Как проверить стабилизатор мультиметром не выпаивая

Название полупроводникового элемента, похожего на диод, говорит само за себя. Он позволяет стабилизировать уже сглаженное напряжение за счёт своих физических особенностей. Зачастую возникает такая необходимость, как проверка стабилитрона. Нужно узнать исправность детали, когда не обеспечивается стабилизация напряжения в цепи, где она установлена.


Внешний вид стабилитрона

Общие сведения о принципе работы

Если вы не знаете как работает стабилитрон, то прежде чем прочитать текущую статью, прочтите опубликованную ранее — https://samelectrik.ru/kak-rabotaet-stabilitron-i-dlya-chego-on-nuzhen.html.

При достижении определенного напряжения, происходит лавинообразный пробой pn-перехода. Сопротивление перехода уменьшается. В результате напряжение на диоде остается постоянным. А ток, протекающий через полупроводник, увеличивается.

Принцип работы можно проиллюстрировать бочкой с водой, где имеется переливная трубка. Сколько бы мы воды ни наливали в бочку, уровень останется на постоянном уровне.

На нижеприведенном рисунке представлена схема работы на примере бочки с водой.


Этот элемент на схеме включается в обратном направлении. Т.е. плюс к минусу, а минус к плюсу. Если его включить в прямом направлении, то он будет работать как обыкновенный диод.

На рисунке выше представлена вольт-амперная характеристика, обозначение на схеме и его включение.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.


Пример схемы для снятия вольтамперных характеристик

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока в течение пары минут.


Проверка на «ползучесть»

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя. Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение. Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Читать также: Как работает дымогенератор для холодного копчения

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Стабилитрон

СТАБИЛИТРОН – СТАБ (жаргонноеJ) — Это НЕ сложно!

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее.

В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь.

Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки…»

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое – же, как и у диода, отличие “черточка” катода изображается как буква Г.

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока, и пропускает напряжение в прямом направлении анод – катод так же — как и диод. В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод – анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?

Стабилитрон имеет свои параметры – это напряжение стабилизации и ток. Параметр напряжение — указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток – задана сила тока, при которой стабилитрон может работать не повреждаясь.

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.

В таблице указаны основные параметры – это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники.

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.

Возьмем стабилитрон параметром — напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом).

Например — если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт.

Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального.

Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так – же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом).

Проверка мультиметром

Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры. Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность.

Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Аналогично выполняется проверка стабилитрона мультиметром в режиме проверки диодов. В этом случае в прямом направлении на экране высветится падение напряжения в районе 400-600 мВ. В обратном либо I, левой части экрана либо .0L, либо какой-то другой знак который говорит о «бесконечности» в измерениях.

На рисунке снизу представлена методика проверки мультиметром.


Если диод пробит, то он будет звониться в обе стороны. При этом цешка может показывать незначительное отклонение сопротивления от 0. Если р-n переход находится в обрыве, то независимо от направления включения показания прибора будут отсутствовать.

Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.

Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.

Как работает этот элемент?

И внешне, и по реализации p-n перехода, этот элемент похож на полупроводниковый диод. Даже схематическое обозначение не сильно отличается.

Через него также протекает ток в одном направлении, при этом есть одна особенность. Диод организует движение частиц только от анода к катоду, прохождение обратного тока является аварийной ситуацией: то есть пробоем радиоэлемента.

В стабилитроне обратный ток является нормальной ситуацией, именно эта особенность определяет его назначение. При возникновении на его выводах определенного значения вольтажа, открывается движение электронов в направлении от катода к аноду, и элемент становится обратно проводимым.

Причем это напряжение является основной характеристикой: например, стабилитрон на 12 вольт при достижении этого значения начинает пропускать ток в обратном направлении.

Рассмотрим это явление на простом примере

Допустим, у нас есть сосуд для воды со сливным патрубком на определенном уровне.

