Что нужно знать об инверторах солнечных батарей

Современные энергетические установки, вырабатывающие электрический ток из солнечного излучения, становятся все более выгодными и популярными. Для функционирования таких станций используется взаимодействие нескольких сложных устройств, одним из которых является преобразователь тока. Инвертор солнечной электростанции получает на входе постоянный ток, а на выходе выдает переменный, на котором работает большинство современного оборудования. В данной статье мы расскажем о разновидностях таких преобразователей, правилах их подключения и критериях выбора.

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Эффективность солнечных батарей

Достичь высокой степени эффективности от использования солнечной батареи крайне проблематично. Тем более, когда солнечная батарея изготавливается своими руками, и делаются попытки получить энергию под бытовые нужды целого дома или хозяйственные нужды дачного участки.

Такая промышленная бытовая установка генерирует 150 ватт мощности при напряжении сети 12 вольт. Правда, заявленная мощность гарантируется при полностью открытом солнечном небосводе

Чтобы получать максимальную эффективность от солнечного генератора энергии, необходимо постоянно определять и точно согласовывать сопротивление нагрузки.

Здесь без привлечения технологичных электронных устройств – контроллеров управления, не обойтись никак. А сделать подобный контроллер своими руками – задача сложная.

Фотоэлементам, на основе которых выстраивается структура солнечных панелей, присуща температурная нестабильность. Практика применения указывает на значительное падение производительности фотоэлементов в результате повышения температуры их поверхности.

Так появляется ещё одна, не менее трудная задача. Её решение требует использования солнечного света, лишённого тепла. Сделать нечто подобное в кустарных условиях видится бесперспективной идеей.

И ещё недостатки альтернативной энергетики:

  • потребность в значительных площадях под размещение панелей батареи;
  • бездействие установки в тёмное время суток;
  • наличие в составе компонентов батареи ядовитых веществ (свинца, галлия, мышьяка и т.п.);
  • значительные эксплуатационные издержки.

Тем не менее, профессиональное изготовление солнечных генераторов энергии стабильно наращивается. Существует уже как минимум пять компаний, готовых предложить к установке современные конструкции, в том числе предназначенные для объектов жилой недвижимости:

  • Canadian Solar
  • Jinko Solar
  • Hanwha Qcells
  • JA Solar
  • Trina Solar

Солнечная энергия в доме своими руками

Батарея солнечная, собранная самостоятельно из кремниевых пластин, разложенная под прямыми лучами солнца, готова к тестированию на присутствие напряжения

Самостоятельное изготовление батареи на базе солнечных панелей, пригодной для нужд частного хозяйства, видится реальным делом только в рамках скромных проектов.

К примеру, изготовление солнечной батареи своими руками для подзарядки небольшого аккумулятора, энергия которого используется для питания двух-трёх маломощных (6 – 12 вольтовых) фонарей.

По таким проектам делаются установки, вырабатывающие напряжение не выше 20 вольт при токе не более 1 А. Рассмотрим один из возможных вариантов создания солнечной батареи с похожими рабочими характеристиками.

Для реализации проекта потребуются:

  1. Пластины кремниевых фотоэлементов.
  2. Паяльник электрический.
  3. Олово паяльное.
  4. Этиловый спирт.
  5. Канифоль сосновая для пайки.
  6. Инструмент электро-монтажника.
  7. Вспомогательные электронные компоненты и модули.

Подготовленные детали под сборку домашней (дачной) солнечной панели. Каждый из элементов является индивидуальным источником энергии. Их нужно объединить

Пластины фотоэлементов (кремниевых) проще всего приобрести уже готовые, к примеру, на Aliexpress. Там вполне пригодные конструкции разных размеров продают по доступной цене.

Инструмент электро-монтажника, у человека знакомого с электроникой, как правило, имеется по умолчанию. Из вспомогательной аппаратуры потребуется регулятор заряда аккумулятора, инвертор.

Сборка солнечной батареи: пошаговая инструкция

Пошаговая сборка генератора на солнечных панелях выглядит примерно следующим образом:

  1. Пайка отдельных пластин с фотоэлементами в единую солнечную батарею.
  2. Проверка работы собранной батареи измерительным прибором.
  3. Укладка панелей внутрь защитной конструкции.
  4. Подключение собранной батареи через контроллер заряда к АКБ.
  5. Преобразование энергии АКБ в требуемое напряжение.

