Закон сохранения электрического заряда


Электрический заряд

Электрические явления известны с древних времен. Еще в древней Греции (VII в. до н.э.) заметили, что если янтарь потереть о шерсть, то он будет притягивать различные легкие предметы.

Позже В.Гильберт (XVI в.) обнаружил, что свойством притягивать легкие предметы обладают, кроме янтаря, фарфор и многие другие тела, предварительно натертые кожей или другими мягкими материалами. Это явление В. Гильберт назвал электризацией

(electron по-гречески — янтарь).

О телах, способных к таким взаимодействиям, говорят, что они электрически заряжены

, т.е. им сообщен электрический заряд.

Электрический заряд q

— это физическая скалярная величина, характеризующая способность тел участвовать в электромагнитных взаимодействиях.

Электрический заряд обозначается буквами q

или
Q
. В Международной системе единиц (СИ) единицу заряда – кулон устанавливают с помощью единицы силы тока:

  • 1 кулон (Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока в 1 А.

Сообщить небольшому телу заряд в 1 Кл невозможно, поэтому чаще всего мы будем использовать кратные величины:

1 мкКл = 1⋅10–6 Кл, 1 нКл = 1⋅10–9 Кл.

  • *Два заряда по 1 Кл на расстоянии 1 км отталкивались бы друг от друга с силой, чуть меньшей силы, с которой земной шар притягивает груз массой в 1 т. Поэтому, отталкиваясь друг от друга, заряженные частицы не смогли бы удерживаться на таком теле.

Заряд в 1 Кл очень велик. Но в проводнике, который в целом нейтрален, привести в движение заряд в 1 Кл не составляет большого труда. Ведь в обычной электрической лампочке мощностью 100 Вт при напряжении 127 В устанавливается ток, немного меньший 1 А. При этом за 1 с через поперечное сечение проводника проходит заряд, почти равный 1 Кл.

Для обнаружения и измерения электрических зарядов применяется электрометр

. Электрометр состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Рис. 1

Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 1). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Подобно тому, как в механике часто используется понятие материальной точки, позволяющее значительно упростить решение многих задач, в электростатике используют понятие «точечный заряд».

  • Точечный заряд
    – это такое заряженное тело, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и других заряженных тел.

В частности, если говорят о взаимодействии двух точечных зарядов, то тем самым предполагают, что расстояние между двумя рассматриваемыми заряженными телами значительно больше их линейных размеров.

Свойства электрического заряда

Совокупность всех известных экспериментальных фактов позволяет выделить следующие свойства заряда:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными. Положительно
    заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк.
    Отрицательно
    заряженными называют тела, которые действуют так же, как эбонит, наэлектризованный трением о шерсть. Выбор названия «положительный» для зарядов, возникающих на стекле, и «отрицательный» для зарядов на эбоните совершенно случаен.

См. так же

  1. Кикоин А.К. Два вида электричества (Из истории физики) //Квант. — 1984. — № 1. — С. 34-36
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотделимой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд. Но заряда без тела не существует.
  • Заряды взаимодействуют друг с другом: одноименные
    заряды
    отталкиваются
    ,
    разноименные – притягиваются
    .
  • Электрический заряд дискретен
    . Это означает, что существует некоторый наименьший, универсальный, далее не делимый элементарный заряд, так что заряд
    q
    любого тела является кратным этому элементарному заряду: \(~q = N \cdot e\) , где
    N
    – целое число зарядов,
    e
    = 1,6∙10-19 Кл – величина элементарного заряда. Примером частиц с элементарным положительным зарядом является
    протон
    , с элементарным отрицательным зарядом —
    электрон
    . *Поскольку величина элементарного заряда весьма мала, то для большинства наблюдаемых и используемых на практике заряженных тел число
    N
    столь велико, что дискретный характер изменения заряда не проявляется. Поэтому считают, что в обычных условиях электрический заряд тел изменяется практически непрерывно.
  • В электрически нейтральном теле число протонов и электронов одинаково и они равномерно распределены по всему объему. Если число электронов в теле меньше числа протонов, то оно заряжено положительно
    , а если избыток электронов, то тело
    заряжено отрицательно
    . Именно этот избыточный заряд и называют
    зарядом тела
    :
    q
    = (
    N
    p —
    N
    e)
    e
    , где
    N
    p — число протонов,
    N
    e — число электронов.
  • Закон сохранения электрического заряда
    в замкнутой системе алгебраическая сумма электрических зарядов остается постоянной при любых взаимодействиях внутри ее: \(~q_1 + q_2 + \ldots + q_n = \operatorname{const}\) .
    Изолированной (или замкнутой) системой
    называют систему тел, в которую не добавляют и не выводят из нее электрические заряды.

Нигде и никогда в природе не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда всегда сопровождается появлением равного по модулю отрицательного заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности, они могут лишь взаимно нейтрализовать друг друга, если равны по модулю.

