Плата защиты от переполюсовки своими руками

Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.

Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² •R; P = 10 • 10 • 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье «Защита для зарядных устройств автоаккумуляторов». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.

IRF4905 Datasheet PDF

В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).
Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

LM358 Datasheet PDF

Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Работа схемы

Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.

Недостатком схемы является однополярное питание операционного усилителя, в связи с этим при малых значениях падения напряжения на датчике тока, возникает большая нелинейность коэффициента усиления ОУ DA1.1.

Скачать статью

Плата защиты от переполюсовки своими руками


Приветствую, Самоделкины!

Как известно, многие самодельные, а также фабричные устройства часто не имеют защиты от не правильного включения полярности питания, иными словами не имеют защиты от переполюсовки питания. В частности, это относится к разным самоделкам, а также к готовым устройствам, усилителям звука, врезным звуковым модулям и т.д.

Любой пользователь, по невнимательности случайно может перепутать полярность питания, после чего в подавляющем большинстве случаев устройству может потребоваться срочная помощь в виде ремонта. А может случиться даже так, что устройство после таких издевательств просто-напросто придет в негодность, и никакой ремонт уже на поможет вернуть его к жизни.

Для того, чтобы избежать такой неприятной ситуации, следует использовать защиту от переполюсовки. Они бывают разные. Один из популярных вариантов — это применение по питанию диодов или диодных мостов, которые способны пропускать ток только в одном направлении и тем самым предотвращая вероятность переполюсовки. Это довольно бюджетное и наиболее простое решение. Но есть и минус у такого метода защиты, а именно, наличие падения напряжения на диоде. Не стоит забывать также то, что при больших токах и наличии падения напряжения, диоды довольно неслабо нагреваются и если не использовать охлаждение, то они могут выйти из строя.


Например, на данном усилителе звука с микросхемой TDA7377 установлен диодный мост.


В данном случае в первую очередь он используется здесь как выпрямитель напряжения при питании от источника тока с переменным напряжением. А вот если устройство подключить к источнику питания с постоянным напряжением, то данный диодный мост работает именно как защита от переполюсовки. И как бы мы не подключали аккумулятор, диодный мост предотвратит переполюсовку, пропуская ток в правильном направлении.


А если бы вместо диодного моста был просто диод по плюсу, то при неправильном подключении питания (переполюсовке) диод не пропустит ток и усилитель просто не включится.


Но, как говорилось выше, и диодного моста и диод имеют падение напряжения. Чтобы это продемонстрировать, автор YouTube канала «Radio-Lab» произвел замер напряжения до и непосредственно после диодного моста.


Как видим, напряжение на аккумуляторе составляет 12,06В, а уже после диодного моста напряжение примерно на 1,5В ниже. Вроде бы потери не такие уж и большие, но это в свою очередь повлияет на мощность усилителя, в итоге она будет немного ниже и часть энергии аккумулятора пойдет на нагрев диодного моста.

Давайте рассчитаем потери и тепловыделение на диодном мосту. Например, при токе нагрузки 2А и падении напряжения на диодном мосту в 1,5В, тепловыделение на диодном мосту составит порядка 3Вт. А дополнительные потери не есть плюсом, особенно при питании усилителя звука или другого устройства от аккумулятора, где энергию желательно тратить экономно и ее количество в аккумуляторе ограничено.


Вот для сравнения падения напряжения на обычном диоде:


Как видим оно составляет около 0,4В. На диоде Шоттки падение напряжения уже ниже и составляет 0,2В.


Падение напряжения на диодном мосту самое большое и составляет 0,6В.


Во время нагрузки, падения напряжения могут быть немного выше. По сути, перепутать полярность питания можно не часто, зато потеря при наличии падения на диодах или диодном мосту буду постоянными и как следствие будет нагрев, что в свою очередь ведет к необходимости в охлаждении. Как видим, диоды в качестве защиты от переполюсовки использовать можно, они работают, но хочется все же защиту получше, чтобы не было нагрева, потери были минимальными, и хорошими рабочими токами. Автор предлагает одну простую, но довольно хорошую схему защиты от переполюсовки по питанию на мощном полевом транзисторе.