Когда жидкость достигает необходимой высоты, происходит перелив из сливного патрубка. То есть, сосуд будет заполняться только до определенного значения, которое будет оставаться стабильным до определенного напора. Если поступление воды превысит возможности сливного патрубка, сосуд переполнится или лопнет.

Переводим ситуацию в электронику.

  • напор воды – это максимальная сила тока, на которую рассчитан стабилитрон без электрического (термического) разрушения;
  • необходимый уровень – это напряжение срабатывания стабилитрона.

При достижении заданного напряжения, оно фиксируется, и «лишний» ток движется в обратную сторону. Таким образом, элемент стабилизирует напряжение. Если сила тока будет слишком высокой, стабилитрон сгорит.

Основная цель определения работоспособности – проверка стабилитрона на напряжение стабилизации.

Как проверить двусторонний стабилитрон?

Эта деталь представляет собой два стабилитрона в одном корпусе, соединенная навстречу друг другу.


Такой элемент может работать с импульсным напряжением, и с переменной полярностью. Проверка на пробой бессмысленна, поэтому можно лишь тестировать соответствие напряжения стабилизации.

Для этого собирается схема, аналогичная описаниям выше. Для проверки необходимо также подавать на вход завышенное напряжение, только различной полярности.

В обоих случаях на выходе должно быть стабилизированное значение напряжения, в соответствии с маркировкой. Разумеется, проверка возможна и на монтажной плате, если обеспечить входное напряжение разной полярности.

Проверяем стабилитрон мультиметром — видео

Вопрос, как проверить стабилизатор напряжения, является актуальным для многих предприятий, организаций и частных пользователей. Стабилизирующие устройства представляют собой достаточно сложную аппаратуру, от качества работы которой зависит исправность подключенного дорогостоящего оборудования. Поэтому контроль их работоспособности и своевременное выявление неисправностей – необходимое условие для обеспечения бесперебойности технологических процессов и минимизации дополнительных расходов.

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Как проверить светодиод мультиметром и прозвонить светодиодную ленту

Светодиоды подразделяются на индикаторные и осветительные. Индикаторные обладают меньшей мощностью и применяются в подсветке дисплеев приборов, как индикаторные источники светового сигнала. Осветительные – более мощные (мощность более 1 Вт), применяются в конструкциях осветительных приборов, которые могут производиться в форме с ламп, лент, прожекторов.

Срок службы таких источников в десятки раз выше, чем ламп накаливания. Тем не менее, осветительные элементы служат гораздо меньше, чем индикаторные. Иногда возникает потребность их проверить, сделать это можно мультиметром или специальным тестером.

Последовательность проверки

Для работы светодиода необходим постоянный ток невысокого напряжения. Для его получения применяются различные устройства, представляющие собой миниатюрные блоки питания, которые являются элементами конструкции осветительных приборов. Осуществлять проверку при помощи фактического подключения к таким блокам не всегда представляется возможным. В этом случае необходимо использовать мультиметр.

Учитывая особенности устройства, можно легко понять, как проверить светодиод мультиметром. Поскольку он имеет в своей структуре полупроводниковый переход, то, по аналогии с обычным диодом, должен пропускать ток в определенном направлении. Если величина тока будет достаточна, светодиод будет излучать свет.

Для проверки светодиода мультиметром необходимо перевести прибор в режим прозвона диодов, далее:

  • к аноду, то есть, положительному электроду подключается красный (положительный) щуп мультиметра;
  • к катоду – отрицательному электроду, подключается черный (отрицательный) щуп мультиметра;
  • на дисплее отобразится величина падения напряжения на p-n переходе;
  • если изменить полярность подключения мультиметра, падения напряжения не должно быть (ток не проходит). В таком случае светодиод можно считать исправным.

Аналогично можно осуществить проверку светодиода простейшим тестером, представляющим собой разорванную цепь из отрезка проводника, источника постоянного тока и контрольной лампы.