Причина сохранения электрического заряда до сих пор пока неизвестна.

Электрический заряд. Взаимодействие электрических зарядов. Закон Кулона

Знакомство с явлениями электростатики лучше начинать в сухую погоду. Расчесывая волосы, снимая свитер можно наблюдать в темноте проскакивание крошечных искр и слабое потрескивание. Если потереть пластиковую расческу о волосы и поднести ее к мелким кусочкам бумаги, то они начнут притягиваться к расческе.

Электризация – физическое явление, которое приводит к возникновению взаимодействия (притяжения или отталкивания) двух тел , например, при приведении их в плотный контакт или при трении (стекло и кожа, плексиглас и шерсть, резина и шерсть). Обнаружено в Древней Греции при трении янтаря (по-гречески – «электрон») о шерсть.

Взаимодействие наэлектризованных тел в состоянии покоя называется электростатическим взаимодействием.

Опыты по взаимодействию заряженных тел показали, что в природе существуют два вида заряда. Б. Франклин назвал один из них положительным, а другой – отрицательным. Разноименные заряды притягиваются, а одноименные – отталкиваются.

Различают следующие виды электризации:

  1. Трением.
  2. Соприкосновением.
  3. Через влияние
  4. При облучении.

При электризации тел трением всегда одновременно заряжаются оба участвующих в электризации тела (например, стекло и шелк). Причем одно из них приобретает положительный заряд, а другое – отрицательный. Если до электризации оба тела не были заряжены, то величина положительного заряда первого тела оказывается в точности равной величине отрицательного заряда второго тела.

Современная теория объясняет электризацию твердых тел как перемещение электронов, входящих в состав атомов любых тел, с одного тела на другое.

В состав ядра входят положительно заряженные элементарные частицы – протоны. На теле, приобретающем отрицательный заряд, образуется избыточное число электронов по сравнению с числом протонов, а на положительно заряженном теле оказывается недостаток электронов по сравнению с числом протонов.

Электрический заряд – характеристика заряженного тела. Минимальный заряд обозначается буквой e и равен 1,6·10 –19 Кл. Такой заряд имеют электрон и протон. Первые, наиболее точные определения заряда электрона были выполнены американским ученым Р. Милликеном и русским физиком А. Ф. Иоффе.

Для обнаружения и измерения электрического заряда используют электрометр. По углу отклонения стрелки модно судить о величине заряда.

Уменьшение числа электронов в одном теле равно увеличению их числа в другом. При этом полный заряд такой системы не изменяется, оставаясь равным нулю.

Сохранение числа протонов и электронов на соприкасающихся телах объясняет подтверждающийся опытом закон сохранения заряда: в электрически замкнутой системе алгебраическая сумма зарядов не меняется .

Количественное исследование взаимодействия заряженных тел осуществил в 1785 году французский физик Ш. Кулон (1736-1806). Он исследовал взаимодействие небольших заряженных металлических шариков при помощи крутильных весов.

На тонкой проволоке была подвешена стеклянная палочка с двумя металлическими шариками на концах. Одному шарику сообщали электрический заряд. Рядом с ним помещали неподвижный заряженный таким же по знаку зарядом шар. По углу поворота стеклянной палочки Ш.Кулон определял силу взаимодействия. Расстояние измерялось между центрами шаров.

Модуль силы взаимодействия F12 между двумя неподвижными точечными электрическими зарядами q1 и q2 в вакууме пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния R12 между ними.

Точечный заряд – модель реальных заряженных тел, размер которых значительно меньше, чем расстояние между ними.

Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет.

Сила взаимодействия точечных зарядов зависит от свойств среды, в которой они находятся:

Свойства среды определяет диэлектрическая проницаемость среды ε.

Границы применимости закона Кулона:

  • для точечных зарядов
  • для неподвижных зарядов
  • справедлив до расстояний не меньше 10 -15 м

Применение электризации

1.Электрофильтры.

Для очистки воздуха от пыли, например, при производстве цемента, очистки частиц дыма на ТЭС используют электрофильтры. Наэлектризованные частицы пыли притягиваются к заряженному элементу внутри фильтра.

2. Равномерное распыление краски краскопультом.

Электростатическая покраска используется для покрытия металлических поверхностей, например, в покрасочном цехе автомобильных кузовов. Для равномерного распыления краски на краскопульт подают отрицательный заряд, а кузову автомобиля сообщают положительный заряд. Отрицательно заряженные капельки краски равномерно распределяются по поверхности кузова, образуя прочный, ровный слой.

3. Изготовление наждачной бумаги.

4. Генератор высокого напряжения Ван де Граафа.

