Как мультиметром проверить импульсный трансформатор


Конструкция преобразователя

Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.

Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.

Добиваются этого снижением паразитных величин, таких как межвитковая ёмкость и индуктивность, путём использования небольших сердечников, расположением витков, уменьшением числа обмоток. Основными характеристиками трансформатора являются: мощность и рабочее напряжение. Конструктивно устройство может быть выполнено в следующем виде:

  • стержневом — магнитопровод такого трансформатора выполняется из П-образных пластин, обхваченных обмотками;
  • броневом — используются Ш-образные пластины, а обмотки располагаются в катушках, образуя своеобразную броню;
  • тороидальном — его вид напоминает геометрическую фигуру тор, при этом он не имеет катушек, а обмотка наматывается на сердечник;
  • смешанном (бронестержневом) — собирается из четырёх катушек и магнитопровода совмещённого типа.

Магнитопровод в трансформаторе выполняется из пластин электротехнической стали, кроме тороидальной формы, в которой он сделан из рулонного или ферромагнитного материала. Каркасы катушек размещаются на изоляторах, а провода используются только медные. Толщина пластин подбирается в зависимости от частоты.

Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго — выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.

Капитальный ремонт сварочного трансформатора

Капитальный ремонт сварочного трансформатора представляет собой наибольший по объёму вид планового ремонта, при котором производится:

  • разборка агрегата;
  • замена всех изношенных узлов и деталей.

Замене подлежат;

  • катушки первичной и вторичной обмоток;
  • дроссель, конденсаторы и т. д.
  • все контактные узлы: зажимы, колодки и т. п;
  • подвижные узлы и механизмы.

После проведения капитального ремонта технические параметры сварочного трансформатора должны соответствовать новому прибору. Во многих случаях, по согласованию с Заказчиком, в ходе капремонта проводится модернизация сварочника.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Подготовка и проверка

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

С цифровым мультиметром проще. В его конструкции используется анализатор, который следит за состоянием батареи и при ухудшении её параметров выводит на экран тестера сообщение о необходимой её замене.

При проверке параметров трансформатора используется два принципиально разных подхода. Первый заключается в оценке исправности непосредственно в схеме, а второй — автономно от неё. Но важно понимать, что если ИТ не выпаять из схемы, или хотя бы не отсоединить ряд выводов, то погрешность измерения может быть очень большой. Связано это с другими радиоэлементами, шунтирующими вход и выход устройства.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Исследование на обрыв и КЗ

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного. В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом -|>| —))). Для определения обрыва к цифровому прибору подключаются измерительные провода. Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM. Галетный переключатель переводится в область прозвонки. Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на короткое замыкание. Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока. Для проведения тестирования мультиметр переключается в режим проверки сопротивления. Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки). Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Измерения напряжения и тока

При подозрении на неисправность трансформатора тестирование можно провести, и не отключая его полностью от схемы. Такой метод проверки называется прямым, но связан с риском получить удар электрическим током. Суть действий в измерении тока заключается в выполнении следующих этапов:

  • из схемы выпаивается одна из ножек вторичной обмотки;
  • провод чёрного цвета вставляется в гнездо мультиметра COM, а красного — подключается к разъёму, обозначенному буквой А;
  • переключатель устройства переводится в положение, соответствующее зоне ACA.
  • щупом, подключённым к красному проводу, касаются свободной ножки, а к чёрному — места, к которому она была припаяна.

При подаче напряжения, если трансформатор работоспособный, через него начнёт протекать ток, значение которого и можно будет увидеть на экране тестера. Если ИТ имеет несколько вторичных обмоток, то сила тока проверяется на каждой из них.

Измерение же напряжения заключается в следующем. Схема с установленным трансформатором подключается к источнику питания, а затем тестер переключается на область ACV (переменный сигнал). Штекеры проводов вставляются в гнёзда V/Ω и COM и прикасаются к началу и концу обмотки. Если ИТ исправен, то на экране отобразится результат.

