Что нужно знать при сдаче ВОЛС в эксплуатацию


Тестирование волоконно-оптических каналов СКС

Потребность в быстрой передаче больших объемов данных привела к росту популярнос­ти высокоскоростных сетей Gigabit Ethernet и их распространению в LAN-сетях. В активном сете­вом оборудовании 1 и 10 Gigabit Ethernet, включая маршрутизаторы и коммутаторы, в качестве источников излучения используются не светодиоды, а лазерные диоды.
Какой источник излучения должен использоваться в измери­тельном оборудовании, когда для передачи данных используются и светодиоды, и лазе­ры? Рассмотрим этот вопрос подробнее.

В высокоскоростных сетях на основе одномодового волокна применяются полупроводнико­вые лазеры различных конструкций. В LAN-сетях обычно используют лазеры Фабри-Пе­ро, излучающие на длине волны 1310 или 1550 нм. Для измерения потерь оптического сигнала в одномодовом волокне следует ис­пользовать приборы с аналогичными лазерны­ми источниками излучения. В этом случае ха­рактеристики источника излучения, используе­мого в тестирующем оборудовании, будут сов­падать с характеристиками реального источ­ника излучения, используемого в активном се­тевом оборудовании, а измеренная величина потерь будет очень близка к реальной величи­не потерь сигнала при работе сети.

С тестированием кабельной инфраструкту­ры сетей на основе многомодового волокна ситуация несколько сложнее. В таких сетях могут применяться как светодиодные, так и лазерные источники излучения. В активном сетевом оборудовании, рас­считанном на 10- и 100-мегабитный Ethernet, применяются светодиоды. В то же время для передачи данных со скоростью 1 и 10 Гбит/с нужны лазерные источники оп­тического сигнала. Наиболее часто для пе­редачи данных по многомодовому волокну используются VCSEL-лазеры (Vertical Cavity Surface Emitting Laser, лазер поверхностного излучения с вертикальным резонатором). Лазеры VCSEL излучают на длине волны 850 нм, они пригодны для высокоскорост­ной передачи данных и стоят значительно дешевле лазеров Фабри-Перо. Хотя рабочие длины волн светодиодов и VCSEL-лазеров совпадают, пространствен­ные характеристики их излучения значитель­но отличаются (также отличаются и спект­ральные характеристики). На практике это означает, что они обес­печивают разные условия ввода излучения в волокно. Светодиод сравнительно равномер­но заполняет излучением всю сердцевину и угло­вую апертуру многомодового волокна. Лазе­ры VCSEL излучают узконаправленным пучком с меньшей расходимостью и более высокой яркостью. Пучок излучения сосредоточен бли­же к центру волокна, его интенсивность быстро уменьшается по мере удаления от центра; внешняя часть сердцевины волокна, прилегающая к его оболочке, практически не освещается (т.е. лазером в многомодовом волокне возбуждается малая группа мод). Разные условия ввода светового пучка приводят к разной ве­личине измеренного значения затухания. Как правило, затухание, измеренное с использова­нием светодиода, выше изме­ренного с использованием VCSEL-лазеров. Этот фактор способен повлиять на заключение о работоспособности сети в условиях, когда к допустимому оптическому бюджету потерь предъявляются жесткие требования.

Измерение ТВ сигнала в СКТВ

Для выполнения измерений основных характеристик телевизионного сигнала в СКТВ (система кабельных телевизионных сетей или СКС система кабельных сетей) потребуется генератор сигналов, анализатор спектра и цифровой осциллограф.

К таким измерениям относятся:

  • Уровень импульсных шумов. Выполняется методом накопления разверток, по характеристикам которых с помощью специального ПО, рассчитывается такие характеристики выходного сигнала, как ширина и амплитуда импульсов, а также их периодичность. Подобные измерения проводится совместно с фиксацией уровня суммарной помехи. Развёртка должна фиксироваться с интервалом 2-8 секунд;
  • Уровень суммарной помехи. Такие измерения выполняются с помощью спектроанализатора путём фиксации данных спектрального анализа помехи, и производятся с интервалом 8-10 секунд. Тестирование проводится в течение восьми часов. При этом полоса пропускания прибора устанавливается:
  • по промежуточной частоте на 30 кГц;
  • по видео на 10 кГц;
  • детектор выводится в пиковый режим.

С помощью соответствующего ПО отстраивается спектральная мощность и определяется соотношение уровня мощности сигнала и суммарной помехи для отдельно взятого канала;

  • Определение АЧХ тракта. Определение этих характеристик основано на методе анализа искажений тестового сигнала определенной формы, поданного импульсным генератором на вход тракта. Для выполнения таких измерений необходимо наличие следующего оборудования:
  • Генератор импульсов, используемый в качестве источника тестируемого сигнала;
  • цифровой высокочастотный осциллограф (с полосой до 50 МГц), укомплектованный интерфейсом для передачи полученной информации;
  • устройство для хранения полученных результатов, подключенное к осциллографу.

Сопротивление на входе и выходе используемых устройств должно соответствовать показателю — 75 Ом.

