям управления энергетической системы, в состав которой они включены. Обеспечивает изолированную работу этих приборов в высоковольтных установках или силовых цепях с напряжением 400В. Изоляция реле и контрольных приборов от первичной цепи установки обеспечивает безопасную доступность к таким модулям обслуживающего персонала для их ремонта и эксплуатации.

Часто трансформаторы тока имеют смешанный функционал.

По классу напряжения

Важным критерием выбора устройств преобразования. Он включает в себя два основных класса:

  • Для высоковольтных распределительных установок – 6/10/35 киловольт и выше – применения преобразователей в таких сетях имеют увеличенных габарит и некоторые конструктивные различия;
  • Для низковольтных распределительных устройств – применение до 1000В – наиболее распространенный класс напряжения таких приборов равен 400В. В этом классе габариты трансформаторов зависят от номинальных токов первичных обмоток, а конструктивное исполнение обладает значительным многообразием в зависимости от типа монтажа и расположения участка их установки.

Неправильный подбор класс напряжения при выборе трансформаторов сделает их применение невозможным в проектируемой или работающей энергетической системы или ее участка.

По методу преобразования

В силу развития прогресса в электротехнике этот параметр теперь входит в основную классификацию приборов преобразования, состоит из типов:

  • Электромагнитные – приборы преобразования, основанные на обмотках медной проволоки, с цельным стальным сердечником, наиболее распространенный экономически выгодный вид трансформаторов, широко используемый в различных распределительных сетях;
  • Оптико-электронный – новый тип преобразования токовой величины, основанный на прогрессивно инновационном устройстве электромагнитных приборов, их изоляции, с применением новейших материалов. Выше по цене, но имеющий более точные выходные параметры.

Резюмируя перечисленную выше классификацию электромагнитного оборудования, вывод по их верному выбору на поверхности – только полное изучение всех перечисленных параметров устройств преобразования тока, сравнение их с параметрами энергосистемы, где они будут эксплуатироваться, не позволит сделать непростительных ошибок при их подборе, дальнейшей установки и качественному использованию.

Выбор трансформатора тока

При решении вопроса, как выбрать трансформатор тока, прежде всего, необходимо руководствоваться требованиями по установке устройства.

Классификация трансформаторов тока

Трансформаторы подразделяются на классы по роду установки, в зависимости от места нахождения устройства:

  1. Установка ТТ в ОРУ.
  2. УстановкиТТ в ЗРУ.
  3. Для работы внутри оболочек устройстви внутри масляной или газовой среды,например, внутри высоковольтных масляных или элегазовых выключателей.
  4. Специальная установка.

По способу установки, зависящей то конструктивной особенности устройства:

  1. Опорные, для монтажа на ровной опорной поверхности;
  2. Проходные ТТ находятся на шинопроводах в комплексных распределительных устройствах, используются в качестве проходного изолятора;
  3. Шинные –особенность этого трансформатора заключается в том, что в роли первичной обмоткивыступает шина РУ,которая пропущена через окно трансформатора, устройство крепиться на шине специальными винтами на планке;
  4. Встроенные используются для установки в силовых трансформаторах, баковых выключателях или токопроводах;
  5. Разъемные, предназначены для быстрой установки на шинах или кабелях без отключения токовой цепи.

По типу изоляции:

  1. Литая изоляция;
  2. Исполнение в пластмассовом корпусе;
  3. Применение твердой изоляции, с использованием фарфора, бакелита, полимеров, эпоксидной смолы;
  4. Вязкая изоляция из заливочных обволакивающих компаундов;
  5. Маслонаполненные;
  6. Газонаполненные,применяемая для трансформаторов, установленных на высоких и сверхвысоких напряжениях.
  7. Смешанная изоляция, (бумажно-масляная), ресурс бумажной изоляции даже после 40 лет без эксплуатации может оставаться очень большим.

Недостаточная защита трансформатора может привести к конденсированнию влаги на его дне, влажность может достичь опасных значений, приводящих к электрическому или тепловому пробою.

В зависимости от количества ступеней трансформации:

  1. Одноступенчатые (один коэффициент трансформации)
  2. Многоступенчатые или каскадные (несколько коэффициентов трансформации)

По количеству вторичных обмоток:

  1. Наличие одной вторичной обмотки.
  2. Существование нескольких вторичных обмоток.