Спайка отдельных панелей в единую батарею – работа кропотливая, требующая навыков пайки и внимания. Сложность действий для сборщика обусловлена здесь хрупкой конструкцией кремниевых пластин.

Пайку на пластинах выполняют аккуратно паяльником подходящей мощности, предварительно заточив жало под угол 45 градусов, используя качественный припой

Соединять пластины одну с другой рекомендуется плоскими ленточными проводниками. Цель – минимизировать, насколько это возможно, сопротивление проводников.

Места пайки следует предварительно обрабатывать этиловым спиртом. Паять рекомендуется с минимальным использованием канифоли и олова.

Завершив спайку, нужно проверить конструкцию на работоспособность. Делается эта процедура обычным образом, с помощью измерительного прибора – тестера (стрелочного, электронного).

Проверка работоспособности солнечной батареи, сделанной своими руками с помощью обычного цифрового прибора для измерения напряжения, тока, сопротивления

На выходных проводниках замеряют выходное напряжение и ток в условиях максимальной и минимальной освещённости полотна. При качественной спайке всех пластин и без наличия дефектов, результат получается, как правило, положительный.

Контроллер заряда аккумулятора

Энергетическая солнечная установка станет надёжнее и безопаснее, если в состав её схемы включить контроллер заряда (разряда) аккумулятора. Этот прибор можно купить уже в готовом виде.

Но если имеются способности в области электроники и желания к совершенству, контроллер заряда нетрудно сделать своими руками. Для справки можно уточнить: разработаны два вида таких приборов:

  1. PWM (Pulse Width Modulation).
  2. MPPT (Maximum Power Point Tracking).

Если перевести на русский язык, первый вид устройств действует на принципах широтно-импульсной модуляции. Второй вид приборов создан под вычисление так называемой максимальной точки мощности.

В любом случае, обе схемы собраны на классической элементной базе, с той лишь разницей, что вторые устройства отличаются более сложными схемными решениями. В систему контроллеры заряда включаются так:

Классическая структурная схема включения контроллера заряда: 1 — солнечная панель; 2 — контроллер заряда/разряда АКБ; 3 — аккумулятор; 4 — инвертор напряжения 12/220В; 5 — нагрузочная лампа

Главная задача контроллера заряда АКБ энергетической солнечной установки – отслеживание уровня напряжения на клеммах аккумуляторной батареи. Недопущение выхода напряжения за границы, когда нарушаются условия эксплуатации АКБ.

Благодаря присутствию контроллера, остаётся стабильным срок службы аккумуляторной батареи. Конечно же, помимо этого прибор контролирует температурные и другие параметры, обеспечивая безопасность работы АКБ и всей системы.

Для сборки контроллера MPPT своими руками можно взять массу схемных решений. В поиске схемотехники проблем нет, стоит только сделать соответствующий запрос в поисковой системе.

Например, собрать контроллер можно на основе такой вот, несложной на первый взгляд, структурной схемы:

На основе этой структурной схемы собирается достаточно эффективное и надёжное устройство контроля заряда АКБ по типу MPPT технологии

Однако для бытовых целей вполне достаточно простейшего ШИМ-контроллера, так как в составе бытовых энергоустановок, как правило, не используются массивные солнечные панели. Для контроллеров же типа MPPT, характерной особенностью является именно работа с панелями большой мощности.

На малых мощностях они не оправдывают их схемной сложности. Для пользователя приобретение таких приборов оборачивается лишними расходами. Поэтому логично рекомендовать для дома простой PWM аппарат, собранный своими руками, к примеру, по этой схеме:

Принципиальная схема простого ШИМ-контроллера для домашней солнечной установки. Работает с выходным напряжением панели 17 вольт и обычным автомобильным аккумулятором

Солнечная батарея: схема инвертора

Полученную от солнца энергию аккумулируют. В домашних условиях для накопления энергии обычно используется стандартная автомобильная батарея (или несколько батарей).

Напряжения и силы тока аккумулятора вполне достаточно для питания маломощных бытовых приборов, рассчитанных под напряжение 12 (24) вольт. Однако этот вариант устраивает далеко не всегда.

Поэтому дополнительно к собранной конструкции подключают инвертор – устройство, преобразующее напряжение аккумулятора в переменное напряжение 127/220 вольт, пригодное для питания бытовых приборов или хозяйственной техники.