Выбор источника излучения для сертификации волоконно-оптических каналов

При сертификации ВОЛС стандарты TIA и ISO требуют проверки полярности волокон и изме­рения величины потерь сигнала в каждом волокне на двух стандартных длинах волн (гори­зонтальную разводку длиной до 100 м доста­точно протестировать на одной длине волны.) Стандарт TIA-568-B.1 ссылается на стандарт TIA 526-14 «Измерение потерь оптической мощности в кабелях на основе многомодового волокна» (Optical Loss Measurement of Installed Multimode Fiber Cable Plant), OFSTP-14. В приложении А к последнему стандарту дается определение CPR-источника излу­чения.

Coupled-power ratio (CPR) — это качественное из­мерение, которое обычно используется для описа­ния распределения мощности оптического сигна­ла по модам (Mode-Power Distribution (MPD)) при его распространении в многомодовом кабеле. CPR — это отношение полной мощности на выходе из многомодового кабеля к мощности сигнала на выходе одномодового кабеля, который подключен к многомодовому кабелю. В русском языке пока нет устоявшегося тер­мина для CPR.

Измерение ТВ сигнала в СКТВ

Для выполнения измерений основных характеристик телевизионного сигнала в СКТВ (система кабельных телевизионных сетей или СКС система кабельных сетей) потребуется генератор сигналов, анализатор спектра и цифровой осциллограф.

К таким измерениям относятся:

  • Уровень импульсных шумов. Выполняется методом накопления разверток, по характеристикам которых с помощью специального ПО, рассчитывается такие характеристики выходного сигнала, как ширина и амплитуда импульсов, а также их периодичность. Подобные измерения проводится совместно с фиксацией уровня суммарной помехи. Развёртка должна фиксироваться с интервалом 2-8 секунд;
  • Уровень суммарной помехи. Такие измерения выполняются с помощью спектроанализатора путём фиксации данных спектрального анализа помехи, и производятся с интервалом 8-10 секунд. Тестирование проводится в течение восьми часов. При этом полоса пропускания прибора устанавливается:
  • по промежуточной частоте на 30 кГц;
  • по видео на 10 кГц;
  • детектор выводится в пиковый режим.

С помощью соответствующего ПО отстраивается спектральная мощность и определяется соотношение уровня мощности сигнала и суммарной помехи для отдельно взятого канала;

  • Определение АЧХ тракта. Определение этих характеристик основано на методе анализа искажений тестового сигнала определенной формы, поданного импульсным генератором на вход тракта. Для выполнения таких измерений необходимо наличие следующего оборудования:
  • Генератор импульсов, используемый в качестве источника тестируемого сигнала;
  • цифровой высокочастотный осциллограф (с полосой до 50 МГц), укомплектованный интерфейсом для передачи полученной информации;
  • устройство для хранения полученных результатов, подключенное к осциллографу.

Сопротивление на входе и выходе используемых устройств должно соответствовать показателю — 75 Ом.

Требования сетевых приложений

В спецификациях приложений всег­да имеются в виду соединения «точ­ка-точка», которые в TIA и ISO на­зываются «каналами». Если кабель устанавливается или тестируется по сегментам, то для обеспечения нор­мальной работоспособности прило­жений нужно позаботиться о том, чтобы суммарные потери и длина волокна в каждом канале не превышали максимально допустимого значения.

Далее, в таблице 4, приведены сведения о максимальной рекомендуемой длине кабеля и максимально допустимых потерях сигнала для различных приложений. Наиболее стро­гие требования предъявляются к высокопроиз­водительным гигабитным се­тям. Ограничения на потери сигнала в техноло­гии Gigabit Ethernet близки к установленным в стандартах TIA и ISO значениям потерь для структурированных кабельных систем. Требования, предъявляемые ранними сете­выми технологиями на величину потерь, значительно мягче. Физическая среда пере­дачи данных не будет отрицательно сказы­ваться на производительности приложений, пока требования приложений не превосхо­дят спецификаций стандартов TIA и ISO.

Таблица 4 Требования приложений с учетом типа волокна и источника излучения

Источник

Обзор методов тестирования оптических кабелей рефлектометром: что выбрать для проверки новых ВОЛС?

Модернизация базовых сетей 100/400G и подготовка к развертыванию 5G требуют качественной проверки волоконно-оптических линий связи (ВОЛС). Выбор правильных методик и подходящих приборов имеет решающее значение при тестировании оптоволокна, так как ошибки могут обойтись крайне дорого.

О каких бы современных оптических сетях ни шла речь, физическая целостность волокна и качества соединения оптических линий все еще имеют решающее значение. Модернизация существующих сетей предполагает проверку их состояния, а прокладка новых ВОЛС — контроль качества соединений. Чем выше скорости ВОЛС, тем более строгие требования к качеству их диагностики. И здесь возникает проблема выбора методики тестирования, например, всегда ли «проверка по максимуму» с применением двунаправленных тестов — лучший вариант?

Двунаправленное тестирование ВОЛС рефлектометром: панацея или новые проблемы?