Возможна ситуация, когда в процессе проверки мощного осветительного светодиода вышеописанным способом, отражается напряжение на дисплее, светится элемент, но при включении в схему яркость недостаточно сильная. Это определяется невооруженным глазом без всяких измерений. В этом случае, скорее всего, имеет место дефект кристалла. Такой светодиод необходимо заменить.

Можно проверить светодиод тестером, не выпаивая его из схемы. Достаточно освободить один из его контактов.

В настоящее время производятся и поступают в продажу специальные устройства – LED TESTER. Каждое такое устройство представляет собой тестер светодиодов, выполненный в виде прибора с встроенным источником питания и комплектом разъемов для проверки устройств различных типов.

Проверка светодиодной ленты

Светодиодная лента представляет собой источник света, состоящий из множества элементов. Они расположены равномерно по длине ленты и сгруппированы по три. Это позволяет разрезать светодиодную ленту на отрезки практически любой длины, не ухудшая при этом ее эксплуатационных свойств. Главное, чтобы разрез не приходился на середину группы из трех элементов.

Проверка ленты заключается в подаче тока на контакты питания. Если лента горит, она исправна. Если не горит вся лента, неисправность нужно искать в подводящих проводах. Для этого можно их прозвонить тестером. Можно для проверки целостности проводов измерить сопротивление мультиметром.

Если при включении питания в ленте не горят отдельные группы, проблема не в подводящих проводах, а в конкретном сегменте со светодиодами. В этом случае они проверяются по методике, описанной выше, а также проверяется резистор (он один на всю группу) на соответствие заданному значению сопротивления.

Проверка светодиодных ламп

Для удобства потребителей в настоящее время налажен выпуск ламп на основе светодиодов, которые имеют геометрическую конфигурацию, схожую с уже привычными лампами накаливания. Это дает возможность устанавливать светодиодные лампы в обычные светильники, питающиеся от сети 220 В.

В конструкцию такой лампы встроен специальный преобразователь тока – драйвер. Это устройство собирается из деталей, имеющих параметры, различающиеся в каждой отдельной модели. Это обстоятельство делает невозможным применение такого вида диагностики, как проверка светодиодной лампы мультиметром.

Светодиодную лампу прозванивают при помощи специального тестера. Он представляет собой прибор, внутри которого собрана схема, позволяющая проверять работоспособность ламп различных типов. Для этого на корпусе выполнены несколько разъемов под цоколи ламп, наиболее часто применяемых. Вывод результата проверки, осуществляется в виде звукового сигнала.

Виды диодов и их предназначение

Вкратце можно сказать, что диод представляет собой полупроводниковый компонент электронной схемы, предназначенный для однонаправленного пропускания тока. Другими словами, прибор пропускает ток в одном направлении, запирая его течение в обратном, образуя своеобразный электрический вентиль.

На принципиальных схемах диод обозначается в виде стрелки-указателя, на конце которой изображена черта, означающая запирание. Стрелка указывает направление течения тока.

Нужно помнить, что в теоретической физике ток образуют позитивно заряженные частицы. Поэтому для открытия p-n перехода положительный потенциал прикладывают к началу стрелки, а отрицательный к ее концу. При таких условиях через прибор потечет прямой ток.

Рассмотрим наиболее распространенные типы диодов, учитывая, что интерес в плане проверки представляют лишь некоторые, а именно:

  • обычные диоды, созданные на основе p-n перехода;
  • с барьером Шоттки, чаще называемые просто диоды Шоттки;
  • стабилитрон, служащий для стабилизации потенциала и другие виды.

Существует еще множество типов диодов – варикапы, светодиоды или фотодиоды, например. Но ввиду сходности проверки работоспособности или малой распространенности эти устройства здесь не рассматриваются.

