Пусковой ток и его кратность
Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.
Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:
Iп = Кп · Iн
Номинальный ток всегда указан на шильдике двигателя:
Номинальный ток двигателя для разных напряжений и схем включения
Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.
Замечу, что не надо путать номинальный и рабочий токи. Номинальный ток – это ток, на котором двигатель может работать продолжительное время, он ограничен только нагревом обмотки статора. Рабочий ток – это реальный ток в данном агрегате, он всегда меньше либо равен номинальному. На практике рабочий ток измеряется токоизмерительными клещами, амперметром или трансформатором тока.
Если рабочий ток больше номинального – жди беды. Читайте мою статью про то, как защитить электродвигатель от перегрузки и перегрева.
Кратность пускового тока . На шильдике его обычно нет, а в документации и на сайтах производителей он присутствует:
Параметры двигателей. Кратность пускового тока
Пример из первой строчки на картинке: конкретный двигатель мощностью 1,5 кВт имеет номинальный ток 3,4 А. Значит, пусковой ток в какой-то момент (сколько длится этот “момент” – рассмотрим ниже) может достигать значения 3,4 х 6,5 = 22,1 А!
Судя по каталогам (их можно будет скачать в конце статьи, как обычно у меня), пусковой ток превышает номинальный в пределах от 3,5 до 8,5 раз.
Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.
То есть, самым большим током при пуске (7 – 8,5 от номинала) обладают высокооборотистые двигатели (3000 об/мин, 2 пары полюсов) сравнительно большой мощности (более 10 кВт).
Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.
Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.
Кому хочется узнать подробнее – в конце статьи я выложил несколько хороших книг по теме.
На самом деле не так всё просто, начинаем копать глубже.
Как рассчитать пусковой ток
Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:
Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.
Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):
Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.
Способы уменьшения пускового тока
Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:
Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.
Пусковые токи асинхронных электродвигателей | Полезные статьи — Кабель.РФ
Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.
Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.
Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения).
Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).
Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи.
Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты.
Расчет пускового тока асинхронного электродвигателя
Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).
Расчет пускового тока электродвигателя осуществляется в несколько этапов:
Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.
Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.
Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.
Расчет возможности пуска электродвигателя 380 В
В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.
При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.
Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.
Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.
Iн = Pн/(√3Uн х сosφ), кА
где Pн – номинальная мощность двигателя, кВт, Uн – напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) – паспортные значения двигателя.
Рис. 1. Паспорт электрического двигателя.
Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению “два ампера на киловатт”, т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.
Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.
При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 – 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).
Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока – Iпуск/Iном. Кратность пускового тока – техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).
Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.
Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).
Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 – 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.
В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.
Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.
Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.
Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.
Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).
Пусковой ток аккумуляторной батареи
Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.
Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 18 С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.
Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.
Плавный пуск электродвигателя схема
Соединение звездой и треугольником обмоток электродвигателя
Частотные преобразователи: принцип работы
Устройство синхронного двигателя
Асинхронный двигатель с короткозамкнутым ротором схема
Источник
Расчет мощности электродвигателя
Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора: Полученный результат можно округлить до ближайшего стандартного значения мощности.
Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.
Расчет мощности двигателя производится по следующей формуле:
P=√3UIcosφη
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Режимы работы электродвигателей
Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:
Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.
Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.
Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.
Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.
Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.
Режим S7 (периодически-непрерывный с электрическим торможением)
Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)
Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)
Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.
Как узнать пусковой ток?
Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:
- Первый способ (лучший) – использовать осциллограф. Взять шунт (например, резистор 0,1…0,5 Ом, чем меньше по сравнению с обмотками, тем лучше), и посмотреть на нём осциллограмму в момент пуска. Далее из максимального амплитудного значения определяем действующее напряжение (поделить на корень из 2), далее по закону Ома считаем пусковой ток. Можно ничего не умножать и не делить – просто измерить клещами ток в рабочем режиме, и умножить его на разницу токов на экране осциллографа. Способ хорош тем, что видно переходные процессы, вызванные ЭДС самоиндукции, мгновенные значения тока, длительность разгона. Кроме того, учитываются параметры питающей сети. Ещё плюс – пусковой ток измеряется реальный, на реальном двигателе и механизме.