Важно понимать, что оптоволоконная связь тесно связана с рефлектометрией. Без качественного рефлектометра OTDR невозможно создать надежно работающую ВОЛС. Поэтому решение проблемы сводится к правильному первоначальному выбору оборудования и определению наиболее подходящих методик тестирования.

Существует два основных метода рефлектометрии: односторонний (к одному концу линии подключается одна компенсационная катушка), двусторонний (с компенсационной катушкой на ближнем конце и такой же на дальнем).

Направление движения света может повлиять на результаты тестирования. В любом волокне существует разница коэффициентов обратного отражения и в одном направлении потери света могут быть больше.

При одностороннем тестировании OTDR можно пропустить множество аномалий. Так, места соединения волокон с разными коэффициентами отражения в одном из направлений могут компенсировать потерю тестового сигнала, а в другом — существенно его ослаблять. Кроме того, существуют мертвые зоны, в которых рефлектометр не регистрирует события.

На рисунке ниже показан пример разницы в потере уровня сигнала в зависимости от направления измерений. С одной стороны, тестирование даже показывает отрицательные потери в -0,3 дБ, что, конечно, невозможно. В данном случае наблюдается эффект усиления, связанный с разницей в коэффициенте обратного рассеяния в месте соединения двух кабелей.

Поэтому одностороннее тестирование оптических кабелей рефлектометром лучше подходит для простых тестов, например, для поиска и локализации мест разрыва, излома волокна, а также оценки общего затухания сигнала в волокне, проверки коннекторов и т. д. В таком случае нет необходимости тратить время на двунаправленное тестирование. Главным преимуществом односторонней диагностики ВОЛС является то, что нужно выполнять всего одну процедуру инспекции и очистки оптоволокна на каждую линию. Это важно, поскольку вносимые загрязнения коннекторов могут привести к выходу из строя ВОЛС, которая до тестирования работала исправно. Иногда клиенты настаивают на двустороннем «полном тестировании», но это может быть избыточным и даже вредным решением хотя бы из-за большего риска неудачной процедуры очистки оптических разъемов.

Измерение ТВ сигнала в оптическом кабеле

Основным элементом оптоволоконных сетей является волокно, находящееся внутри оптического кабеля. Для обслуживания и тестирования таких систем, необходимо специализированное измерительное оборудование. Вот некоторые приборы, без которых никаких измерений на оптических линиях выполнить невозможно:

  • оптический рефлектометр (ОТDR) – дает возможность определения не только уровня потерь в системе, но и места повреждения оптокабеля;
  • оптический тестер — представлен в виде независимого источника излучения и устройства для измерения мощности оптического сигнала;
  • измеритель оптической мощности – производит регистрацию показателя уровня сигнала и отображает его численное значение на своем экране в Ваттах или дБм. Основной измерительный элемент прибора — фотоприемник.
  • дефектоскоп – вызывает красное свечение на поврежденных участках оптического кабеля;
  • идентификатор активных волокон – прибор предназначен для быстрого щадящего (неразрушающего цельности кабеля) метода определения наличия сигнала и его направления в оптоволокне. Он дает возможность без отключения передающей и приемной аппаратуры зафиксировать наличие сигнала, а также определить его мощность и направление.

Давайте разберемся, о каких характеристиках оптоволоконных коммуникаций идет речь при их обслуживании и ремонте. Первый показатель, на который обращают свое внимание специалисты, является уровень затухания оптического сигнала на определенной длине волны (измеряется в дБ). Данное значение характеризует качество оптоволоконного кабеля и уровень выполнения монтажных работ при его прокладке. Основными элементами системы, являющиеся причиной возникновения этого процесса, являются:

  • оптоволокно (потери измеряются в дБ на единицу расстояния);
  • сварочные соединения;
  • разъемы;
  • коннекторы;
  • делители и т. д.

Следующей немаловажной характеристикой для оптических коммуникаций является обратное отражение. Эта величина определяет мощность отраженного к своему источнику сигнала и также выражается в дБ. Основными причинами возникновения отраженного сигнала, как правило, являются механические повреждения оптокабеля (трещины), наличие механических разъемов, обрыв кабеля в месте подключения (свободный конец).

Использование выше перечисленных устройств позволяет специалисту добиться выведения выходного сигнала на необходимый уровень и обеспечить уверенную работу приемной аппаратуры, расположенной в квартире или доме. Так что, если у вас возникают проблемы с изображением в условиях СКТВ, стоит обратиться к оператору, предоставляющему вам эти услуги.

  • Как проверить телевизионный кабель
  • Как улучшить качество тв
  • Как улучшить качество кабельного ТВ
  • — Мультиметр (тестер);

Здравствуйте, дорогие читатели блога Мужик в доме.Ру. В сегодняшней статье, как уже вы наверное поняли, мы рассмотрим наиболее распространенные причины возникновения неисправности в работе спутниковой тарелки и способы их устранения.

Не секрет, что ремонт спутниковых антенн можно выполнить своими руками. Вызов специалиста для настойки может обойтись вам неоправданно дорого. Чтобы сэкономить семейный бюджет, давайте разберем, как отремонтировать спутниковую систему собственноручно.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]