Найти подходящую схему инвертора несложно. Есть множество идей на этот счёт. Традиционно схема инвертора включает следующие компоненты:

  • полупроводниковую солнечную панель,
  • интегральную микросхему типа SG3524 (регулятор заряда),
  • аккумуляторную батарею,
  • интегральную микросхему управления МОП-транзисторами,
  • силовые МОП-транзисторы,
  • трансформатор.

Структурная схема регулятора в паре с инвертором выглядит примерно так:

Структурная схема регулятора напряжения аккумуляторной батареи в ассоциации с инвертором-преобразователем напряжения для солнечной энергетической установки

Защитная конструкция солнечной панели

Собранную из хрупких кремниевых пластин солнечную батарею необходимо дополнительно защитить от внешнего воздействия. Защитный корпус делают на основе прозрачного материала, который легко поддаётся чистке.

Полиуретановые или алюминиевые уголки каркаса и прозрачное органическое стекло подойдут в самый раз. Разъяснять тонкости сборки защитного корпуса не имеет смысла. Это простейшая сборка, собранная своими руками при помощи набора бытовых инструментов.

Пример реализации домашней энергоустановки

Схемы топологии повышающего преобразователя и схема самодельного солнечного преобразователя

Теоретические сведения о повышающем преобразователе

На схеме топологии повышающего преобразователя катушка L1 заряжается, когда транзистор Q1 открыт. Когда транзистор Q1 закрыт, катушка L1 разряжается на батарею через стабилитрон D1. Выполнение данной операции в течение нескольких тысяч раз в секунду в результате приведет к существенному выходному току. Этот процесс также называется индуктивным разрядом. Для его функционирования необходимо, чтобы входное напряжение было ниже выходного. Также при наличии солнечной панели необходимо использовать элемент хранения энергии – конденсатор (C1), который позволит солнечной панели непрерывно выдавать на выход ток между циклами.

Описание принципиальной схемы повышающего преобразователя

Схема состоит из трех основных блоков, включая генератор стробирующих импульсов на базе 555 МОП-интегральной схемы, 555 ШИМ модулятор и операционный усилитель с ограничителем напряжения. 555 серия с каскадным выходом может обеспечить ток около 200мА и позволяет создать отличный маломощный генератор импульсов. 555 ШИМ модулятор является классической генераторной схемой на базе 555 серии. Для регулировки времени разряда конденсатора C3 (время заряда катушки), на вывод 5 подается напряжение величиной 5В.

Ограничение напряжения

Операционный усилитель U1A вычисляет сигнал напряжения батареи, когда разделенное установленное значение напряжения сравнивается с эталонным напряжением величиной 5В. Когда напряжение превышает установленное значение, выход переключается в отрицательном направлении, снижая, таким образом, частоту импульсов ШИМ генератора и ограничивая любой последующий заряд. Это эффективно предотвращает перезаряд.

Питание схемы от солнечной панели

Для предотвращения ненужного разряда батареи, когда солнце не светит, все цепи запитываются через солнечную панель, за исключением делителя напряжения с обратной связью, который потребляет около 280мкА.

MOSFET логического уровня

Поскольку схема должна работать при низких уровнях напряжения (данная схема работает от входного напряжения не ниже 4В), необходимо установить MOSFET логического уровня. Он будет открываться при напряжении 4.5В. Для этой цели я использовал мощный МОП-транзистор MTP3055.

Фиксация напряжения с помощью стабилитрона D2

В этой схеме НЕЛЬЗЯ ОТСОЕДИНЯТЬ батарею, в противном случае MOSFET-транзистор сгорит. Поэтому для его защиты я установил стабилитрон D2 напряжением 24В. Без этого стабилитрона у меня самого сгорело много МОП-транзисторов.

функцияMPPT

Когда напряжение / ток солнечной панели увеличивается, ШИМ генератор повышает частоту импульсов, что в свою очередь приводит к увеличению выходного тока. В то же время, дополнительное напряжение прилагается к катушке, увеличивая, таким образом, ее зарядный ток. В результате повышающий преобразователь действительно «прилагает большие усилия» при повышении напряжения или «ослабевает», когда напряжение снижается. Для максимальной передачи энергии при ярком солнечном свете выполняется регулировка потенциометра R8 так, чтобы зарядный ток батареи был максимальным – это и будет точка максимальной мощности. Если схема работает правильно, то будет наблюдаться очень плоский пик при вращении R2. Диод D3 выполняет автоматическую MPPT регулировку более точно посредством вычитания фиксированного напряжения из разницы напряжения между батареей и средним напряжением через конденсатор C3. В условиях низкого освещения вы обнаружите, что резистор R3 не является оптимальным, однако он не будет полностью исключен из цепочки. Заметьте, что интеллектуальные MPPT контроллеры также могут лучше работать при полном диапазоне, однако это улучшение крайне малоэффективно.