- Второй способ измерения пускового тока – подать на двигатель пониженное (в 5-10 раз) напряжение рабочей частоты и измерить ток. Почему пониженное? Это необходимо для того, чтобы ротор можно было легко зафиксировать, не допуская перегрева. Измеренный ток пересчитать, получим пусковой. Достаточно измерить ток на одной фазе. По другим токи будут (обязаны быть) такими же. Этот способ используют при производстве и испытаниях двигателей. Именно этим способом производители получают табличные данные. Способ опирается на номинальный ток, в реальности (на реальном механизме) пусковой ток может быть другим!
- Измерить пусковой ток токоизмерительными клещами. Плюс этого способа – простота и оперативность. Клещи используют в большинстве случаев для проверки режимов работы двигателей. Минус – такие клещи достаточно инерционны, а нам нужно увидеть, что происходит за доли секунды. Но этот минус нивелируется, когда мы измеряем ток при пуске нагрузки с высоким моментом инерции (вентиляторы, насосы с массивными крыльчатками). Пуск длится более 10 сек, и на экране клещей всё видно.
- Трансформатор тока. Такой используется, например, в узлах учета электроэнергии – благодаря трансформатору тока нет необходимости измерять реальной ток, а можно измерить ток, уменьшенный в точно известное количество раз. Так же измеряют ток в электронных пусковых устройствах (преобразователях частоты, софтстартерах). Минус способа – трансформатор тока рассчитан на частоту 50/60 Гц, а переходные процессы во время пуска имеют широкий спектр и много гармоник. Поэтому можно сказать, что такой способ тоже обладает высокой инерционностью.
Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.
Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!
Теперь разберём другой вопрос –
Что такое пусковой ток двигателя
Если взять любой технический паспорт к двигателю, то там кроме рабочего тока, мощности, оборотов, типа соединения полюсов и напряжения можно найти такой параметр как пусковой ток. В этой статье я хочу подробно остановиться именно на этом параметре и рассказать, что это такое и каким образом можно измерить пусковой ток у реального двигателя. Итак, начнем.
Пусковой ток и его кратность
Итак, для начала давайте дадим определение. Пусковой ток — это ток, потребляемый электродвигателем в момент его запуска (раскручивания). В большинстве случаев этот ток больше рабочего в 6-8 раз. Величина, показывающая во сколько раз больше пусковой ток, называется кратностью и записывается как коэффициент:
Получается, если известен коэффициент, то пусковой ток найти крайне легко по этой формуле:
Примечание. Пожалуйста, не путайте номинальный и рабочий токи. Номинальный — это такой ток, при котором двигатель способен работать продолжительное время и ограничивается только температурным нагревом статора. А рабочий — это реальный ток, протекающий по обмоткам в процессе работы агрегата и он всегда равен или несколько меньше номинального тока.
Кратность пусковых токов имеет прямую зависимость от мощности самого движка и от того сколько пар полюсов в нем реализовано. То есть при меньшей мощности будет меньший пусковой ток. А в случае с парами полюсов, чем их меньше, тем пусковой ток больше.
Получается, что, наибольшим пусковым током обладают двигатели с оборотами 3000 об/мин, двумя полюсами и мощностью более 10 кВт (7-9 крат от номинала).
Почему так происходит
Все дело в том, что потребление тока и инерционный момент при запуске зависит от конструктивных особенностей двигателя и от того, каким образом произведена намотка обмоток.
Мало полюсов – это минимальное сопротивление обмоток. Такое низкое сопротивление – это автоматически большой ток. А еще высокооборотистым движкам для полного выхода на рабочие параметры необходимо больше времени, а это автоматически тяжелый пуск.
Если сказать более грамотным языком, то в статичном положении любой двигатель имеет степень скольжения равной S = 1. Во время цикла раскручивания этот параметр стремится к нулю, но никогда его не достигает, так как в двигателе присутствуют потери, и скорость вращения ротора никогда не достигнет скорости вращения электромагнитного поля статора (поэтому двигатель и асинхронный).
Помимо этого сердечник ротора проходит стадию насыщения магнитным полем, в результате этого возрастает ЭДС самоиндукции и индукционное сопротивление и ток уменьшается.
