Электрический ток. Условия существования тока. Основные понятия.


Электрический ток. Условия существования тока. Основные понятия.

Электрический ток — упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.

Прохождение тока по проводнику сопровождается следующими его действиями: * магнитным (наблюдается во всех проводниках) * тепловым (наблюдается во всех проводниках, кроме сверхпроводников) * химическим (наблюдается в электролитах). Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий: * наличие в среде свободных электрических зарядов * создание в среде электрического поля. Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника, Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока. Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока. основные характеристики 1. Сила тока — I, единица измерения — 1 А (Ампер). Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени. I = Dq/Dt . Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным. Для переменного тока: I = lim Dq/Dt , Dt — 0 т.е. I = q’, где q’ — производная от заряда по времени. 2. Плотность тока — j, единица измерения — 1 А/м2. Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника: j = I/S . 3. Электродвижущая сила источника тока — э.д.с. ( e ), единица измерения — 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда: e = Аст./q . 4. Сопротивление проводника — R, единица измерения — 1 Ом. Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях. Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что R = r*l/S , где l — длина проводника, S — площадь поперечного сечения, r — коэффициент пропорциональности, названный удельным сопротивлением материала. Эта формула хорошо подтверждается на опыте. Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что r = r0(1 + a t) , R = R0(1 + a t) . Коэффициент a называется температурным коэффициентом сопротивления: a = (R — R0)/R0*t . Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная: В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля. У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов. Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s s = 1/r . 5. Напряжение — U , единица измерения — 1 В. Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда. U = (Aст.+ Аэл.)/q . Так как Аст./q = e, а Аэл./q = f1-f2, то U = e + (f1 — f2) .

Электрический ток и условия его существования. Условия существования электрического тока

Для начала ответим себе на вопрос, что такое электрический ток. Простая батарейка, стоящая на столе, сама по себе ток не создает. И фонарик, лежащий на столе, ток через свои светодиоды просто так, ни с того ни с сего, не создаст. Чтобы появился ток, что-то куда-то должно потечь, хотя бы начать двигаться, а для этого цепь из светодиодов фонарика и батарейки необходимо замкнуть. Не даром, в былые времена электрический ток сравнивали с движением некой заряженной жидкости.

На самом деле мы теперь знаем, что электрический ток — это направленное движение заряженных частиц, и что более близким к реальности аналогом был бы заряженный газ, — газ заряженных частиц, движущийся под действием электрического поля. Но обо всем по порядку.

Электрический ток — это направленное движение заряженных частиц

Итак, электрический ток — это движение заряженных частиц, но даже хаотичное движение заряженных частиц — это тоже движение, однако оно еще не является током. Так и молекулы жидкости, все время пребывающие в тепловом движении, течения не создают, ведь суммарное перемещение всего объема покоящейся жидкости ровно нулю.

Чтобы возникло течение жидкости, должно возникнуть суммарное перемещение, то есть общее движение молекул жидкости должно стать направленным. Так хаотичное движение молекул сложится с направленным движением всего объема, и возникнет течение всего объема жидкости.

Аналогично обстоит дело и с электрическим током — направленное движение электрически заряженных частиц — есть электрический ток. Скорость теплового движения заряженных частиц, например в металле, измеряется сотнями метров в секунду, однако при направленном движении, когда в проводнике установлен какой-то определенный ток, скорость общего движения частиц измеряется долями и единицами миллиметров в секунду.

Так, если в металлическом проводнике сечением 1 кв.мм течет постоянный ток равный 10 А, то средняя скорость упорядоченного движения электронов составит от 0,6 до 6 миллиметров в секунду. Это уже будет электрическим током. И этого медленного движения электронов достаточно, чтобы проводник, например из нихрома, неплохо разогрелся, повинуясь .

Скорость частиц — это не скорость распространения электрического поля!

Отметим, что ток начинается в проводнике почти мгновенно по всему объему, то есть распространяется это «движение» по проводнику со скоростью света, а вот движение непосредственно самих заряженных частиц в 100 миллиардов раз медленнее. Можно рассмотреть аналогию с трубой, по которой течет жидкость.

1. Для существования электрического тока необходимы заряженные частицы

Электроны в металлах и в вакууме, ионы в растворах электролитов — служат носителями заряда и обеспечивают наличие тока в разных веществах. В металлах электроны очень подвижны, некоторые из них свободно могут двигаться от атома к атому, словно газ заполняя пространство между узлами кристаллической решетки.