Номиналы компонентов

Схема настроена на напряжение 9В, солнечная панель на мощность 3Вт. Повышающие преобразователи весьма привередливы и не будут работать в широком диапазоне условий – если ваша система использует другие пределы номинальной мощности для солнечной панели, тогда ждите проблемы. Единственные компоненты, которые требуют настройки, катушка L1 и конденсатор C3. Я был удивлен, что частота повторений оказалась очень низкой (около 2кГц). Я начал с катушки индуктивностью 100мкГ, однако схема работает лучше при индуктивности 390мкГ – первоначально я хотел получить около 20кГц. Для наилучшей работы выполняйте заряд катушки от 5 до 10 раз по отношению к току солнечной панели, затем обеспечьте продолжительный период времени (3X), чтобы катушка могла полностью разрядиться. Это обеспечит приемлемую работу, когда напряжение источника питания будет близко к напряжению батареи. Заметьте, что низкоомные катушки обеспечивают наилучшую эффективность. Наибольшая потеря действительно происходит в диоде Шотки, и наименьшая потеря это то, для чего эти диоды предназначены.

Работа при высокой частоте обычно предпочтительна. Это позволит минимизировать размер катушки. Однако для эксперимента, используйте катушку, которая будет работать лучше всего.

Предлагаемые компоненты указаны на схеме. Естественно, зарядное устройство можно приспособить в соответствии со своими требованиями.

Осциллограммы

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
U1Линейный регуляторLM78L051LM78L05ACZXПоиск в UtsourceВ блокнот
U1A, U1BОперационный усилительLM3581Поиск в UtsourceВ блокнот
U2, U3Программируемый таймер и осцилляторNE5552Поиск в UtsourceВ блокнот
Q1MOSFET-транзисторNTD4906N-35G1Поиск в UtsourceВ блокнот
D1Диод Шоттки1N58171Поиск в UtsourceВ блокнот
D2Стабилитрон1N5359B1Поиск в UtsourceВ блокнот
D3, D4Выпрямительный диод1N41482Поиск в UtsourceВ блокнот
L1Катушка индуктивностиBoums 2100LL-391-H-RC1390 мкГн, 2.4АПоиск в UtsourceВ блокнот
C1Электролитический конденсатор470мкФ х 25В1Nichikon UHD1E471MPD6Поиск в UtsourceВ блокнот
C2, C4, C5Конденсатор0.1 мкФ3Поиск в UtsourceВ блокнот
C3Конденсатор0.01 мкФ1Поиск в UtsourceВ блокнот
R1Резистор22 кОм1Поиск в UtsourceВ блокнот
R2Подстроечный резистор10 кОм1Поиск в UtsourceВ блокнот
R3, R4, R9Резистор10 кОм3Поиск в UtsourceВ блокнот
R5Резистор100 кОм1Поиск в UtsourceВ блокнот
R6Резистор1 кОм1Поиск в UtsourceВ блокнот
R8Подстроечный резистор100 кОм1Поиск в UtsourceВ блокнот
Добавить все

Оригинал статьи

Теги:

  • Перевод
  • Солнечная панель
  • Зарядное устройство

Популярность использования солнечных батарей растет с каждым годом. Область применения набирает масштабы, их можно встретить при оборудовании тепличных комплексов, частных жилых помещений, многоквартирного фонда, фермерских хозяйств.

Сложность системы в том, что при этом вырабатывается постоянный ток, который может подойти для сварочных аппаратов, освещения, электронных схем, старых автомобилей, зарядки аккумуляторов и т. д. Для организации полноценно функционирующей гелиосистемы требуется наличие еще нескольких элементов, в том числе и инвертора – сердца всей системы. Выбор следует осуществлять исходя из места установки и назначения прибора.

Для чего нужен инвертор солнечных батарей

В нашем мире много систем, потребляющих переменное напряжение в 220 В. В этом случае, необходим инвертор для солнечных батарей для преобразования тока в переменный, иначе его производство становится бессмысленным. Солнечные панели генерируют постоянное электричество с напряжением в 12 В, 24 В и максимальное значение – в 48 В. Именно инвертор делает использование таких батарей пригодным для сети в 220 В.