Как выяснить величину пускового тока
Если информации по кратности пускового тока конкретного двигателя недоступна, то его можно измерить следующими способами:
1. Первый способ
, самый точный, но при этом требуется много оборудования. Для этого подключаем шунт и с помощью осциллографа смотрим осциллограмму на шунте в момент пуска двигателя. Затем максимальное амплитудное значение делим на корень из 2 (получаем действующее значение), затем по закону Ома производим расчет. Клещами измеряем рабочий ток и умножаем полученное значение на разницу токов на экране осциллографа. Данный способ хорош всем.
2. Второй способ
. Для этого подаем на двигатель напряжение ниже номинального в 5 – 10 раз и производим измерение тока. Зачем нужно использовать пониженное сопротивление. Да все для того. чтобы зафиксировать ротор, то есть не допустить его перегрева. Полученное значение тока просто пересчитываем и получаем пусковой. Именно такой способ применяют сами производители и получают табличные значения.
3. Третий способ
. Измеряем пусковой ток токоизмерительными клещами. Это самый простой вариант измерения, но при этом наиболее грубый, так как во время такого измерения клещи не учитывают всех переходных процессов, протекающих при запуске, да и сам прибор довольно инерционный. Но они хорошо подходят для измерений, когда запускаются двигатели с повышенным моментом инерции (вентиляторы, насосы с большими крыльчатками и т.д.), когда пусковой момент длится больше 10 секунд.
Какой вред от пускового тока?
Пусковой ток – это проблема. Это –
- перегрузка питающей сети, приводящая к нагреву (вплоть до отгорания контактов) и проседанию напряжения;
- чрезмерный износ, перегрузка и перегрев двигателя, у некоторых производителей среди параметров двигателя указывается максимальное количество пусков в час или в сутки – именно из-за перегрева;
- износ и перегрузка механического привода (подшипники, редукторы, ремни), особенно обладающего большим моментом инерции,
- помехи, вызванные включением контакторов, которые передаются не только по проводам, но и через электромагнитное поле,
- проблемы с технологией – многие процессы нельзя начинать резко.
От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.
И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.
Поэтому разберём,
От чего зависит пусковой ток автомобильного аккумулятора
Мы уже разобрались, какой пусковой ток должен быть у усреднённого аккумулятора, но каким образом производители добиваются его повышения при неизменных размерах корпуса?
Разумеется, увеличивая площадь пластин, можно добиться соответствующего увеличения мощности, но двигаться в этом направлении практически некуда. Наоборот, наблюдается тенденция к уменьшению габаритов современных батарей. Как же удаётся при этом сохранять и даже наращивать пусковой ток АКБ?
Давайте рассмотрим на конкретных примерах. Китайские батареи обладают примерно на 30% меньшей мощностью, чем их европейские аналоги. Производители из Поднебесной экономят на качестве материала, из которого изготовляются пластины: вместо чистого свинца используют сплавы с добавками. Кроме того, в китайских АКБ в одной баке помещаются 4 пластины, в то время как в европейских – 5 пластин.
Чтобы зарядить аккумулятор с меньшим числом пластин, потребуется больший зарядной ток, что негативно сказывается на времени службы батареи.
Имеет значение и герметичность корпуса, особенно применительно к необслуживаемым батареям – излишняя потеря электролита негативно сказывается на сроке службы как самого источника питания, так и окружающих элементов моторного отсека.
Увеличить пусковой ток пытаются уменьшив толщину стенок корпуса, что сказывается на прочностных характеристиках устройства. Чуть ниже мы рассмотрим, на что влияет пусковой ток автомобильного аккумулятора, а пока сосредоточимся на том, как можно самостоятельно определить величину ПТ.
Проблема высоких пусковых токов: решение
Высокий пусковой ток может спровоцировать резкое, хотя и кратковременное падение напряжения, при котором прочие подключенные к сети устройства испытают недостаток энергии. Это нежелательно, поскольку негативно влияет на безопасность работы и долговечность оборудования.
Для решения задачи предусмотрены специальные дополнительные устройства, установка которых в процессе подключения и наладки двигателей позволяет:
- максимально уменьшить значение пускового тока;
- повысить плавность запуска;
- снизить затраты на запуск агрегата, так как становится возможным применение менее мощных дизельных электростанций, стабилизаторов, проводов с меньшим сечением и пр.