По функциональному назначению вторичной обмотки:

  1. Для измерения или учета.
  2. Для выполнения защитных функций.
  3. Для измерения и защиты.
  4. Для выполнения измерений в различных переходных режимах.

По количеству коэффициентов трансформации:

  1. Наличие одного коэффициента трансформации.
  2. Несколько коэффициентов трансформации, полученных после изменения числа витков в обмотках или при наличии нескольких вторичных обмоток.

Трансформаторы тока различаются по классу напряжения:

  1. До 1000 В.
  2. Выше 1000 В.

Методы преобразования:

  1. Электромагнитные.
  2. Оптико-электронные.

По типу изоляции обмоток:

  1. Твердая изоляция.
  2. Газовая изоляция

Таблица №1. Типы трансформаторов тока

Таблица №1. Типы трансформаторов тока

Таблица №1. Типы трансформаторов тока

Класс точности трансформатора тока

При правильном выборе трансформатора тока нужно, прежде всего, руководствоваться сферой измерения где будет применяться трансформатор тока, если ТТ, например, будет применяться для АИИС КУЭ для снятия показаний коммерческого учета, то он должен иметь высокий класс точности.

Погрешности ТТ прежде всего зависимы от габаритов и конструктивных особенностей магнитопровода, а также от количества витков и сечения провода обмотки. На погрешность в показаниях большое влияние оказывает материал, из которого изготовлен магнитопровод.

При использовании в современных системах коммерческого учета нашли применение ТТ с магнитопроводом, выполненным из нанокристаллических (аморфных) сплавов, ТТ приобретает высокий класс точности измерения 0.5, 0,5S. 0.2S, при малом значении первичного тока.

Аморфные сплавы при повышении класса точности ТТ способствуют увеличению максимальной мощности обмоток, улучшают защиту измерительных приборов, подключенных в цепь с трансформатором, сводят к нулю эффект старения, что позволяет сохранить характеристики устройства. Так получают точные и качественные изделия,которые гарантируют стабильное функционирование систем АИИС КУЭ.

Высокий класс точности создает наиболее узкий диапазон трансформаторных погрешностей.

Различие между классами точности 0,5. 0,2и 0,5S, 0.2S заключается в погрешности обмотки класса 0,5 или 0,2ниже 5% от номинального тока. В таком значении тока,выявляется недоучет электроэнергии, сокращаемый при использовании трансформаторов с классом точности S.

Для различного вида технических измерений, возможно, подключение трансформаторов с классом точности – 1. Для применения в подключении указывающих амперметров разрешается применение ТТ с классом точности – 3.

Как правильно выбрать трансформатор тока

Выбор трансформаторов тока производится, руководствуясь определенными значениями, это: напряжение сети, значения номинального первичного тока, мощность зависящая от нагрузочных показателей потребителя, коэффициент трансформации.

Выбор трансформаторов тока по напряжению

Номинальное значение напряжения (Uном ) ТТ выбирается большим или равным значению максимального рабочего напряжения Uуст.

Выбор трансформатора по первичному току

Значение( I1ном) номинального тока первичной обмотки должно быть выше или быть равным по значению(Iрабmax) рабочему расчетному установочному току высоковольтной линии отходящего от распредустройства. Расчет выбора трансформатора тока также зависит от Iкз, величины термического импульса Iкз в течении 1 сек, и термического импульса тока КЗ в течении 0,525 сек, по результатам срабатывания защит.

При выборе номинального тока трансформатора руководствуются необходимостью обеспечения требований по термической и динамической стойкости к Iкз

Выбор трансформатора тока по нагрузке

При малых номинальных токах и высоких номинальных кратковременных токах термической стойкости, трансформатор ограничен по мощности из-за своих размеров и максимальной магнитодвижущей силы. При увеличении силы намагничивания вдвое, мощность увеличивается в четыре раза. Мощность ограничена зависимостью МДС от тока динамической стойкости. Причина кроется в силовом воздействии электрического поля, которое в случае КЗ будет симметрировать витки первичной обмотки друг против друга. Мощность ограничена малыми габаритными размерами ТТ.