Это интересно: Как правильно нарезать резьбу метчиком вручную

Схема для проверки

Рассмотрим еще одну простейшую схему для определения напряжения стабилизации, которая состоит из:

  • Регулируемого блока питания. Постоянное напряжение должно изменяться плавно потенциометром от 0 до 50 В (чем выше максимальное напряжение тем больший диапазон элементов вы сможете проверить). Это позволит проверить практически любой маломощный стабилитрон.
  • Набор токоограничивающих резисторов. Обычно они имеют номинал 1 Ком, 2,2 Ком и 4,7 Ком, но их может быть и больше. Все зависит от напряжения и тока стабилизации.
  • Вольтметр, можно использовать обыкновенный мультиметр.
  • Колодка с подпружиненными контактами. Она должна иметь несколько ячеек, чтобы была возможность подключать полупроводники с различными корпусами.

Для проверки подключают стабилитрон по вышеприведенной схеме и постепенно поднимают напряжение на источнике питания от 0. При этом контролируют показания вольтметра. Как только напряжение на элементе перестанет расти, независимо от его увеличения на блоке питания, это и будет стабилизацией по напряжению.

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения. Диод 1N 4148 не дает возможность конденсатору разрядиться. Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

Остальные элементы пробника выглядят следующим образом:

Контактные площадки стали местом монтажа элементов схемы. Корпус получился компактным.

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

На этом пробник готов. Он является своеобразной приставкой к мультиметру. Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике. Прибор сработал, на экране отображается 9,91 вольта.

Как проверить все стабилизируещие приборы напряжения мультиметром

Стабилизаторы напряжения – это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов.

В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться 220 вольтам.

Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле. В этом случае реле имеют достаточно большой шаг, и он всегда будет показывать 220 В. По факту на выходе будет совсем другое значение.

Источник

Как проверить стабилитрон мультиметром

Название полупроводникового элемента, похожего на диод, говорит само за себя. Он позволяет стабилизировать уже сглаженное напряжение за счёт своих физических особенностей. Зачастую возникает такая необходимость, как проверка стабилитрона. Нужно узнать исправность детали, когда не обеспечивается стабилизация напряжения в цепи, где она установлена.

Диагностика исправности стабилитрона

Стабилитроном называется полупроводниковый элемент, стабилизирующий напряжение в довольно узком диапазоне. При этом через него могут протекать разные токи как большие, так и маленькие. Диапазон стабилизации стабилитрона по напряжению обычно ограничен сотней милливольт. Конструктивно стабилитрон представляет собой диод, и в прямом включении он так и работает. Стабилизацию напряжения он производит при подаче на него напряжения в обратном включении. Проверить исправность стабилитрона мультиметром можно точно так же, как и исправность обычного диода.

Что такое стабилитрон

Практически ни один стабилизатор напряжения не обходится без этого полупроводника. По внешнему виду его легко спутать с диодом. Узнавать, какой из элементов стабилизирует разность потенциалов, можно по маркировке. Диод Зенера (стабилитрон) имеет высокое сопротивление, до тех пор, пока не наступает пробой. Поданное обратное смещение вызывает пробой перехода, и ток начинает быстро увеличиваться, а сопротивление уменьшается в интервале от сотен Ом до его дольных величин. Такой режим работы даёт возможность с определённой точностью поддерживать неизменное значение напряжения на элементе.

Главная задача полупроводника – выполнять стабилизацию напряжения. Выпускают в серию детали, рассчитанные на поддержание от 1,8-400 В. Включение радиодетали в схему выполняется параллельно нагрузке.

Внимание! Двухполюсник имеет выводы: катод и анод. Если рассматривать область p-n перехода, то вывод, подключенный к p-области, это анод, а к n-области – это катод.

Полупроводниковые элементы, которые составлены из двух встречно направленных стабилитронов, называют двусторонними (двуханодными).

Классификация этих двухполюсников по функциональному назначению выглядит следующим образом:

  • детали общего применения (дискретные), по мощности: 0-0,3; 0,3-5; 5-10 Вт и выше;
  • прецизионные элементы, имеющие в своей структуре сложную микросхему (скрытая структура);
  • ограничительные стабилитроны, предназначенные для подавителей помех.

