Какие носители заряда создают электрический ток в вакууме

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

§ 112. Электрический ток в вакууме. Электронно-лучевая трубка

Каковы условия существования электрического тока?

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Запомни Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия. Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Запомни Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Диод. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако

. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение. Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами

Перечислим свойства электронных пучков (катодных лучей).

    1) Электроны в пучке движутся по прямым линиям.

2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.

3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.

4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).

6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.

7) Электронные пучки обладают ионизирующей способностью.

Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка. Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка

(рис. 16.23). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А1 и А2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная (электроны выбиваются светом);
  • электронная (выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.

Как электрический ток может появиться в вакууме

Для того, чтобы создать в вакууме полноценный электрический ток, необходимо использовать такое физическое явление, как термоэлектронная эмиссия. Она основана на свойстве какого-либо определенного вещества испускать при нагревании свободные электроны. Такие электроны, выходящие из нагретого тела, получили название термоэлектронов, а все тело целиком называется эмиттером.

Термоэлектронная эмиссия лежит в основе работы вакуумных приборов, более известных, как электронные лампы. В самой простейшей конструкции содержится два электрода. Один из них катод, представляет собой спираль, материалом которой служит молибден или вольфрам. Именно он накаливается электрическим током. Второй электрод называется анодом. Он находится в холодном состоянии, выполняя задачу по сбору термоэлектронов. Как правило, анод изготавливается в форме цилиндра, а внутри его размещается нагреваемый катод.

Вакуумный диод

Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.

Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:

  • запаянной колбы;
  • электрода из металла (анод);
  • вольфрамовой спирали (катод);
  • реостата.

Нить из вольфрама находится в герметичной колбе и подключена через реостат к генератору для регулировки силы тока. Электрод подключён к микроамперметру. С него цепь, проходя через балластный резистор, замыкается на катоде.

Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.

Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.

На графике эта зависимость будет представлять полукубическую параболу. Описать её можно приблизительной формулой: I = U 3/2 . Если продолжить поднимать напряжение, то напряжённость становится намного больше поля, создаваемого пространственным облаком. Все электроны начнут добираться до анода. Сила тока уже не будет зависеть от напряжения. На ВАХ это изображается прямой линией, а эффект называется током насыщения.

Электрический ток в вакууме кратко, какими частицами создается

Пустота – так переводится слово вакуум с латыни. Вакуумом принято называть пространство, в котором находится газ, давление которого в сотни, а может быть и в тысячи раз ниже атмосферного. На нашей планете вакуум создается искусственным путем, так как в естественных условиях такое состояние невозможно.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]