Снятие характеристики

Чтобы иметь возможность проверить трансформатор мультиметром таким методом, необходима его вольт-амперная характеристика. Этот график отображает зависимость между разностью потенциалов на выводах вторичных обмоток и силы тока, приводящей к их намагничиванию.

Суть метода лежит в следующем: трансформатор извлекается из схемы, на его вторичную обмотку с помощью генератора подаются импульсы разной величины. Подводимой на катушку мощности должно быть достаточно для насыщения магнитопровода. Каждый раз при изменении импульса измеряется сила тока в катушке и напряжение на выходе источника, а магнитопровод размагничивается. Для этого после снятия напряжения ток в обмотке увеличивается за несколько подходов, после чего снижается до нуля.

По мере снятия ВАХ её реальная характеристика сравнивается с эталонной. Снижение её крутизны свидетельствует o появление в трансформаторе межвиткового замыкания. Важно отметить, что для построения вольт-амперной характеристики необходимо использовать мультиметр с электродинамической головкой (стрелочный).

Таким образом, используя обычный мультиметр, можно с большой долей вероятности определить работоспособность ИТ, но для этого лучше всего выполнить комплекс измерений. Хотя для правильной интерпретации результата, следует понимать принцип работы устройства и представлять, какие процессы происходят в нём, но в принципе для успешного измерения достаточно лишь уметь переключать прибор в разные режимы.

Неисправности сварочных трансформаторов и методы их устранения

Физический принцип действия сварочного трансформатора ничем не отличается от обычного понижающего трансформатора. Он очевиден из поясняющего рисунка «Принцип действия понижающего трансформатора». Более подробно можно рассмотреть в этой статье устройство и принцип действия трансформаторного сварочника.

Принцип действия понижающего трансформатора. Ист. https://moiinstrumenty.ru/svarochnyj/raschet-svarochnogo-transformatora.html.

Внешний вид сварочника приведён на рисунке «Сварочный трансформатор».

Сварочный трансформатор. Ист. https://moiinstrumenty.ru/svarochnyj/svarochnyi-transformator-svoimi-rukami.html

Наиболее часто встречающиеся неисправности сварочных трансформаторов и методы их устранения сведены в таблицу.

ВНИМАНИЕ! При выполнении любого ремонта следует обязательно отключить аппарат от электросети.

Описание неисправностейПричины неисправностейМетодика устранения
Самопроизвольное отключениеСамопроизвольное отключение сварочного аппарата происходит за счёт срабатывания его электрозащиты при включении в питающую сеть. Причиной этого может быть:
  • короткое замыкание в высоковольтной или низковольтной цепях: между подводящими проводами и корпусом. ВАЖНО. Для исключения поражения обслуживающего персонала электрическим током является обязательным качественное заземление корпуса сварочника;
  • проводов между собой;
  • межвитковое замыкание в катушках;
  • замыкание проводов (подводящих или катушек) на магнитопровод;
  • электрический пробой конденсаторов;
  • выход из строя других компонентов сварочного гаджета.
  • замена проводов и восстановление разрушенной изоляции;
  • замена конденсаторов и других вышедших из строя деталей и узлов на кондиционные.
Сильное гудение трансформатора, сопровождающееся часто перегревомПричины могут быть следующие:
  • перегрузка: длительная работа без технологических перерывов на остывание;
  • неправильно выбран сварочный электрод (марка, излишне большой диаметр и т. п.);
  • неправильно выбран режим сварки (высокое значение сварочного тока и т. п.);
  • ослабление крепежа узлов оборудования:
    • шпилек, стягивающих «железо»;
    • неисправности в креплении магнитопровода;
    • нарушена регулировка механизма перемещения катушек;
  • короткое замыкание между сварочными кабелями;
  • нарушена изоляция между листами магнитопровода.
  • проверить электроизоляцию и устранить все дефекты;
  • подтянуть весь крепёж;
  • устранить нарушения в механизме перемещения катушек
Чрезмерный нагревПричины могут быть вызваны нарушением норм и правил эксплуатации:
  • сварочный ток выше допустимого значения для данной модели оборудования;
  • применяются сварочные электроды, модель и диаметр которых не соответствуют данному виду сварки;
  • работа происходит без достаточного количества технологических перерывов (на остывание).