Конструктивные особенности

Сам инвертор состоит из низкочастотного адаптера (диоды и выпрямитель), варикапа (функционирует за счет триодов проводимостью более 4 мк), динисторов (обеспечивают чувствительность) и обкладки.

Многие модификации таких агрегатов состоят из обязательного элемента – блока-бесперебойника. При отсутствии подачи постоянного тока в случае аварий электросетей, электричество не прекратит поступление в аккумуляторную батарею (заряжается через зарядную установку), далее в инвертор и к месту потребления энергии в электроприборы. В структуру источника бесперебойного питания входит мониторинг уровня напряжения за счет микроконтроллера. Он дает команду к подключению источников питания в случае остановки основной подачи электричества.

Наличие трансформатора в конструкции является необязательным звеном, зачастую утяжеляя ее. Но, при наличии этого элемента, появляется возможность вызвать сигнал на выходе супервысокого качества.

В конструкцию системы может входить вентилятор, функционирующий принудительно и рассчитанный на бесшумную работу с несколькими режимами (в самых дорогих моделях).

Существует возможность объединения нескольких инверторов в трехфазные агрегаты с увеличенной мощностью и расширенным кругом задач, рассчитанные на 380 В (трехфазная сеть).

Принцип работы

Сначала солнечная батарея выступает в роли преобразователя солнечных лучей в электрический ток, затем должным образом происходит заряд аккумуляторной системы током и правильным напряжением, поддержание этого заряда в аккумуляторах, и, за счет подсоединения инверторного аппарата постоянный ток преобразуется в переменный.

Инвертор – устройство полупроводникового типа, то есть золотая середина между электропроводимостью металлов и диэлектриков (одни имеют очень высокую отметку этого показателя, другие не проводят электричество). Для использования энергии в темное время суток, накопление происходит в аккумуляторе.

Важные характеристики

  • во избежание пустой траты энергии, коэффициент полезного действия должен превышать уровень в 90%; среднее значение доходит до 94%, у оптимальных моделей – до 99%;
  • категорическое отсутствие радиопомех;
  • условие: стабилизированное напряжение на выходе (преимущество отдается трапециевидному типу); минимальное напряжение на входе;
  • низкий показатель гармоник;
  • диапазон температурного режима — чем шире, тем лучше (влияет на качество работы прибора);
  • восприимчивость к нагрузкам;
  • защита от перегрузок и перегревов;
  • минимизация потерь при отсутствии напряжения (при холостом ходе);
  • номинальная мощность и максимальный ток на выходе и входе;
  • средне-взвешенная эффективность – коэффициент, показывающий полезность при переменных значениях напряжения;
  • диапазон определения максимально возможного напряжения (точку возможной характеристики мощности сетевого инвертора для солнечных батарей);
  • уровень защиты кода исполнения от внешнего доступа воды и твердых объектов.

Критерии выбора

Выбор инвертора для солнечной электростанции (в блоге сайта есть предложенный нами топ инверторов для СЭС) – достаточно сложная задача, поскольку требует от будущего владельца учесть при покупке как минимум десять важных критериев.

