Как создать дешевый и эффективный контроллер заряда аккумулятора от солнечной батареи


Это автоматически включающаяся схема, которая контролирует зарядку аккумулятора от солнечных панелей и других источников питания. Она основана на интегральных схемах 555 и заряжает батарейку, когда её заряд становится ниже заданного уровня, а затем останавливает зарядку во время того, когда батарейка достигает верхнего лимита по вольтажу.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору. Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Зарядка происходит периодически. При этом ее продолжительность зависит от того, каким является зарядный ток аккумуляторной батареи, и насколько мощные подключенные к ней устройства. Зарядка длится до тех пор, пока напряжение не станет равным 14 В.

Схема включается за очень короткое время. На ее включение влияет время зарядки С2 током, который ограничивает транзистор Q3. Ток не может быть больше 40 мА.

Солнечный контроллер

Приведена схема эффективного 12В зарядного устройства (солнечного контроллера), с защитой аккумуляторов от пониженного напряжения.

Характеристики устройства

Низкое потребление мощности в режиме простоя Схема была разработана для небольших и средних свинцово-кислотных аккумуляторных батарей и потребляет маленький ток (5 мА) в режиме простоя. Это увеличивает продолжительность жизни аккумуляторных батарей.

Легкодоступные компоненты В устройстве используются обычные компоненты (не SMD), которые легко можно найти в магазинах. Ничего не требуется прошивать, единственное нужен будет вольтметр и регулируемый источник питания для настройки схемы.

Последняя версия устройства Это уже третья версия устройства, поэтому в нем исправлены большинство ошибок и недочетов, которые присутствовали в предыдущих версиях зарядника.

Регулировка напряжения В приборе используется параллельный стабилизатор напряжения, чтобы напряжение аккумулятора не превышало норму, обычно это 13.8 Вольт.

Защита от пониженного напряжения Контроллер отсоединяет аккумуляторную батарею, если напряжение падает ниже определенной точки (настраивается), обычно это 10.5 Вольт

В большинстве солнечных зарядных устройствах для защиты от утечки тока аккумулятора на солнечную панель, используется диод Шоттки. А шунтирующий стабилизатор напряжения используется когда аккумулятор полностью заряжен. Одной из проблем такого подхода являются потери на диоде и как следствие его нагрев. К примеру, солнечная панель 100 Ватт, 12В, подает 8А на аккумуляторную батарею, на диоде Шоттки падение напряжение составит 0.4В, т.е. рассеиваемая мощность составит около 3.2 Ватта. Это во первых потери, а во вторых для диода понадобится радиатор для отвода тепла. Проблема в том, что уменьшить падение напряжения не получится, несколько диодов включенных параллельно, уменьшат ток, но падение напряжения такое и останется. В представленной ниже схеме, вместо обычных диодов используются мосфеты, следовательно мощность теряется только на активное сопротивление (резистивные потери). Для сравнения, в 100 Вт панели при использовании мосфетов IRFZ48 (КП741А) потери мощности составляют всего 0.5Ватта (на Q2). А это значит меньший нагрев и больше энергии для аккумуляторов. Еще важным моментов является то, что мосфеты имеют положительный температурный коэффициент и могут быть включены в параллель для уменьшения сопротивления в включенном состоянии.

В приведенной выше схеме используется пара нестандартных решений.

Зарядка

Между солнечной панелью и нагрузкой не используется диод, вместо него стоит мосфет Q2. Диод в мосфете обеспечивает протекание тока от панели к нагрузке. Если на Q2 появляется значительное напряжение, то транзистор Q3 открывается, заряжается конденсатор С4, что заставляет ОУ U2c и U3b открыть мосфет Q2. Теперь, падение напряжения вычисляется по закону Ома, т.е. I*R, и оно намного меньше, чем если бы там стоял диод. Конденсатор С4 периодически разряжается через резистор R7, и Q2 закрывается. Если от панели протекает ток, то ЭДС самоиндукции дросселя L1 сразу же заставляет открыться Q3. Это происходит очень часто (множество раз за секунду). В случае, когда ток идет на солнечную панель, Q2 закрывается, а Q3 не открывается, т.к. диод D2 ограничивает ЭДС самоиндукции дросселя L1. Диод D2 может быть рассчитан на ток 1А, однако в процессе тестирования выяснилось, что такой ток возникает редко.

Подстроечник VR1 устанавливает максимальное напряжение. Когда напряжение превышает 13.8В, то операционный усилитель U2d открывает мосфет Q1 и выход с панели «закорачивается» на землю. Помимо этого, операционник U3b отключает Q2 и т.о. панель отключается от нагрузки. Это необходимо, поскольку Q1 помимо солнечной панели «коротит» нагрузку и аккумулятор.

Управление N-канальными мосфетами

Для управления мосфетами Q2 и Q4 требуется большее напряжение, чем используемое в схеме. Для этого, ОУ U2 с обвязкой из диодов и конденсаторов создает повышенное напряжение VH. Это напряжение используется для питания U3, на выходе которого будет повышенное напряжение. Связка U2b и D10 обеспечивают стабильность выходного напряжения на уровне 24 Вольт. При таком напряжении, через затвор-исток транзистора будет напряжение не меньше 10В, поэтому тепловыделение будет маленькое. Обычно, N-канальные мосфеты имеют намного меньшее сопротивление, чем Р-канальные, поэтому они и были использованы в данной схеме.