Чрезмерный нагрев сварочного аппарата может привести к полному разрушению электроизоляции обмоток и необходимости капитального ремонта всего аппарата. Поэтому, этот дефект необходимо устранить сразу по обнаружению.

Устранение дефекта заключается в неукоснительном соблюдении требований «Инструкции по эксплуатации сварочного трансформатора»
Сильный нагрев контактовПричиной сильного нагрева контактов на клеммной колодке чаще всего является плохой электрический контакт: он приводит к большому «переходному сопротивлению». Через контакты протекает большой электрический ток, который и создаёт выделение большого количества тепловой энергии. Это приводит к сильному нагреву соединения и подсоединенных к нему проводов. В итоге:
  • разрушается механическое соединение;
  • сгорает изоляция на концах проводов;
  • разрушается электрическое соединение.
  • перебрать и проверить состояние контактов;
  • при необходимости зачистить их или заменить на кондиционные;
  • обеспечить плотный зажим всех элементов
Низкое значение сварочного токаПричиной может служить:
  • пониженное напряжение в питающей электросети;
  • неисправность регулятора величины сварочного тока.
Если величина напряжение источника электропитания не соответствует норме, то это следует устранить (изменить настройки генератора, применить мощный стабилизатор напряжения и т. п.). Если напряжение питания соответствует норме, то следует проверить регулятор величины сварочного тока и устранить неисправность.
Слишком высокое значение сварочного токаПричиной может служить:
  • повышенное напряжение источника электропитания;
  • неисправность регулятора величины сварочного тока.

Повышенное напряжение источника электропитания, чаще всего, случается при питании от мобильных генераторов. В электросетях этот параметр регулируется централизованно. Резкое увеличение возможно только в случае аварии (обрыв «нулевого провода» на КТП).

ВАЖНО. В случае повышения напряжения в электросети следует срочно отключить все потребители электроэнергии на ОЩ (иначе они выйдут из строя – «перегорят»).

Если величина выходного напряжения мобильного генератора не соответствует норме, то это следует устранить, изменив его настройки. При напряжении питания, соответствующем норме, следует проверить регулятор величины сварочного тока. До устранения обнаруженной неисправности к работе не приступать.
Плохая регулировка сварочного токаПричиной этого дефекта являются неисправности в механизмах регулирования сварочного тока. В разных конструкциях сварочных трансформаторов применяются отличающиеся друг от друга схемы регулировки. Тем не менее, отказы можно разбить на следующие группы:
  • неисправность в механизме ходового винта регулятора тока;
  • короткое замыкание между контактами на зажимах регулятора;
  • ограничена подвижность катушек вторичной обмотки;
  • замыкание в катушке дросселя.
Для осуществления ремонта необходимо снять защитный кожух и осмотреть механизм регулирования тока на предмет обнаружения неисправности:
  • посторонние предметы следует удалить;
  • катушку дросселя заменить;
  • контакты на зажимах регулятора и механизм ходового винта отрегулировать.
Внезапный обрыв сварочной дуги и невозможность зажечь ее сноваПри попытке повторного поджига образуются только мелкие искры. Причины могут быть следующие:
  • нарушение изоляции обмотки высокого напряжения (первичной) и её замыкание на сварочную цепь (вторичная обмотка и всё, что следует за ней);
  • замыкание между сварочными проводами;
  • ослабло соединение сварочных проводов с клеммами аппарата.
  • провести внешний осмотр и установить причину;
  • при нарушении изоляции обмоток, последние следует заменять (перематывать трансформатор);
  • на сварочных проводах восстановить изоляцию или их заменить;
  • восстановить соединение сварочных проводов с клеммами аппарата.
Потребление большого тока из сети при отсутствии нагрузкиПричиной этого является замыкание витков обмоток.Если его не удаётся устранить локальным восстановлением изоляции, то следует заменить катушки.

Самое «тонкое место» сварочника – клеммная колодка.

Клеммная колодка.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]