  1. Входное напряжение
    . Должно быть прямо пропорционально мощности. Безопасным считается следующее соответствие: инверторы на 12 вольт для систем мощностью до 0,6 кВт; 24 вольта – для диапазона 0,6 – 1,5 кВт; 48 вольт – в СЭС от 1,5 кВт и более. Игнорирование данного правила неизбежно приведет к значительным потерям в кабелях и кардинально снизит срок службы транзисторов.
  2. Номинал и максимум мощности
    . Инверторы солнечных электростанций по первому параметру должны примерно соответствовать мощности оборудования, которое может потреблять ток одновременно. Второй показатель обязан быть равен или немного превосходить общую мощность всех устройств, подключенных к системе.
  3. Форма выходного тока
    . В зависимости от качества преобразования может быть ступенчатой, синусоидальной и промежуточной квази-синусоидальной. Оптимальный считается второй вариант – идеальная синусоида, поскольку именно такой график изменения напряжения идеально выдерживает индуктивные нагрузки.
  4. Вес
    . Бюджетные модели преобразователей не комплектуются выходными трансформаторами. Это облегчает и удешевляет конструкцию, но крайне негативно сказывается на качестве. По этой причине лучшие инверторы для солнечной электростанции обязательно обладают большой массой.
  5. Вентилятор и его функциональность
    . Охлаждение техники обычно осуществляется вентиляторами. В устройствах низшего ценового сегмента их скорость не регулируется. Это приводит к неэффективному расходованию энергии и излишнему шуму. Premium класс техники, включая преобразователи тока, снабжается кулерами с автоматической регулировкой скорости вращения. Это делает их работу не только в основном бесшумной, но и гораздо более экономичной.
  6. Число защитных функций
    . В таких системах, как солнечная электростанция, наиболее устойчивый к форс-мажорным ситуациям является инвертор, наделенный максимумом видов защиты. Наиболее важны из них защита от скачков вольтамперных характеристик, коротких замыканий, перегрева, глубокой разрядки АКБ и некоторых других. Рост функциональности неизбежно сказывается на цене, но пропорционально повышает устойчивость и надежность.
  7. КПД
    . Лучшие модели достигают коэффициента полезного действия 95% и выше. Бюджетные варианты обычно показывают уровень эффективности около 87-90%. На первый взгляд разница не кажется слишком существенной, но в дорогостоящих и высокопроизводительных СЭС такие потери недопустимы.
  8. Расход энергии без нагрузки
    . Предельно допустимым уровнем считается 1,0-1,2%. Расход свыше этого диапазона сигнализирует о наличии скрытых дефектов конструкции.
  9. Функция режима ожидания
    . Предназначена для экономии электроэнергии, которая накопилась в аккумуляторных батареях. Единственная характеристика, где приоритетным является наличие не автоматического, а ручного режима отключения. При его отсутствии подключение нагрузок малой мощности становится проблематичным.
  10. Диапазон рабочих температур
    . Становится принципиальным при необходимости размещения преобразователей за пределами отапливаемых зданий. Промышленные инверторы для солнечных станций практически всегда допускают работу при отрицательных и высоких положительных температурах. Границы диапазона для подобных устройств могут достигать 100-130°C – например, от -40 до + 85 градусов. У недорогих бюджетных моделей предельное расхождение вдвое, втрое ниже.

В СЭС большой мощности рекомендуется использовать одновременно несколько инверторов. Это позволит застраховаться от аварийного прекращения работы солнечной электростанции при выходе из строя одного из преобразователей.

При возникновении сомнений в самостоятельном правильном выборе инвертора советуем обратиться за помощью нашим специалистам.

Выбор инвертора

При подборе подходящего инвертора для солнечных панелей необходимо учитывать нагрузку мощности на пике активности (номинальные значения в этом случае не учитываются), для этого находим произведение пускового тока и напряжения в сети. В упрощенных моделях достаточно рассчитать ток по номиналу. От солнечной панели к потребителю тока идет напряжение в 12 В, контролер отправляет сигнал в инвертор, где, преобразуя напряжение, на выходе будет 220 В.

Сетевые модификации

Эта разновидность инверторов создается на основе емкостных диодов (варикапов) с низкочастотным модулятором для вариаций. Использование сетевых конструкций чаще всего подходит для солнечных панелей в виде тарелки. Многие из них имеют проводимость больше 40 мк, с подкладками в изоляторах, некоторые функционируют сквозь контролер заряда. Что касается инверторных выпрямителей, то их частота превышает показатель в 30 Гц.

Преимущества: компактность, высокая защищенность, приемлемая скорость преобразования с низким уровнем энергопотребления.

Гибридный инвертор может все, что сетевой, плюс дополнительно имеет несколько функций: повышать мощность сети при перегрузках, продолжать работу при потере сети в 220 В, убирает проблему со счетчиками. Некоторые производители, совмещая в приборе инвертор и контроллер, пытаются убедить клиентов, что их преобразователи являются гибридными, хотя это неправда, эти устройства называются комбинированными.

Особенность гибридного инвертора заключается в умении параллельно получать нагрузку из сети и от аккумуляторной батареи и имеет приоритетное значение от источника с постоянным током, не пренебрегая источниками с постоянной подачей электричества. При определении приоритетного ресурса, основная нагрузка ложится на него, недостающее электричество берется от второго элемента питания.

Автономные инверторы

Подходят для солнечных панелей различных мощностей, приспособлены функционировать при перенапряжении силы тока до 4 А, оборудуются на три обкладывания.

Преимущества: можно установить низкоомный варикап, электропроводимость низкая, возможность настройки частотности вариантов. Стабильно действуют при повышенной влажности, скоростное преобразование, рыночная цена вполне приемлемая для потребителя.