В электронных лампах электроны покидают катод в процессе термоэлектронной эмиссии, устремляясь под действием электрического поля к аноду. В электролитах молекулы распадаются в воде на положительно и отрицательно заряженные части, и становятся ионами — свободными носителями заряда в электролитах. То есть везде, где может существовать электрический ток, есть свободные носители заряда, способные перемещаться . Это и есть первое условие существования электрического тока — наличие свободных носителей заряда.

2. Второе условие существования электрического тока — на заряд должны действовать сторонние силы

Если теперь взглянуть на проводник, допустим это медный провод, то можно задаться вопросом: а что нужно для того, чтобы электрический ток в нем возник? Заряженные частицы, электроны, есть, они способны свободно перемещаться.

Что заставит их двигаться? Известно, что электрически заряженная частица взаимодействует с электрическим полем. Следовательно в проводнике необходимо создать электрическое поле, тогда в каждой точке проводника возникнет потенциал, между концами проводника будет иметь место разность потенциалов, и электроны придут в движение по направлению поля — по направлению от «-» к «+», то есть в направлении против вектора напряженности электрического поля. Электрическое поле станет ускорять электроны, увеличивая их (кинетическую и магнитную) энергию.

В итоге, если мы рассматриваем просто приложенное снаружи к проводнику электрическое поле (поместили проводник в электрическое поле вдоль силовых линий), то электроны станут скапливаться у одного конца провода, и на этом конце возникнет отрицательный заряд, а поскольку с другого конца провода электроны сместились, то на нем будет иметь место заряд положительный.

В результате электрическое поле проводника, заряженного приложенным снаружи электрическим полем, будет такого направления, чтобы своим действием ослаблять внешнее электрическое поле.

Процесс перераспределения зарядов протечет почти мгновенно, и по его завершении ток в проводнике прекратится. Результирующее электрическое поле внутри проводника станет равным нулю, а напряженность по краям окажется равной по модулю, но противоположной по направлению к приложенному снаружи электрическому полю.

Если электрическое поле в проводнике создается источником постоянного тока, например батарейкой, то такой источник станет для проводника источником сторонних сил, то есть тем источником, который создаст в проводнике постоянную ЭДС, и будет поддерживать разность потенциалов. Очевидно, чтобы ток источником сторонних сил поддерживался, цепь должна быть замкнутой.

И снова доброго времени суток вам, уважаемые. Без лишних прелюдий начнём наш сегодняшний разговор. Казалось бы, с причинами возникновения тока в проводнике мы давно разобрались. Поместили проводник в поле – побежали электроны, возник ток. Что еще надо. Но оказывается, чтобы этот ток существовал в проводнике постоянно, необходимо соблюдать некоторые условия. Для более ясного понимания физики процесса протекания электрического тока в проводнике рассмотрим пример.

Предположим, что у нас имеется некоторый проводник, который мы поместим в электрическое поле как показано на рисунке 4.1.

Рисунок 4.1 – Проводник в электрическом поле

Условно обозначим величину напряженности на концах проводника как E 1 и E 2 , причем E 1 >E 2 . Как мы выяснили ранее, свободные электроны в проводнике начнут двигаться в сторону большей напряженности поля, то есть в точку А. Однако со временем потенциал, образованный скоплением электронов в точке А станет таким, что создаваемое им собственное электромагнитное поле E 0 сравняется по модулю с внешним полем, причем направления полей будут противоположными, поскольку потенциал точки В – более положительный (недостаток электронов, вызванный воздействием внешнего поля).

Поскольку результирующее действие двух одинаковых противоположных сил равно нулю: |E|+|(E 0)|=0, электроны прекращают упорядоченное движение, электрический ток прекращается. Для того, чтобы поток электронов был непрерывный необходимо: во-первых, приложить дополнительную силу не потенциального характера, которая бы компенсировала влияние собственного электрического поля проводника и, во-вторых, создать замкнутый контур, поскольку перемещение электронов может происходить только в проводниках (ранее мы указали, что диэлектрики хоть и имеют некоторую электропроводность, но не пропускают электрический ток) и для обеспечения постоянства компенсирующей силы необходимо постоянство полей: как внешнего так и собственного.