Последние предназначены для кратковременного пропускания импульсного тока величиной до сотни ампер. Длительная работа с большими токами вызывает перегрев детали и тепловой пробой.

Внимание! Кремниевый диод (стабилитрон), включенный в схему в обратном направлении, имеет три варианта пробоя: туннельный, лавинный и вызванный тепловой неустойчивостью. Их конструкция подразумевает наступление первых двух пробоев до того, как произойдёт тепловое разрушение перехода.

Характеристики и применение

Любой диод обладает односторонней проводимостью. Это значит, что при подаче положительного напряжения на анод, а отрицательного — на катод деталь становится проводником, появляется прямой ток. Если поменять полюсы местами, то получается обратная ситуация. Пробитый диод будет проводить ток в обоих направлениях, а если в этой детали есть обрыв, то не будет проводить.

При подаче переменного напряжения на выходе детали появится пульсирующий ток, текущий в одном направлении. Его остаётся только сгладить. По такому принципу устроены все выпрямители для приборов, работающих от обычной электросети. На любом полупроводниковом приборе неизбежно теряется часть напряжения, часто называемого пробивным. Эта величина и проверяется цифровыми мультиметрами.

Стабилитрон подключается параллельно цепи, в которой требуется поддерживать постоянство напряжения. Такая деталь также входит в состав более мощных транзисторных стабилизаторов. Стабилитрон включается между базой и противоположным полюсом цепи.


Когда напряжение растёт, сопротивление детали падает, и транзистор прикрывается, благодаря чему уровень выхода на коллекторе (эмиттере) остаётся неизменным. Транзисторные стабилизаторы применяются в различных устройствах при токах нагрузки от 100 миллиампер и выше.

Таким образом, проверка диодов мультиметром и стабилитроном не вызовет особых трудностей. Чёткое различие показателей при перемене полярности позволит точно убедиться в исправности деталей и исключить ошибки при выбраковке. Небольшие сложности при проверке стабилитронов, связанные с их конструкцией, легко преодолеваются путём создания дополнительных схем. Прозвонить полупроводниковые приборы можно также простейшим стрелочным тестером, имеющим режим омметра.

Можно ли проверить деталь, не выпаивая

Выпаивать полупроводниковую деталь не всегда удобно, особенно, если платы имеют двухсторонний монтаж схемы. Проверка стабилитронов мультиметром без демонтажа вполне возможна. Если показания измерительного прибора не определяют повреждения, то их можно считать реальными. При результатах, показывающих обрыв, можно быть уверенными, что это тоже факт. Но, когда измерения регистрируют пробой – низкое сопротивление при любой полярности подключения щупов, то это не всегда так. В этом случае деталь нужно выпаивать.

Осторожно. Измерения тестером с внутренним напряжением, большим напряжения пробоя стабилитрона, может привести к реальному пробою. Для проверки таких элементов удобно пользоваться стрелочными аналоговыми приборами. Напряжение питания у них – не более 3 В.

Видео


Кофе в капсулах Nescafe Dolce Gusto Cappuccino, 8 порций (16 капсул)

435 ₽ Подробнее


Кофе капсульный Nescafe Dolce Gusto Кафе О Ле Кофе с молоком, 3 упаковки по 16 капсул

1305 ₽ Подробнее

Рули игровые

Как проверить двусторонний стабилитрон

Бывает, что после выпаивания из платы полупроводникового элемента, при изменении полярности на щупах, сопротивление оказывается большим в обоих случаях. Это не обязательно говорит об обрыве. Проверяемый компонент схемы может быть двусторонним стабилитроном. Как проверить стабилитрон мультиметром?

Чтобы протестировать его работоспособность, нужно:

  • увеличить прилагаемое напряжение измерения;
  • менять полярность, подаваемую щупами тестера на выводы;
  • измерять токи и сравнивать ВАХ исследуемой детали.