Расчет выбора трансформатора тока по мощности производится в зависимости сечения токопроводящего проводника и расчетной мощности.

Формула расчета в зависимости от сечения проводника

Где Sпр.выбр — выбранное сечение проводника, (мм 2 )

Расчет нагрузочной мощности определяется по формуле

Согласно ГОСТУ параметры ТТ по нагрузке, определяются для трансформаторов тока номинальной мощностью равной 5ВА и 10 ВА с нижним пределом устанавливаемым 3,75 ВА.

Таблица выбора трансформаторов тока

Выбор трансформатора тока по коэффициенту трансформации

Не допускается установка трансформатора тока, имеющего завышенный коэффициент трансформации.

В случае повышенного коэффициента разрешается ставить счетчики на приемном вводе потребителя. На силовых трансформаторах счетчики могут монтироваться со стороны низшего напряжения.

Наибольшим спросом пользуются трансформаторы, имеющие один коэффициент трансформации, он не изменяется на протяжении всего срока эксплуатации.

Примером коэффициентов трансформации считаются ТТ 150/5 (N-30); 600/5 (N-120); 1000/5(N-200); 100/1(N-100)

Источник

Как выбрать

Выбор трансформаторов тока (ТТ) зависит не только от знания их классификации в общем формате, но и требует правильной оценки многих других величин трансформаторов. В электротехнике такие значения принято называть номинальными параметрами.

Номинальные параметры

Правильный выбор ТТ состоит из подбора собственных номинальных величин, проведения тест-проверок, результаты которых станут основополагающими для определения необходимой марки трансформаторов.

Основные номинальные параметры ТТ состоят из:

Рабочее напряжение

Значение величины рабочего напряжения – то есть значение действующего напряжения распределительного установки, куда подбирается определенный измерительный трансформатор, должно быть меньше или равно номинальному напряжению трансформатора. Для эффективного выбора существует стандартный ряд номиналов рабочих напряжений, выраженный в киловольтах: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

Первичный ток ТТ

Второй основной параметр выбора измерительного прибора происходит практически также, как и подбор рабочего напряжения: табличные токовые стандарты токов ТТ сравниваются со значением рабочего тока участка цепи или всей электроустановки, где планируется устанавливаться преобразовательный прибор.

Однако здесь нужно учитывать еще один критерий: в сети с активной нагрузкой и потребителями общего назначения номиналы подбираются без учета поправочных запасов по току, а вот для электрооборудования генераторов, двигателей или других активно-реактивных потребителей требуется при выборе первичного тока ТТ учитывать 10% запас по его величине. Это связано с бросками токовых величин в момент пуска подобного оборудования.

Стандартные величины по которым производится выбор тока первичной обмотки трансформатора заключены в определенный табличный ряд, единицы измерения – амперы: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000.

Если выбор первичного тока с учетом 10% запаса находится между стандартных значений ряда – берется больший из их значений.

Однако здесь необходимо получить данные еще двух обязательных проверок трансформаторов, чтобы окончательно быть уверенным в его правильном выборе:

Проверка на термическую стойкость

Термическая стойкость гарантирует, что выбранный ТТ сможет выдержать тепловой удар и остаться в нормальном рабочем состоянии, без каких-либо повреждений в аварийном режиме короткого замыкания (КЗ), при прохождении через него определенной величины тока короткого замыкания за определенный период времени. Существует специальная формула проверочных значений на термическую стойкость преобразовательных приборов до и выше 1000 В.

Если выбранный трансформатор не подходит под расчетные значения термической стойкости, стоит обратить внимания на другую модель трансформатора во избежание образования проблем с энергетической установкой на этапах ее дальнейшей эксплуатации.

На электродинамическую стойкость

Этот опытно – расчетный процесс тестирует выбираемый трансформатор на стойкость от динамического воздействия на него тока короткого замыкания при аварийном режиме в цепи. Определенный промежуток времени электромагнитный прибор должен выдержать и такое воздействие, оставшись в рабочем состоянии.

В противном случае – требуется смена марки или модели трансформатора. Тест на электродинамическую стойкость определен специальной формулой, в которой участвуют постоянные значения и величины аварийного режима.