Начнём разбираться со второго пункта. Будем рассматривать проводник, помещенный в поле, как показано на рисунке 4.2. Предположим, что после того, как взаимодействие внешнего и собственного электромагнитных полей было скомпенсировано, мы приложили дополнительно к внешнему полю еще одно такое же поле. Суммарное действие внешнего поля составит 2 |E|. Ток в проводнике продолжит течь в том же направлении, однако ровно до того момента, пока 2 |E|>|E 0 |, после чего электрический ток вновь прекратиться. То есть внешнее воздействие должно увеличиваться непрерывно для обеспечения протекания тока в разомкнутом проводнике, что невозможно. Если замкнуть проводник так, чтобы одна его часть лежала вне поля, тогда за счет работы дополнительной силы помимо внешнего поля (эта сила в таком случае должна быть не потенциальной, поскольку работа потенциальной силы в замкнутом контуре равна нулю и не зависит от формы траектории), то в проводнике возникнет электрический ток, обусловленный влиянием только внешнего поля, поскольку собственно поле проводника будет полностью скомпенсировано. Именно поэтому любая электрическая цепь всегда должна быть замкнутой.

Можно попробовать объяснить необходимость введения дополнительной силы из такого соображения: если бы мы могли заряды с конца В проводника частично перебрасывать на конец А проводника, электрический ток бы так же не прекращался. Однако, на такое «десантирование» так же требуется энергия. Значит, введение дополнительной силы всё равно необходимо. Не потенциальные силы так же называют сторонними силами. А их источники – источниками или генераторами тока.

Рисунок 4.2 – Возникновение собственного электромагнитного поля в проводнике

Так где же взять дополнительную силу, которая, притом, не должна быть создана полем, ведь без нее тока мы не получим? Оказывается, во время протекания химической восстановительно-окислительной реакции, например, взаимодействие диодксида свинца и разбавленной серной кислоты, происходит высвобождение свободных электронов:

Для того, чтобы «притянуть» все электроны, высвобожденные в процессе реакции к одной точки пространства, в раствор серной кислоты помещается несколько свинцовых решёток, называемых электродами. Одна часть электродов изготавливается из свинца и называется катод, другая – анод – изготавливается из диоксида свинца. Катод является источником свободных электродов для внешней цепи, а анод – приемником.

Приведённый пример соответствует известному всем автомобилистам (да и не только) устройству – свинцово-кислотному аккумулятору. Конечно, приведенный пример мало совпадает с тем, что происходит внутри аккумулятора в действительности, однако, суть возникновения тока отражает хорошо. Таким образом, между положительным анодом (мало электронов) и отрицательным катодом (много электронов) возникает электрическое поле, которое формирует сторонние силы и создаёт ток в проводнике. Эта сила зависит только от протекания химической реакции, то она практически постоянная до того момента, пока существуют элементы этой реакции – кислота и оксид свинца. Следовательно, если мы уберём электрическое поле и подключим проводник к аноду и катоду, электрический ток всё равно будет протекать из-за того, что аккумулятор создаёт стороннюю силу. Проводник будет иметь вокруг себя собственное электрическое поле, которое нужно преодолеть аккумулятору, чтобы перенести электрон от катода к аноду. В этом и есть суть сторонней силы.

Теперь рассмотрим ситуация с аккумулятором и подключенным к нему проводником.Электрическое поле совершает положительную работу по перемещению положительного заряда (мы говорим именно о положительных зарядах, так как направлению их движения соответствует направление тока) в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов – на одном полюсе накапливаются положительные заряды, на другом отрицательные. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.

На рисунке 4.3 показано направление протекания тока Iв проводнике, подключенному к аккумулятору – от положительного анода к отрицательному катоду, однако внутри аккумулятора сторонние силы химической реакции производят «десантирование» электронов, пришедших из внешней цепи с анода на катод и положительных ионов с катода на анод, то есть действуют против направления движения тока и направления поля.

Рисунок 4.3 – Демонстрация сторонних сил при возникновении электрического тока

Из сделанных выше соображений можно сделать следующий вывод: силы, действующие на заряд внутри источника тока отличны от сил, действующий внутри проводника. Соответственно, необходимо эти силы отличать друг от друга. Для характеристики сторонних сил была введена величина электродвижущей силы (ЭДС) – работы, совершаемой сторонними силами по перемещению единичного положительного заряда.Обозначается латинской буквой ε («эпсилон») и измеряется так же, как и разность потенциалов – в вольтах.