Классификация по признаку формы на выходе: прямоугольный, синусоидальный и псевдосинусоидальный сигнал.

С прямоугольным сигналом

По рекомендациям специалистов эти устройства лучше применять для подачи энергии к осветительным приборам.

  • Преимущества: проходная цена, простота в использовании.
  • Недостатки: нет прикрытия от перепадов напряжения, узкий круг применения (не для всех приборов и устройств в быту походит по причине несовместимости).

Синусоидальный сигнал

Вырабатывают высококачественный ток с правильной синусоидой, чище идущего из розеток электричества. Подходит для подключения массивных бытовых приборов: холодильников, котлов, кондиционеров, насосов.

  • Преимущества: дает защиту бытовым приборам от скачков напряжения.
  • Недостаток: высокая стоимость.

Псевдосинусоидальный сигнал

Компромисс вариантов, представленных выше.

  • Преимущества: обеспечивают функционирование всех бытовых устройств и техники, стоят недорого.
  • Недостатки: не подходят для работы чувствительных приборов, создают помехи и шумовые волны.

Как работает инвертор

Инвертор для солнечных батарей нужен для того, чтобы преобразовывать постоянный ток в переменный, с показателем напряжения 220 вольт. Как известно, это стандартное напряжение, потребляемое всеми бытовыми электрическими приборами.

Существуют разные преобразователи, каждый из которых имеет свое назначение и особенности. Если планируется установка преобразователя для солнечных панелей, следует заранее определиться с количеством бытовых электроприборов, учитывая при этом их уровень потребления. Показатели мощности, в данном случае, суммируются — с учетом единицы времени, а мощность инвертора необходимо брать с существенным запасом.

Если речь идет о преобразователе автономного типа, следует учитывать наличие пикового скачка показателя U. Причиной его возникновения, как правило, является то, что часть бытовой электротехники может вызвать существенный перепад напряжения в общей сети. Если мощность, потребляемая приборами, во время скачка дойдет до определенного пика, преобразователь выходит из строя. Такой вариант всегда необходимо учитывать.

Также существуют синхронные преобразователи тока, обладающие способностью накопления электрической энергии в аккумуляторе. Будучи включенным в гелиосистему, синхронный инвертор обеспечивает «отток» лишней энергии в общую сеть. Когда же ее, наоборот, недостает, преобразователь компенсирует недостаток из той же общей электросети. Такой вид преобразователя очень экономичен, безопасен и удобен, потому что проблем с электричеством в доме не будет никогда.

Самыми дорогостоящими являются инверторы с расширенным функционалом. Они представляют собой смешанный тип устройств, но стоят очень дорого. И это, пожалуй, единственное препятствие для их массового потребления.

Подключение инвертора

Чтобы правильно подключить инвертор, нужно знать ряд нюансов:

  • кабель выбираем средней длины (не слишком длинный, и не короткий); при отдаленности солнечного элемента, его можно удлинить, при условии длины кабеля от источника энергии до инвертора не превышающей трех метров;
  • обратить внимание на сечение кабеля (соответствие силе тока мощности прибора и сечения);
  • обеспечить жесткое крепление кабеля, чтобы избежать появления искры и впоследствии – пожара;
  • при применении бесперебойников, монтаж автоматических выключателей идет напрямую в цепь постоянно подающегося тока;
  • обратить внимание на форму выходного сигнала напряжения инвертора перед использованием его в системе;
  • определиться: какая нужна чистота сигнала, чтобы избежать поломок приборов, не все устройства могут работать при искаженной форме синуса (газовые котлы, насосы с непрерывным периодом циркуляции, подключение видео- и аудиокамер – требуют повышенной точности).

Принцип работы прост и каждый может подключить инвертор для солнечной батареи своими руками.

Что нужно учитывать при выборе инвертора

При выборе инвертора следует учитывать множество значимых факторов и технических параметров, которые смогут полноценно обслуживать солнечную систему и обеспечивать бесперебойным питанием. Основными показателями для выбора являются:

  • КПД – коэффициент полезного действия;
  • номинальная мощность;
  • пиковая мощность;
  • потребляемая мощность;
  • масса устройства;
  • значение температурного диапазона.