Наибольшей эффективностью отличаются такие современные устройства, как частотные преобразователи и софтстартеры. Они обеспечивают высокую (более минуты) продолжительность поддержания пускового тока.
Как уменьшить пусковой ток асинхронного двигателя
Решить проблему большого пускового тока электрически можно двумя путями:
- Вначале подавать на двигатель пониженное напряжение, а затем, по мере разгона, напряжение и скорость вращения поднять до номинального значения. Такой способ применяется в электронных устройствах запуска двигателей – софтстартерах (УПП) и преобразователях частоты (частотниках).
- Использовать ограничители пускового тока, когда при пуске двигатель питается через мощные резисторы, а потом по таймеру переключается на номинал. Сопротивление резисторов соизмеримо с сопротивлением обмотки стартера (единицы Ом, в зависимости от мощности). Это устройство легко сделать самому (контактор + реле времени).
- Сразу подавать полное напряжение, но сначала подключать обмотки так хитро, чтобы двигатель не раскручивался на полную мощность. И только когда в этом режиме двигатель раскрутится насколько это возможно, включать его на полную. Эта схема называется “Звезда – Треугольник”, читайте в следующей статье.
Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.
В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.
Сверхпереходный ток и уставка защиты
- Пиковое значение сверхпереходного тока может быть крайне высоким. Обычно это значение в 12-15 раз превышает среднеквадратическое номинальное значение Inm. Иногда это значение может в 25 раз превышать значение Inm.
- Выключатели, контакторы и термореле рассчитываются на пуски двигателей при крайне высоких сверхпереходных токах (сверхпереходное пиковое значение может в 19 раз превышать среднеквадратическое номинальное значение Inm).
- При внезапных срабатываниях защиты от сверхтоков при пуске это означает выход пускового тока за нормальные пределы. В результате могут достигаться предельные значения параметров распределительных устройств, срок службы может укорачиваться и даже некоторые устройства могут выходить из строя. Во избежание такой ситуации необходимо рассмотреть вопрос о повышении номинальных параметров распределительных устройств.
- Распределительные устройства рассчитываются на обеспечение защиты пускателей двигателей от КЗ. В зависимости от риска, таблицы показывают комбинации выключателя, контактора и термореле для обеспечения координации типа 1 или 2.
Тепловое действие пускового тока
Если перейти к формулам, пусковой ток оказывает тепловое действие на электродвигатель, которое описывается так называемым интегралом Джоуля. Если по простому, то тепловая энергия, производимая электрическим током, пропорциональна квадрату тока, умноженному на время. Обозначается эта величина через I2t.
Хорошая новость в том, что защитный автомат имеет примерно такую же тепловую (время-токовую) характеристику, что и время-токовая характеристика разгона двигателя.
Сравните:
Время-токовые характеристики защитного автомата
Что видим? Для защиты двигателя используются в основном автоматы с характеристикой D, как раз для того, чтобы меньше реагировать на кратковременные перегрузки. Подробнее здесь.
А для пускового тока двигателя график будет примерно такой:
График пускового тока (теоретический) при Кп = 6
Линейность графика – условная. Всё зависит от изменения момента нагрузки в процессе разгона. Теоретический график показан пунктиром. На этом графике Кп = Iп / Iн = 6, но это теоретическое (табличное) значение. Время разгона до номинала = tп.
Реальный график начерчен сплошной линией. На нём Iп` – это реальное значение пускового тока, которое всегда меньше теоретического. Это обусловлено тем, что питающая сеть имеет не нулевое сопротивление, и при повышении тока на проводах возникают потери напряжения.
Про потери на низком напряжении я писал тут, про потери в сетях 0,4 кВ – здесь.
Понятно, что из-за потерь время разгона будет больше, оно обозначено на графике через tп`.
Теперь повернём последний график, чтобы привести оси к одной системе координат:
Время от тока, если можно так выразиться
Не правда ли, весьма похоже на время-токовую характеристику защитного мотор-автомата?
Получается, что обе характеристики компенсируют друг друга, и при выборе автомата достаточно настроить его уставку на номинальный ток двигателя. При особо тяжелых пусках, когда площадь под кривой пуска двигателя больше площади под кривой защитного автомата, стоит подумать о плавном пуске – УПП либо ПЧ.