Проверка по мощности вторичной нагрузки

Третий обязательный параметр выбора ТТ. Проверка проходит путем сравнительного анализа номинальной мощности ТТ и полной мощности вторичной нагрузки на всем участке цепи, в которой планируется установка выбираемого трансформатора тока. Номинальная величина мощности должна быть больше или равна значению в действующей или проектируемой установке.

Важно знать при этом, что полная мощность нагрузки цепи представляет собой сумму сопротивлений всех коммутационных, измерительных, релейных приборов и аппаратуры управления участка умноженная на квадрат тока этой аппаратуры.

Если подбор осуществляется в проектируемом распределительном устройстве – значения сопротивлений берутся из паспортных данных оборудования, установленного там, если объект уже действующий – величины сопротивления получаются путем замеров сопротивления омметров или другими известными методами.

Коэффициент трансформации

Этот параметр является заключительным номинальным параметром, который должен учитываться для правильного выбора трансформаторов тока для измерительных приборов, релейной системы и модулей управления в распределительных цепях.

Критерий выбора по данному параметру делится на два варианта:

  • Из минимального значения коэффициента трансформации – в этом случае его значения принимается, исходя из номинального значения линии распределительного устройства, в которое подбирается преобразовательный прибор;
  • Из максимального значения коэффициента трансформации –значения минимального коэффициента трансформации умноженное на отношение рабочего тока линии к максимальному значению тока вторичной обмотки трансформатора.

Второй параметр регламентируется нормативными документами «ПУЭ» (Правила устройств электроустановок) и применяется при выборе трансформаторов тока, используемых для питания обмоток учета электроэнергии.

Назначение

Учет сферы применения трансформаторов по назначению устанавливает жесткий выбор его класса точности.

Для питания обмоток коммерческого учета необходимо выбирать трансформаторы с классом точности не ниже 0,5. Бытовой учет электроэнергии ограничивает выбор приборов трансформации с классом точности равным 1

Если подбор ТТ производится для измерительных систем, типа амперметров, ваттметров, – выбираются трансформаторы с классом точности не ниже 3

Для питания релейной аппаратуры или приборов управления в распределительной установке выбор трансформаторов диктуется специальным классом точности повышенного номинала, который обозначается 10 (Р).

Не учитывая сферу применения, нельзя гарантировать правильного выбора трансформатора, т.к. его параметр под названием класс точности значительно влияет на точность снимаемых показаний и будет детальней рассмотрен в этой статьей ниже.

Другие критерии

Проектные институты или технические специалисты, ведущие выбор трансформаторов тока могут руководствоваться и другими параметрами выбора преобразовательных приборов для участка цепи энергетической установки, такими как:

  • Определение типа автоматизации установки узла учета, которая может повлиять на определение необходимого класса точности выбираемого трансформатора;
  • Расчеты длины учета и сечения проводников, идущих от ТТ до приборов учета, с целью расчета величины потери напряжения, которая должна иметь минимальные значения в процентном отношении;
  • Если новая энергетическая установка проектируется с нуля – учитывается метод преобразования величины тока.
  • Если распределительная сеть действующая – важным параметром выбора прибора становится действующей даты поверки прибора. Оборудование трансформации не должно иметь просроченных дат поверки от метрологических служб.

Любой параметр трансформатора тока выбирается исходя и в соответствии с данными, описанными в нормативной документации «Правил и Устройств Электроустановок».

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1. Номинальное напряжение трансформатора тока

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3. Номинальный ток вторичной обмотки

4. Номинальный ток первичной обмотки

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Схемы включения

Для питания релейной аппаратуры, токовых обмоток учета электроэнергии общего или коммерческого назначения существует три основных схемы включения трансформаторов тока:

  • «полная звезда»;
  • «неполная звезда»;
  • «треугольник».

Каждая из типов подключения для различного назначения оптимизирует работу измерительных, учетных систем электрооборудования, позволяет сделать оптимальными параметры учета электроэнергии в цепях новых или действующих распределительных устройств до и выше 1000 вольт.