Электризация нашла практическое применение в науке и технике. До недавнего времени в ядерных исследованиях на ускорителях элементарных частиц широко применялся генератор Ван-дер-Ваальса. С его помощью удавалось генерировать напряжение до нескольких миллионов вольт. Генератор разработан в 1929 году американским физиком Робертом Ван-дер-Ваальсом. Используется электризация трением. Заряд переносится на движущейся ленте и многократно снимается с нее на полый металлический проводник.

5. Очистка зерна.

6. Дактилоскопия.

7. Лазерный принтер и ксерокс.

Электризация тел при облучении нашла применение в ксерокопирование и лазерном принтере.

8. Медицина.

При работе люстры Чижевского образуется большое количество отрицательных ионов кислорода. При вдыхании воздуха ионы кислорода отдают электрические заряды эритроцитам крови, а затем – клеткам. Вследствие чего улучшается обмен веществ в организме.

Электризация тела

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать

его, нужно отделить часть отрицательного заряда от связанного с ним положительного.

  • Проще всего это сделать с помощью трения
    . Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц – электронов – перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно. При электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.
  • Еще один способ электризации тел – воздействие на них различных излучений
    (в частности, ультрафиолетового, рентгеновского и
    γ
    -излучения). Этот способ наиболее эффективен для электризации металлов, когда под действием излучений с поверхности металла выбиваются электроны, и проводник приобретает положительный заряд.
  • Электризация через влияние или «электрическая индукция
    ». При поднесении к проводнику положительного заряда электроны к нему притягиваются и накапливаются на ближайшем конце проводника. На нем оказывается некоторое число «избыточных» электронов, и эта часть проводника заряжается отрицательно. На удаленном конце образуется недостаток электронов и, следовательно, избыток положительных ионов: здесь появляется положительный заряд. При поднесении к проводнику отрицательно заряженного тела электроны накапливаются на удаленном конце, а на ближнем конце получается избыток положительных ионов. После удаления заряда, вызывающего перемещение электронов, они вновь распределяются по проводнику, так что все участки его оказываются по-прежнему незаряженными. Индуцированные заряды можно разделить, если в присутствии заряженного тела разделить проводник на части. В этом случае сместившиеся электроны уже не могут вернуться обратно после удаления внешнего заряда.

*Механизм электризации трением

Наэлектризовать тела с помощью трения очень просто. А вот объяснить, как это происходит, оказалось очень непростой задачей.

1 версия

. При электризации тел важен тесный контакт между ними. Электрические силы удерживают электроны внутри тела. Но для разных веществ эти силы различны. При тесном контакте небольшая часть электронов того вещества, у которого связь электронов с телом относительно слаба, переходит на другое тело. Перемещения электронов при этом не превышают размеров межатомных расстояний (10-8 см). Но если тела разъединить, то оба они окажутся заряженными. Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому. Но не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах.

2 версия

. На примере ионного кристалла LiF (изолятора) это объяснение выглядит так. При образовании кристалла возникают различного рода дефекты, в частности вакансии – незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных – фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.

А могут ли электризоваться при трении два одинаковых изолятора

, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий. Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить. Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.

Электризация

Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомится с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.

А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.

Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.

  • Электризация соприкосновением — это процесс, при котором мы берем два проводящих тела: отрицательно заряженное и нейтральное.

Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.

  • Электризации трением — это когда мы берем два незаряженных тела и трем их друг о друга.

Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.

То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.

При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс :)

Давайте решим пару задач по этой теме.

Задачка один

Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?

А. Стекло

Б. Эбонит

Решение:

Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.

Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!

Задачка два

В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?

А) количество протонов на стеклянной линейке

Б) количество электронов на шёлке

Решение:

Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит. А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.

Закон Кулона

В 1785 г. французский физик Шарль Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон и может быть установлен только опытным путем. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q

1| и |
q
2|, то закон Кулона можно записать в следующей форме:
\(~F = k \cdot \dfrac{|q_1| \cdot |q_2|}{r^2}\) , (1)
где k

– коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ \(~k = \dfrac{1}{4 \pi \cdot \varepsilon_0} = 9 \cdot 10^9\) Н·м2/Кл2, где ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/Н·м2 .

  • сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эту силу называют кулоновской

.

Закон Кулона в данной формулировке справедлив только для точечных

заряженных тел, т.к. только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела. Подобные силы называют центральными

. Если через \(~\vec F_{12}\) обозначить силу действующую на первый заряд со стороны второго, а через \(~\vec F_{21}\) – силу, действующую на второй заряд со стороны первого (рис. 2, 3), то, согласно третьему закону Ньютона, \(~\vec F_{12} = -\vec F_{21}\) .

  • Рис. 2
  • Рис. 3

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Закон Кулона справедлив и для заряженных шаров на любом расстоянии между их центрами, если объемная или поверхностная плотность заряда каждого из них постоянна. (Отметим, что в отличие от гравитационного электростатическое взаимодействие может приводить к притяжению и отталкиванию тел.)

См. также

  1. Закон Кулона

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 209-210, 211-214.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 72-79.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]