Защита от пониженного напряжения

Мосфет Q4, операционник U3a с внешней обвязкой из резисторов и конденсаторов, предназначены для защиты от пониженного напряжения. Здесь Q4 используется нестандартною. Диод мосфета обеспечивает постоянное прохождение тока в аккумулятор. Когда напряжение выше установленного минимума, то мосфет открыт, допуская небольшое падение напряжения при зарядке аккумулятора, но более важным является то, что он дает возможность прохождения тока от аккумулятора на нагрузку, если солнечная батарея не может обеспечить достаточную выходную мощность. Предохранитель защищает от возникновения короткого замыкания на стороне нагрузки.

Ниже представлены рисунки расположения элементов и печатных плат.

Настройка устройства

При нормальной использовании устройства, джампер J1 не должен быть вставлен! Светодиод D11 используется для настройки. Для настройки устройства, к выводам «нагрузка» подключите регулируемый блок питания.

Установка защиты от пониженного напряжения Вставьте джампер J1. В блоке питание установите выходное напряжение на 10.5В. Вращайте подстроечный резистор VR2 против часовой стрелки до тех пор, пока не загорится светодиод D11. Немного поверните VR2 по часовой стрелке, пока светодиод не погаснет. Выньте джампер J1.

Установка максимального напряжения В блоке питание установите выходное напряжение на 13.8В. Вращайте подстроечный резистор VR1 по часовой стрелке до тех пор, пока не погаснет светодиод D9. Медленно поверните VR1 против часовой стрелки, пока светодиод D9 не загорится.

Контроллер настроен. Не забудьте вынуть джампер J1!

Если мощность всей системы будет небольшая, то мосфеты могут быть заменены на более дешевые IRFZ34. А если система будет мощнее, то мосфеты можно заменить на более мощные IRFZ48.

Обсуждение схемы на форуме

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
U1ИС источника опорного напряженияLM336-2.51Поиск в магазине ОтронВ блокнот
U2Операционный усилитель LM3241Поиск в магазине ОтронВ блокнот
U3Операционный усилитель LM3581Поиск в магазине ОтронВ блокнот
Q1, Q2, Q4MOSFET-транзистор IRFZ443КП723АПоиск в магазине ОтронВ блокнот
Q3Биполярный транзистор BC3271КТ685АПоиск в магазине ОтронВ блокнот
D1Диод Шоттки1.5КЕ161Поиск в магазине ОтронВ блокнот
D2, D4Диод Шоттки 1N58192КДШ2105ВПоиск в магазине ОтронВ блокнот
D3, D5-D8, D10Выпрямительный диод 1N41486КД522АПоиск в магазине ОтронВ блокнот
D9, D11Светодиод2Поиск в магазине ОтронВ блокнот
C1, C3Электролитический конденсатор1000 мкФ 25 В2Поиск в магазине ОтронВ блокнот
C2, C4-C7Конденсатор100 нФ5Поиск в магазине ОтронВ блокнот
C9Электролитический конденсатор100 мкФ 35 В1Поиск в магазине ОтронВ блокнот
C8, C10, C12Электролитический конденсатор10 мкФ 25 В3Поиск в магазине ОтронВ блокнот
C11Конденсатор1 нФ1Поиск в магазине ОтронВ блокнот
R1, R9, R11, R16, R19Резистор 10 кОм5Поиск в магазине ОтронВ блокнот
R2, R10Резистор 56 кОм2Поиск в магазине ОтронВ блокнот
R3Резистор 1 кОм1Поиск в магазине ОтронВ блокнот
R4, R12Резистор 2.2 МОм2Поиск в магазине ОтронВ блокнот
R5, R8, R13-R15, R18Резистор 100 кОм6Поиск в магазине ОтронВ блокнот
R6Резистор 4.7 кОм1Поиск в магазине ОтронВ блокнот
R7Резистор 1 МОм1Поиск в магазине ОтронВ блокнот
R17, R20Резистор 2.2 кОм2Поиск в магазине ОтронВ блокнот
VR1, VR2Подстроечный резистор10 к2Поиск в магазине ОтронВ блокнот
L1Дроссель25 витков провода 1 мм на сердечнике T68-52A1Поиск в магазине ОтронВ блокнот
F1Плавкий предохранитель25 А1Поиск в магазине ОтронВ блокнот
ST1-ST3Клеммы2 контакта3Поиск в магазине ОтронВ блокнот
J1РазъёмPLS-21Поиск в магазине ОтронВ блокнот
Автомобильный аккумулятор1Поиск в магазине ОтронВ блокнот
Солнечная панель1Поиск в магазине ОтронВ блокнот
Добавить все

Оригинал статьи

Прикрепленные файлы:

  • solar_controller.rar (75 Кб)

Теги:

  • Зарядное устройство
  • Перевод
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]