Пусковые токи
Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.
Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.
Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.
В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка.
Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в 2–7 раз. Такое явление обусловлено наличием пусковых токов.
Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания.
В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.
Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах).
По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания.
Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.
Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.
Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.
Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.
В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение.
В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты.
Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).
С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.
Единственный вид ИБП, который может выдерживать пусковые токи, в 2–3 раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа.
Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в 5–7 раз.
Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.
При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая.
При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины).
Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.
Выводы:
Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.
Примеры номинальной мощности и мощности при запуске бытовой техники
В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.
Как измерить пусковой ток
Сегодня на рынке представлено большое количество клещей (мультиметров), которые обеспечивают измерение пускового тока. Также вы можете использовать токовые клещи Fluke 376 FC True-RMS для измерения пускового тока. Иногда пусковой ток показывает значение, которое выше номинального значения автоматического выключателя, но, тем не менее, автоматический выключатель не отключается. Причина этого заключается в том, что автоматический выключатель работает по кривой зависимости тока от времени, например, если бы вы использовали автоматический выключатель на 10 А, поэтому пусковой ток, превышающий 10 А, должен протекать через автоматический выключатель больше, чем номинальное время.
Выполните следующие шаги для измерения пускового тока:
- Тестируемое устройство должно быть отключено изначально.
- Поверните циферблат и установите переключатель на Hz-A.
- Поместите провод под напряжением в клещи или используйте датчик, соединенный с измерителем.
- Нажмите кнопку измерения пускового тока, как показано на рисунке выше.
- Включив испытуемое устройство, вы получите значение пускового тока на дисплее прибора.
© digitrode.ru
Теги: пусковой ток, трансформатор, электропривод
Как ограничить пусковой ток
Всегда следует помнить о пусковом токе в асинхронных двигателях, трансформаторах и в электронных цепях, которые состоят из катушек индуктивности, конденсаторов или сердечников. Как упоминалось ранее, пусковой ток – это максимальный пиковый ток, наблюдаемый в системе, и он может быть в два-десять раз больше нормального номинального тока. Этот нежелательный всплеск тока может повредить устройство, пусковой ток может вызвать срабатывание выключателя при каждом включении. Регулировка допуска выключателя может помочь нам, но компоненты должны выдерживать пиковое значение.
Находясь в электронной схеме, некоторые компоненты должны выдерживать высокие значения пускового тока в течение короткого промежутка времени. Но некоторые компоненты сильно нагреваются или повреждаются, если значение при быстром запуске очень велико. Поэтому лучше использовать схему защиты от пускового тока при проектировании электронной схемы или печатной платы.
Для защиты от пускового тока вы можете использовать активное или пассивное устройство. Выбор типа защиты зависит от частоты пускового тока, производительности, стоимости и надежности.
Вы можете использовать NTC-термистор (с отрицательным температурным коэффициентом), который является пассивным устройством, работает как электрический резистор, сопротивление которого очень высоко при низкотемпературном значении. Термистор NTC соединяется последовательно с входной линией питания. Обладает высокой устойчивостью при температуре окружающей среды. Поэтому, когда мы включаем устройство, высокое сопротивление ограничивает пусковой ток, который протекает в систему. По мере непрерывного протекания тока температура термистора повышается, что значительно снижает сопротивление. Следовательно, термистор стабилизирует пусковой ток и позволяет постоянному току течь в цепь. Термистор NTC широко используется для ограничения тока из-за его простой конструкции и низкой стоимости. У него также есть некоторые недостатки, например, нельзя полагаться на термистор в экстремальных погодных условиях.
Активные устройства ограничения пускового тока стоят дороже, а также увеличивают размер системы или схемы. Они состоят из чувствительных компонентов, которые переключают высокий входящий ток. Некоторые из активных устройств – устройства плавного пуска, регуляторы напряжения и преобразователи постоянного тока.
Эти средства защиты используются для защиты как электрической, так и механической системы путем ограничения мгновенного пускового тока. На приведенном ниже графике показано значение пускового тока со схемой защиты и без схемы защиты. Мы ясно видим, насколько эффективна защита от пускового тока.
Расчет мощности электродвигателя
Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту. Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя. Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.