Совокупность действий поможет определить, исправен или нет такой зенер диод. Зная о том, что в такой радиодетали катоды внутри соединены между собой, необходимо собрать схему.

В схему входят следующие компоненты:

  • тестер;
  • резистор сопротивлением 1 кОм (R);
  • ИП до 30 вольт.

Для измерения все вместе соединяется в схему:

  • подключают резистор к « + » источника питания;
  • стабилитрон присоединяют на второй контакт резистора;
  • щуп тестера подсоединяют с свободному выводу R и клемме « – » ИП;
  • прибор включается в разрыв: « + » ИП и « – » ИП;
  • на приборе выбирается наиболее подходящий режим.

При проверке зинер диода с напряжением стабилизации схема будет рабочей, если, изменяя Uпит в границах 13-30 В, на дисплее прибора сохраняется в пределах 12 В, даже при смене полярности.

Важно! Никакой измерительный прибор не может гарантировать, что полученные результаты действительно верны. Для проверки нужно включить в схему полупроводник, подать питание и провести измерения, которые выявляют неисправную деталь.

Основные неисправности стабилитрона

Работоспособность детали, расположенной в блоках аппаратуры, можно выявить, зная основные неисправности. К ним можно отнести следующие повреждения или отклонения от нормы:

  • пробой перехода;
  • обрыв;
  • неправильное напряжение;
  • неточный ток.

Если первые два пункта вопросов не вызывают, то вторые две позиции относятся к неявным повреждениям.

Внимание! Когда измеренное мультиметром на диоде зенера падение напряжения в прямом направлении совпадает с заявленным значением, это означает, что элемент исправен.

При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду. В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1».

При пробое перехода при прямом и обратном прикасании измерительных щупов на дисплее тестера будут высвечиваться цифры. Когда в режиме проверки диода на тестере присутствует звуковое оповещение (пищалка), то оно сработает.

При обрыве перехода измерения ничего не покажут при любом прикладывании щупов тестера. В этом случае даже без выпаивания стабилитрона из платы можно определить его неисправность.

Неправильное напряжение стабилизации определяется только при включении питания схемы. В режиме вольтметра щупами касаются выводов детали и измеряют параметр. В случае отклонения от необходимой величины стабилитрон заменяется.

При определении исправности элемента с напряжением стабилизации до 20-30 В пользуются простым методом. Для этого нужно собрать небольшую макетную модель для испытаний, в неё входят:

  • панель для закрепления микросхем (любая);
  • ограничивающий резистор сопротивлением 4,7 кОм, мощностью до 0,25 Вт;
  • источник питания: подойдёт блок питания от ноутбука, в идеале – источник с регулировкой выходного напряжения.

Панель от микросхемы поможет закреплять в её пазах любой проверяемый элемент.

Осторожно. При подключении в схему проверяемого полупроводника подключают «плюс» к катоду, «минус» – к аноду. Неправильное включение выведет испытуемую деталь из строя.

Стабилизация напряжения с использованием стабилитронов – успешное решение в электронных схемах. Правильное тестирование стабилитрона с помощью мультиметра поможет определить неисправную деталь и сберечь схему от повреждения.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии. Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене. Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля. Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему. Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;
  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.


Стабилитрон.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция. Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов. Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно.

Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно цифрового мультиметра с функцией измерения емкости верки конденсаторов, например UT151B). Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно демонстрирует зависимости емкости варикапа от номинального напряжения.


Стабилитрон на плате.

Проверка супрессора (TVS-диода)

Защитный диод, он же ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Будет интересно➡ Как проверить магнетрон на исправность мультиметром

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера). Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования – как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до I max диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до I min , после чего снова начнет расти.