Как правильно выбрать ТТ для релейной защиты

Чтобы правильно выбрать трансформаторы тока для различных блоков релейной защиты и автоматики, стоит обратить внимание на несколько важных параметров их выбора:

  • Максимальное и номинальное значение напряжения в первичной обмотке трансформатора;
  • Номинальное значение тока в первичной обмотке;
  • Класс точности.

Последний параметр – для различных видов трансформаторов имеет различные значения, а для блоков релейной защиты и автоматики имеет приоритетное значение в связи с тем, что от него зависит точность выходного сигнала, другими словами, качество питания всего блока защиты и автоматики. Для более точной работы систем защиты и автоматики в распределительных сетях применяется использование трансформаторов с повышенным классом точности – 10 (Р). Подробное рассмотрение такого понятия, как класс точности в статье публикуется ниже.

Выбор класса точности

Параметр трансформатора тока, указывающий, что погрешность измерений величины тока вторичной обмотки ТТ не превышает значений, указанных в нормативных документах по ГОСТ 7746-2011. Согласно данному ГОСТу, номинальные значения классов точности, следующие: 0,1, 0,2S, 0,2, 0,5, 0,5S, 1, 3, 5, 10.

Для цепей измерительных приборов, учетного оборудования и систем релейной защиты классы точности преобразователей тока будут разными.

А для учета электроэнергии общего или коммерческого типа применяются обычные классы точности преобразователей тока равные 1, 3. Нужно добавить, что для питания измерительных приборов типа амперметры и подобные им, выбираются трансформаторы тока классом точности 0,5 или повышенной точности, погрешность которых составляет 0,5S.

Блоки автоматики и релейной защиты требуют к своим источникам питания в сетях распределительных установок использования оборудования повышенной точности, в которых погрешность величины тока вторичной обмотки трансформатора не будет превышать 10% значения. Маркировка такого класса точности – 10 (Р).

Расчет мощности

Для выбора Т в качестве источника питания следует рассчитать допустимую мощность потребителя или группы потребителей. Существует 2 варианта побора Т: выбор по таблице и осуществление расчета. Узнать мощность трансформатора достаточно просто, необходимо воспользоваться формулой определения мощности: P = U * I. Наиболее точный вариант — выполнение расчета Т в качестве источника питания.

В наличии есть Т, полная мощность которого равна 180 ВА. Необходимо выяснить возможность его применения в качестве источника питания мощностью 160 ВА. Этот метод позволяет осуществить выбор трансформатора по мощности по таблице.

Коэффициент загрузки Т: kз = Sр/Sтр. Sр — полная расчетная мощность: Sp = P/cosф = 180/0,8 = 225 ВА. Коэффициент cosф принимается равным 0,8. Мощность силового Т Sтр = 160 ВА. Исходя из этого, kз = 225/160 = 1,4 (>1). Если взять Т мощностью 250 ВА, то kз = 225/250 = 0,9 ( S: 2000 > 1887,27 (выполняется, следовательно, магнитопровод подходит для Т).

Таким образом, выбор трансформатора по мощности для решения конкретной задачи можно сделать при помощи таблицы или рассчитать и изготовить его самостоятельно. Последний вариант позволяет более гибко и качественно подойти к выбору Т для какого-либо потребителя. Однако подход выбора уже готового Т значительно экономит время.

Порошин Андрей

Источник



Примеры расчета

В качестве примера выбора трансформаторов тока рассмотрим расчетную проверку правильности выбора ТТ для счетчика электроэнергии в распределительной установке, с номинальным током в 150А, при минимуме нагрузки в 15А.

Проверяется Т-0,66 200/5, с коэффициентом трансформации – 40.