Данная схема подойдет для защиты устройств с однополярным питанием. Силовой транзистор полевой — IRF1405 мощный N-канальный.


Такой транзистор способен коммутировать достаточно большой ток и в свою очередь имеет довольно небольшое сопротивление, из-за чего падение напряжения практически не будет, а, следовательно, практически полностью будет отсутствовать нагрев, или он будет минимальным, не будет таких потерь, как на диодах.

Автор нарисовал для данной схемы защиты вот такую миниатюрную платку.


Работа схемы предельно проста: если все правильно подключено, транзистор открыт, и ток проходит через транзистор.


При не правильном подключении полярности питания транзистор закрывается, тем самым создавая разрыв в цепи питания и попутанный плюс дальше транзистора не проходит.


На радиорынке были куплены все необходимые детали для сборки платы защиты.


В первую очередь автор устанавливает резистор 100кОм на место и припаивает его.


Дальше займемся установкой стабилитронов на 15В 0,5Вт, обязательно соблюдая полярность по меткам катодов.


Далее установка неполярный конденсатор емкостью 0,1мкФ.


Теперь клеммники на вход и выход питания.


Плата практически готова, остался всего один элемент — силовой транзистор. Для его установки автор согнул ножки транзистора — вот так:


И установил его на свое место. Получилась вот такая небольшая и удобная плата защиты от переполюсовки по питанию для усилителей и устройств с однополярным питанием. Однополярное питание — это где есть два провода питания: плюс и минус. После окончания пайки плату необходимо помыть от остатков флюса, чтобы все было чисто и красиво.


А теперь давайте проверим работоспособность собранной нами платы защиты. Для проверки платы подключим к ее входу аккумулятор с напряжением питания 12,1В. К выходу платы автор подключил щупы мультиметра. Сначала подключаем аккумулятор правильно, соблюдая полярность.


Как видите, на выходе платы есть напряжение, а падение напряжения такое низкое, что мультиметр его не замечает. Теперь меняем полярность питания и подключаем аккумулятор, перепутав плюс с минусом.


Как видим, транзистор закрылся, плата защиты сработала и уже ничего не пропускает, тем самым защищает устройство (в данном примере мультиметр) от переполюсовки. Если снова подключить питание правильно, то транзистор откроется и на выходе платы появится напряжение аккумулятора. Отлично, плата работает. После того, как мы протестировали самодельную плату и убедились в ее работоспособности, можно подключать плату защиты к усилителю звука. Усилитель будем использовать самый простой на микросхеме TDA7377 без какой-либо защиты от переполюсовки, и если спутать полярность питания, то, как минимум взорвется полярный конденсатор по питанию и сгорит микросхема.


Плата защиты подключается в разрыв плюса и минуса питания усилителя, на котором существует вероятность переполюсовки. Провода питания выходящие с платы защиты к плате усилителя обязательно подключаем соблюдая полярность.


Все, теперь наш усилитель имеет защиту, и переполюсовка ему не страшна. Подключаем питание правильно.


Как видим, светодиод на усилителе засветился, все хорошо, питание усилителя есть. А теперь, подключаем питание перепутав полярность.


Как видим, ничего не задымило и светодиод на плате усилителя не светится, следовательно, питание на усилитель не поступает, а значит наша самодельная плата защиты работает и свою задачу полностью выполняет.

Эту плату можно использовать для защиты от переполюсовки усилителей звука с однополярным питанием, в том числе и усилителей D класса тоже, портативных колонок и многих других устройств. Помните, если есть хоть малейшая вероятность перепутать полярность питания, то в нужный момент, как минимум, защита от переполюсовки сохранит вам деньги и защитит ваше изделие от случайной переполюсовки и как следствие поломки.


Важно также понимать, что в одних случаях удобнее использовать диоды или диодный мост как защиту от переполюсовки, а в других собранную плату защиты, это уже надо смотреть по задачам. Пробуйте, собирайте и повторяйте. Архив с платой можно скачать ЗДЕСЬ. Благодарю за внимание. До новых встреч!

Видео:

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]