Тестирование без выпайки

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять. Стабилитрон относится к электронным приборам с нелинейной вольт-амперной характеристикой. Его свойства характерны обычному диоду. Но есть и существенное различие между ним и диодом. Для проверки исправности стабилитрона можно использовать много различных лабораторных приборов и стендов. На практике, для ремонта электронной начинки, радиолюбители используют мультиметры или тестеры со стрелочной шкалой индикации. Чтобы выявить неисправность стабилитрона своими руками нужно хорошо знать его характеристики и уметь пользоваться мультиметром.

Как проверить стабилитрон этим прибором, не прибегая к сложным и длительным лабораторным экспериментам, можно рассмотреть на примере. Его работа основана на нелинейной вольт-амперной характеристике p-n перехода. Отличие от диодов и светодиодов заключается в наличии на вольт-амперной характеристике зоны пробоя. Она показывает, что при возрастании тока в нагрузке напряжение остается практически неизменным. Это свойство называют стабилизационным, а электронный элемент получил название стабилитрон. Устройства, где они применяются, называются стабилизаторы. Стабилитроны изготавливаются, в основном, в стеклянном или металлическом корпусе. Они бывают низковольтными и высоковольтными. Чтобы убедиться в исправности элемента его проверяют мультиметром.


Проверка стабилитрона на тестере.

Порядок проверки

Чтобы проверить деталь на исправность, мультиметр используют в режиме измерения сопротивления или в режиме проверки диодов. Тестером или мультиметром стабилитроны прозваниваются точно также как и диоды. К выводам стабилитрона прикладывают щупы и считывают показания со шкалы индикации. Измерения должны проводиться в прямом и обратном направлении, то есть сначала прикладываем плюс мультиметра к катоду, а затем к аноду стабилитрона. Прибор должен показать в первом случае бесконечное сопротивление, а во втором случае покажет единицы или десятки Ом.

Такие показатели говорят об исправности стабилитрона. Если измерение сопротивления показывают в обоих направлениях бесконечность, то это говорит об обрыве p-n перехода и неисправности. Бывает так, что при прозвонке стабилитрона мультиметр показывает в обоих направлениях десятки или сотни Ом. В этом случае создается впечатление, что стабилитрон пробит. Именно такой вывод можно было бы сделать, если бы это был обычный диод. Но в случае стабилитрона такой вывод неверен, он, скорее всего, исправен. Объясняется это наличием напряжения пробоя. В таблице ниже представлен полный перечень стабилитронов по напряжению стабилизации:


Таблица стабилитронов по напряжению стабилизации.

При прикладывании щупов мультиметра к выводам стабилитрона прикладывается напряжение внутреннего источника питания мультиметра. Если напряжение источника питания выше значения напряжения пробоя, то шкала индикации покажет сопротивление десятков или сотен Ом. Если мультиметр имеет источник питания напряжением, например, 9 Вольт, то все проверяемые стабилитроны с напряжением стабилизации меньше 9 Вольт при измерении будут показывать пробой.

Поэлементное описание проверки имеет вид:

  • на приборе выбирается режим измерения сопротивления;
  • щупы тестера подключаются к выводам детали;
  • оцениваются показания прибора, высвечиваемые на дисплее.

Будет интересно➡ Как правильно прозвонить транзистор?

Когда собственный источник питания мультиметра подключен плюсовым щупом к аноду, то на дисплее можно зафиксировать показания сопротивления от нескольких долей Ома до его единиц. После замены местами измерительных щупов при исправном элементе получают бесконечно большое сопротивление. Помня о том, что стабилитрон ведёт себя, как простой диод, устанавливают интервал измерений в кОм. В этом случае сопротивление исправной радиодетали доходит до сотен кОм.

Информация. Показания, выданные на дисплей тестером, часто вводят в заблуждение проводящего измерения. Одинаково высокое сопротивление при различных подключениях щупов не всегда означает пробой элемента. Поданное для измерений напряжение внутреннего источника может превысить номинальное напряжения пробоя, тогда полученные результаты будут ложными.


Различные типы диодов.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике. К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде:

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.


Супресор заменяет стабилитрон.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]