Поскольку разность потенциалов и ЭДС являются силами различного типа, можно говорить о том, что ЭДС вне выводов источника равно нулю. Хотя в обычной жизни этими тонкостями пренебрегают и говорят: «Напряжение на батарее 1.5В», хотя строго говоря напряжение на участке цепи – суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда. В будущем мы еще будем сталкиваться с этими понятиями и они пригодятся нам при расчете сложных электрических цепей.

На этом, пожалуй всё, потому что урок получился чересчур нагруженным… Но понятия напряжение и ЭДС нужно уметь отличать.

  • Для существования электрического тока необходимо два условия: 1)замкнутая электрическая цепь; 2)наличие источника сторонних непотенциальных сил.
  • Электродвижущая сила (ЭДС) – работа, совершаемая сторонними силами по перемещению единичного положительного заряда.
  • Источники сторонних сил в электрической цепи называются так же источниками тока.
  • Положительный вывод аккумулятора называется анод, отрицательный – катод.

Задачек на этот раз не будет, лучше лишний повторить этот урок, чтобы понимать всю физику протекания тока в проводнике. Как всегда любые возникшие вопросы, предложения и пожелания можете оставлять в комментариях ниже! До новых встреч!

Для возникновения и существования постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряженных частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах, то их перемещение не приведет к появлению электрического тока.

Но наличие свободных зарядов еще недостаточно для возникновения тока. Для создания и поддержания упорядоченного движения заряженных частиц необходима, во-вторых, снла, действующая на них в определенном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротивления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молекулами электролитов.

На заряженные частицы, как мы знаем, действуег электрическое поле с силой Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника, в соответствии с формулой (8.28), существует разность потенциалов. Когда эта разность потенциалов не меняется во времени, то в проводнике устанавливается постоянный ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального — на другом. Это уменьшение потенциала можно обнаружить на простом опыте.

В качестве проводника возьмем не очень сухую деревянную палку и подвесим ее горизонтально. (Такая палка, хотя и плохо, но все же проводит ток.) Источником напряжения пусть будет электростатическая машина. Для регистрации потенциала различных участков проводника относительно земли можно

использовать листочки металлической фольги, прикрепленные к палке. Один полюс машины соединим с землей, а второй — с одним концом проводника (палки). Цепь окажется незамкнутой. При вращении рукоятки машины мы обнаружим, что все листочки отклоняются на один и тот же угол (рис. 146). Значит, потенциал всех точек проводника относительно земли одинаков. Так и должно быть при равновесии зарядов на проводнике. Если теперь другой конец палки заземлить, то при вращении рукоятки машины картина изменится. (Так как земля — проводник, то заземление проводника делает цепь замкнутой.) У заземленного конца листочки вообще не разойдутся: потенциал этого конца проводника практически равен потенциалу земли (падение потенциала в металлической проволоке мало). Максимальный угол расхождения листочков будет у конца проводника, присоединенного к машине (рис. 147). Уменьшение угла расхождения листочков по мере удаления от машины свидетельствует о падении потенциала вдоль проводника.

1. Что называют электрическим током? 2. Что называют силой тока?

3. Какое направление тока принимают за положительное? 4. Какие условия необходимы для существования электрического тока?

Если к изолированному проводнику приложить электрическое поле , то на свободные заряды q в проводнике будет действовать сила =q . В результате в проводнике возникает упорядоченное перемещение свободных зарядов, возникает электрический ток.

Непрерывное упорядоченное движение свободных носителей электрического заряда называется электрическим током.

За направление электрического тока принято направление движения положительных свободных зарядов.

Условия, необходимые для существования электрического тока:

наличие свободных заряженных частиц;

Наличие электрического поля;

– замкнутость цепи.

Действие тока, сопровождающие его протекание:

1) Тепловое.

Проводник, по которому течет ток, нагревается. Тепловое действие проявляется практически всегда. Исключение составляет явление сверхпроводимости, тепловое действие тока не проявляется также при протекании тока в вакууме.

2) Химическое

. Электрический ток изменяет химический состав проводника. Наблюдается при протекании тока в электролитах.