Получаемое количество электроэнергии от батареи можно экономить, если выбрать преобразователь с КПД не менее 90%. При этом надо учитывать нагрузку при включении сразу нескольких электроприборов. Ведь мощность расходуется и на работу самого инвертора, около 1% его рабочей номинальной выработки. Специалисты советуют делать выбор инверторов в пользу тех, мощность которых превышает на 25% необходимую номинальную мощность, рассчитанную на основе потребления обязательных электроприборов в доме.

При выборе обязательно обратите внимание на дополнительные функции инвертора – защита от замыкания, перегрева, стабилизатор напряжения и прочее.

Особенно важным показателем инвертора является зависимость мощности устройства от выходного электропотока, а именно:

  • 12 В – до 600 Вт;
  • 24 В – от 600 до 1500 Вт;
  • 48 В – более 1500 Вт.

При расчете затрата энергии следует знать, что почти все виды техники обладают пусковой мощностью. При этом пусковая мощность, которая необходима для пуска и старта работы электроприбора, в 1,5 раза превышает номинальную, соответственно, нужно при расчетах оставлять небольшой зазор, который как раз и будет направляться на включение прибора. После нескольких секунд электрическое устройство будет работать в штатном режиме. Найти значение пусковой мощности можно в технической документации.

Отдельные виды инверторов могут быть в комплекте оснащены зарядным устройством, что защищает от перебоев в работе солнечной системы. Поэтому, перед тем как выбрать устройство, обратите внимание и на это условие.

Последнее, на чем стоит акцентировать внимание, это то, что в зависимости от количества батарей понадобится определенное количество инверторов. Здесь все зависит от мощности солнечной батареи. Если ее мощность находится в пределах 5кВт, то достаточно будет одного инвертора. Соответственно, для двух и более батарей нужно будет покупать больше инверторов.

Обзор моделей

Одна из самых дорогих моделей – фотоэлектрический инвертор производства Китай компании ChintPower Systems Co., LTD: форма сигнала в виде чистого синуса с низким уровнем шума (меньше 30 дБ), с номинальными характеристиками мощности и напряжения 1000 ВА и 230 В соответственно. Максимальная мощность солнечной батареи с таким инвертором – 1200 Вт. Стоимость 40669 рублей.

Самая бюджетная модель – инвертор/зарядное устройство от компании Cyber Power: сигнал с чистой синусоидой, автоматическое переключение, подходит для маломощных приборов, максимальная и номинальная выходная мощность – 200 ВА, выходное напряжение – 220 В, переключение на аккумуляторные батареи за 4 мс. Стоит недорого – 5900 рублей.

Золотая середина – инвертор с зарядным устройством и PWM контроллером от фирмы Voltronicpower: оптимальная модель с синусоидой чистой формы и пиковой мощностью в 1600 Вт; выходное напряжение – 230 В с частотой сигнала на выходе в 50 Гц. Стоимость колеблется в районе 20 000 рублей.

Панели устанавливаются на максимально освещенной части крыши или стены постройки для эффективного функционирования. Важно при монтировании панели соблюдать нужный угол к горизонту и учесть степень затемнения территории (крепить подальше от предметов, создающих тень).

>Батарейные инверторы и блоки бесперебойного питания

Предназначение


Для начала нужно понять, что такое инвертор и для чего он нужен. Инвертор — это электротехническое устройство, которое преобразует постоянный ток в переменный, при этом может выдавать напряжение необходимое для обеспечения местной сети.
Теперь рассмотрим место данного устройство в цепочке системы автономного питания дома от ветряного генератора.

  • Первое — сам ветряк, он вырабатывает постоянный ток при вращении лопастей.
  • Второй элемент — выпрямитель тока.
  • Третий — аккумуляторные батареи.
  • Наконец, последний — инвертор. Он задает току приемлемые характеристики, которые подходят для работы бытовых приборов в домашней сети.

Также устройство выполняет ряд задач:

  1. Преобразует постоянный ток в переменный.
  2. Выравнивает напряжение сети до 220 В 50 Гц.
  3. Работает как источник бесперебойного питания. Может переключать питание бытовых приборов на аккумулятор и обратно при отключении сети 220В и её «появлении».
  4. Может автоматически заряжать аккумуляторы.

Таким образом, инвертор становится одним из главных компонентов системы бесперебойного питания дома.

Некоторые эксперты отмечают, что инверторы для ветряков не способны выдавать чистое синусоидальное напряжение. Однако за последние 10 лет на рынке начали появляться модели, которые могут решать и эту задачу.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]