Какую роль играет пусковой момент
Встречаются ситуации, когда двигатели подключают непосредственно к сети, а коммутацию производят за счет обычного магнитного пускателя. Для этого линейное напряжение подается на обмотки, образуется вращающееся магнитное поле статора, за счет чего оборудование начинает работать.
В этом случае не избежать броска тока, который по своей величине превысит номинальный ток в 5-7 раз. И чем мощнее двигатель и выше нагрузка, тем большей будет и длительность такого превышения. Более мощные моторы демонстрируют продолжительный старт, а обмотки статора в них принимают токовую перегрузку дольше.
Двигатели малой мощности, не превышающей 3 кВт, могут с легкостью перенести такие перепады. Сеть тоже вполне достойно справляется с кратковременными бросками мощности, поскольку у сети в любом случае присутствует некий мощностной резерв. Это объясняет, почему мелкие бытовые электроприборы, а также небольшие станки, вентиляторы и насосы подсоединяют напрямую, не беспокоясь о том, что они подвергаются перегрузкам. Обмотки статоров в двигателях маломощного оборудования соединяются «звездой», если расчет идет на 3-фазное напряжение в 380 вольт или «треугольником», когда речь идет о 220 вольтах.
Но если двигатель более мощный, с показателем в 10 и больше кВт, то его недопустимо включать в сеть напрямую. Нужно ограничить бросок тока, иначе можно спровоцировать существенную перегрузку, которая приведет к опасным последствиям.
От чего зависит ПТ аккумуляторной батареи
Очень немногие автовладельцы при покупке АКБ обращают внимание на показатель пускового тока. Между тем он может варьироваться в довольно широких пределах, порядка 30-40%, причем особенно большая разница замечена между изделиями китайского и европейского производства. Возникает вопрос: в чём причина таких расхождений?
Ответ прост, в применяемых технологиях:
- очищенный свинец, даже в кислотных батареях, способствует быстрой зарядке, пластины из свинца низкого качества с большим количеством посторонних включений и заряжается, и отдаёт заряд медленнее, обеспечивая меньшее значение ПТ при той же ёмкости;
- чем больше пластин, тем лучше. Европейские производители размещают в одной банке 5 пластин, китайцы – только 4 при одинаковых габаритах корпуса;
- европейские изделия за счёт меньшей толщины пластин вмещают большее количество электролита, что положительно сказывается на величине пускового тока;
- некачественные АКБ отличаются не лучшей герметичностью, что способствует потере электролита и уменьшению характеристик батареи.
Разумеется, имеет значение и качество изготовления, и порядочность компании-производителя (имеется в виду умышленное завышение показателей).
Современные гелевые и AGM аккумуляторы являются рекордсменами по ПТ, который в некоторых моделях достигает значений в 1000 А, отдаваемых на протяжении 30 секунд.
Отметим, что во время запуска двигателя напряжение, выдаваемое автоаккумулятором, снижается до 9 вольт – это нормально, поскольку сила тока вырастает намного больше. Как только мотор запустится, напряжение вернется в норму, а потраченный при пуске заряд будет восстановлен генератором. Снижение пускового напряжения до 6 вольт свидетельствует о том, что аккумулятор находится на последнем издыхании, и скоро придётся его менять.
Расчет мощности электродвигателя для насоса
Выбор электродвигателя для насосной установки зависит от конкретных условий, прежде всего – от схемы водоснабжения. В большинстве случаев подача воды производится с помощью водонапорного бака или водонапорного котла. Для приведения в действие всей системы используются центробежные насосы с асинхронными двигателями.
Выбор оптимальной мощности насоса осуществляется в зависимости от потребности в подаче и напоре жидкости. Подача насоса QH измеряется в литрах, подаваемых в 1 час, и обозначается как л/ч. Данный параметр определяется по следующей формуле: Qн = Qmaxч = (kч х kсут х Qср.сут) / (24 η), где Qmaxч — возможный максимальный часовой расход воды, л/ч, kч – коэффициент неравномерности часового расхода, kсут — коэффициент неравномерности суточного расхода (1,1 – 1,3), η — КПД насосной установки, с учетом потерь воды), Qср.сут — значение среднесуточного расхода воды (л/сут).