3) Магнитное.

Ток оказывает силовое воздействие на соседние токи и на магнитные тела. Магнитное воздействие на соседние точки и на магнитные тела. Магнитное действие в отличие от химического и от теплового явления является основным, так как проявляется у всех без исключения проводников(наблюдается всегда).

Электрический ток всегда в проводниках (металлах) обусловлен наличием свободных электронов.

Положительно заряженные ионы металла образуют кристаллическую решетку. “Газ свободных электронов” образуется за счет одного или нескольких электронов, отданных каждым атомом. Свободные электроны способны блуждать по всему объему кристалла.

Силой тока

называется скалярная физическая величина, численно равная электрическому заряду, проходящему через поперечное сечение проводника за единицу времени:

Если величина силы тока и его направление не меняются с течением времени, то ток называется постоянным и I=const= .

Единица силы тока-1 Ампер. Ампер в системе СИ является основной единицей и определяется из магнитного взаимодействия двух параллельных прямолинейных проводников, по которым в одном направлении течёт ток силой 1 А, расположенных на расстоянии 1 м один от другого в вакууме, вызывает между этими проводниками силу взаимодействия, равную 2*10 -7 Н на каждый метр длины.

Сила тока зависит от заряда частицы e, концентрации n, скорости частиц v и площади сечения проводника S:

I= = = , где q=eN; n-концентрация частиц; V=vtS содержится N=nV частиц.

Плотностью тока

называется векторная величина, численно равная силе тока, приходящегося на единицу площади, ориентированной перпендикулярно току: .

Вектор j направлен вдоль тока по вектору напряженности электрического поля в проводнике. В системе СИ плотность тока измеряется в А/м 2 . Для постоянного тока

Билет 25.1

Первое начало термодинамики

— один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца . Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

В термодинамике широко используются понятия молярной теплоемкости при постоянном объеме C V и молярной теплоемкости при постоянном давлении C p . В идеальном газе они удовлетворяют уравнению Майера:

Работа ΔA, совершаемая газом, определяется давлением газа и изменением его объема:

В изохорном процессе газ работы не совершает, и ΔU = Q. В изобарном процессе A = pΔV = p (V 2 – V 1). В изотермическом процессе ΔU = 0, и A = Q; вся теплота, переданная телу, идет на работу над внешними телами. Графически работа равна площади под кривой процесса на плоскости p, V.

Адиабатным называется квазистатический процесс, при котором системе не передается тепло из окружающей среды: Q = 0. В адиабатном процессе вся работа совершается за счет внутренней энергии газа.

Теплоёмкость

тела (обычно обозначается латинской буквой
C
) — физическая величина, определяющая отношение бесконечно малого количества теплоты δ
Q
, полученного телом, к соответствующему приращению его температуры δ
T
:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельная теплоёмкость

Удельной теплоёмкостью

называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая теплоёмкость (С

) — это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1).

Объёмная теплоёмкость (С′

) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м −3 ·К −1).

Молярная теплоёмкость (С

μ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Электрический ток

— упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения
положительных
зарядов.

Прохождение тока по проводнику сопровождается следующими его действиями:

УСЛОВИЯ
СУЩЕСТВОВАНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА
Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

В разных средах носителями электрического тока являются разные заряженные частицы.

Для поддержания тока в электрической цепи

на заряды кроме кулоновских сил должны действовать силы
неэлектрической
природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока

основные характеристики

1.

Сила тока — I, единица измерения — 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

I = q/t.(1)

Формула (1) справедлива для постоянного тока,

при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется
переменным.
Для переменного тока:

I = lim q/t , (*) t — 0

т.е. I = q», где q» — производная от заряда по времени.

2.

Плотность тока — j, единица измерения — 1 А/м 2 .

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

j = I/S.(2)

3.

Электродвижущая сила источника тока — э.д.с. (), единица измерения — 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

 = А ст. /q .(3)

4.

Сопротивление проводника — R, единица измерения — 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

R = *l/S , (4)

l
— длина проводника,S— площадь поперечного сечения,— коэффициент пропорциональности, названный удельным сопротивлением материала.
5.

Напряжение — U , единица измерения — 1 В.Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (A ст. + А эл.)/q .(8)

Так как А ст. /q = , а А эл. /q =     , то

U =  + (    



Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]