Ток вторичной обмотки при номинальном токе: 150/40 = 3,75А;

Минимальный ток вторичной обмотки при номинальной нагрузке: (5*40)/100 = 2А;

Полученный ток вторичной обмотки проверяемого трансформатора больше полученного значения минимального тока, что говорит о выполнении первого требования проверки;

Рассчитаем минимальный ток вторичной обмотки при минимальной нагрузке: 15/40 = 0,38А;

Узнаем минимальный ток вторичной обмотке при минимальной нагрузке: 5*5/100 = 0,25А;

0,38А> 0,25А – еще один пункт не выходит за рамки требуемых правил соответствия выбранного трансформатора тока;

Рассчитаем значение тока при ¼ нагрузке: 150*25/100 = 37,5А;

Рассчитаем значение тока вторичной обмотки при ¼ нагрузки: 37,5/40 = 0,94А;

Узнаем минимальный ток вторичной обмотки при ¼ нагрузке: 5*10/100 = 0,5А;

Сравнив оба значения токов вторичной обмотки, видим, что и здесь расчетное значение в норме: 0,94А> 0,5А;

Вывод: трансформатор тока Т-0,66 200/5 для учета электроэнергии выбран правильно и соответствует всем нормативным значениям «ПУЭ».

Основные характеристики понижающих трансформаторов

При подборе силового понижающего трансформатора необходимо учесть требования к его конструкции: наличие термопредохранителя, необходимость дополнительной изолирующей пропитки, способ крепления трансформатора, а также длину, тип (жесткие или гибкие), расположение и цвет выводов.

Ниже приведены основные характеристики понижающих трансформаторов, на которые необходимо обратить внимание при выборе и покупке понижающего трансформатора:

  • входное напряжение и сила тока на первичной обмотке;
  • максимальная выходная мощность, её еще называют габаритной мощностью трансформатора;
  • выходное напряжение и сила тока на вторичной обмотке;
  • рабочая частота трансформатора;
  • напряжение на выходе при номинальной нагрузке;
  • сила тока при номинальной нагрузке;
  • номинальная выходная мощность;
  • ток холостого хода (эта характеристика определяет потери в трансформаторе);
  • фазность трансформатора;
  • коэффициент трансформации;
  • предельно допустимое напряжение между выходными зажимами и землёй;
  • сопротивление изоляции;
  • первичное и вторичное сопротивление;
  • тип и конфигурация выводов;
  • способ монтажа (на плату, на DIN-рейку, навесной);
  • степень защтты трансформатора от внешней среды (трансформаторы открытого исполнения и герметизированные);
  • диапазон рабочих температур;
  • габаритные размеры и вес;
  • цена трансформатора.

Источник

Советы и рекомендации по выбору

Основная рекомендация по подбору трансформаторов тока состоит в тщательном и полном использовании всех параметров и критериев выбора преобразователей тока по классификации и номинальным значениям оборудования в равной степени без легкомысленного отношения к любому из них.

Выбор трансформаторов тока в зависимости от их назначения в обязательном порядке должен соответствовать всем нормативным документам и стандартам ГОСТ, действующим в текущий момент их выбора.

При использовании автоматизированных программ расчета номиналов последовательных трансформаторов, перепроверка полученных значений несколькими подобными сервисами не станет лишним для подтверждения правильности полученных данных.

Виды и их особенности

Приборы, используемые для преобразования напряжения, представлены различными модификациями. В зависимости от типа сердечника они подразделяются на:

  1. Стержневые;
  2. Броневые;
  3. Тороидальные.

Технические характеристики у понижающих трансформаторов почти не отличаются, в то время как способ изготовления у каждого из представленных видов особенный.

Смотрим видео, виды и их классификация:

Среди всего разнообразия моделей наибольшее распространение получили сухие трансформаторы напряжения понижающие. Но очень часто находят применение и силовые приборы, работающие на масле.

Они могут быть:

  • Одно;
  • Трехфазными.

Трансформатор электронный понижающий первого типа получает питание от сети, в которой ток течет по четырем проводам, три из которых – это фаза и один – ноль. Однофазные получают ток, протекающий по двух проводам. В жилых домах обычно используются именно такие сети.

Силовые масляные трансформаторы понижающие трехфазные имеют идеальный единичный коэффициент, а некоторые из них могут преобразовывать напряжение равное 600В. Обычно такими параметрами характеризуются крупногабаритные приборы, использующиеся на производстве. Есть среди трансформаторов электронных понижающих, и компактные, предназначенные для применения в быту.

Различают оборудование и по выходному напряжению. Оно может быть, как 12 так 380В. Возможно некоторые собирают трансформатор своими руками. Особых сложностей в этом нет, а инструкцию и схему можно легко найти в сети.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]