Двигатель Стирлинга, некогда известный, был надолго забыт из-за широкого распространения другого мотора (внутреннего сгорания). Но сегодня о нем слышно все больше. Может быть, у него есть шансы стать более популярным и найти свое место в новой модификации в современном мире?
Двигатель Стирлинга — это тепловая машина, которая была изобретена в начале девятнадцатого века. Автором, как понятно, был некий Стирлинг по имени Роберт, священник из Шотландии. Устройство представляет собой двигатель внешнего сгорания, где тело движется в замкнутой емкости, постоянно меняя свою температуру.
Из-за распространения другого вида мотора о нем почти забыли. Тем не менее, благодаря своим преимуществам, сегодня двигатель Стирлинга (своими руками многие любители сооружают его дома) снова возвращается.
Основное отличие от двигателя внутреннего сгорания заключается в том, что энергия тепла приходит извне, а не вырабатывается в самом двигателе, как в ДВС.
Можно представить замкнутый воздушный объем, заключенный в корпусе, имеющем мембрану, то есть поршень. При нагревании корпуса воздух расширяется и совершает работу, выгибая таким образом поршень. Затем происходит охлаждение, и он вгибается снова. В этом состоит цикл работы механизма.
Немудрено, что термоакустический двигатель Стирлинга своими руками многие изготавливают в домашних условиях. Инструментов и материалов для этого требуется самый минимум, который найдется в доме у каждого. Рассмотрим два разных способа, как легко его создать.
Чтобы сделать двигатель Стирлинга своими руками, понадобятся следующие материалы:
Это все. Остальное — дело нехитрой техники.
Из жести готовят топку и два цилиндра для базы, из которых будет состоять двигатель Стирлинга, своими руками изготовленный. Размеры подбирают самостоятельно, учитывая цели, для которых предназначено это устройство. Предположим, что мотор делается для демонстрации. Тогда развертка главного цилиндра составит от двадцати до двадцати пяти сантиметров, не более. Остальные части должны подстраиваться под него.
На верху цилиндра для передвижения поршня делают два выступа и отверстия диаметром от четырех до пяти миллиметров. Элементы выступят в роли подшипников для расположения кривошипного устройства.
Далее делают рабочее тело мотора (им станет обычная вода). К цилиндру, который сворачивают в трубу, припаивают кружочки из жести. В них проделывают отверстия и вставляют трубки из латуни от двадцати пяти до тридцати пяти сантиметров в длину и диаметром от четырех до пяти миллиметров. В конце проверяют, насколько герметичной стала камера, залив ее водой.
Далее приходит черед вытеснителя. Для изготовления берут заготовку из дерева. На станке добиваются, чтобы она обрела форму правильного цилиндра. Вытеснитель должен быть немногим меньше диаметра цилиндра. Оптимальную высоту подбирают уже после того, как двигатель Стирлинга своими руками будет сделан. Потому на данном этапе длина должна предполагать некоторый запас.
Спицу превращают в шток цилиндра. По центру деревянной емкости делают отверстие, подходящее под шток, вставляют его. В верхней части штока необходимо предусмотреть место для шатунного устройства.
Затем берут трубки из меди длиной четыре с половиной сантиметра и диаметром два с половиной сантиметра. Кружок из жести припаивают к цилиндру. По бокам на стенках делают отверстие для сообщения емкости с цилиндром.
Поршень также подгоняют на токарном станке под диаметр большого цилиндра изнутри. Наверху подсоединяют шток шарнирным способом.
Сборку заканчивают и настраивают механизм. Для этого поршень вставляют в цилиндр большего размера и соединяют последний с другим цилиндром меньшего размера.
На большом цилиндре сооружают кривошипно-шатунный механизм. Фиксируют часть двигателя при помощи паяльника. Основные части закрепляют на деревянном основании.
Цилиндр наполняют водой и под низ подставляют свечку. Двигатель Стирлинга, своими руками сделанный от начала и до конца, проверяют на работоспособность.
Двигатель можно сделать и другим способом. Для этого понадобятся следующие материалы:
Поролон очень часто используют, чтобы сделать дома простой не мощный двигатель Стирлинга своими руками. Из него готовят вытеснитель для мотора. Вырезают поролоновый круг. Диаметр должен быть немного меньше, чем у консервной банки, а высота — чуть более половины.
По центру крышки проделывают отверстие для будущего шатуна. Чтобы он ходил ровно, скрепку сворачивают в спиральку и паяют к крышке.
Поролоновый круг посередине пронизывают тонкой проволокой с винтом и фиксируют его сверху шайбой. Затем соединяют кусок скрепки пайкой.
Вытеснитель вталкивают в отверстие на крышке и соединяют банку с крышкой путем пайки для герметизации. На скрепке делают маленькую петлю, а в крышке — еще одно, более крупное отверстие.
Жестяной лист сворачивают в цилиндр и спаивают, а потом прикрепляют к банке настолько, чтобы щелей не осталось совсем.
Скрепку превращают в коленчатый вал. Разнос при этом должен быть ровно девяносто градусов. Колено над цилиндром делают слегка больше другого.
Остальные скрепки превращаются в стойки для вала. Делается мембрана следующим образом: цилиндр оборачивают в пленку из полиэтилена, продавливают и крепят ниткой.
Шатун изготавливается из скрепки, которую вставляют в кусок резины, и готовую деталь прикрепляют к мембране. Длина шатуна делается такой, чтобы в нижней валовой точке мембрана была втянутой в цилиндр, а в высшей — вытянута. Таким же образом делается и вторая деталь шатуна.
Затем один приклеивают к мембране, а другой — к вытеснителю.
Ножки для банки можно также сделать из скрепок и припаять. Для кривошипа используют CD-диск.
Вот и готов весь механизм. Осталось лишь под него подставить и зажечь свечку, а затем дать толчок через маховик.
Таков низкотемпературный двигатель Стирлинга (своими руками сооруженный). Конечно, в промышленных масштабах такие приборы изготавливаются совсем другим способом. Однако принцип остается неизменным: происходит нагрев, а затем охлаждение воздушного объема. И это постоянно повторяется.
Напоследок посмотрите эти чертежи двигателя Стирлинга (своими руками его можно сделать без особых навыков). Может быть, вы уже загорелись идеей, и вам захочется сделать что-либо подобное?
Если тебе скучно и ты не знаешь, чем развлечься, можешь попробовать создать электронный моторчик своими руками
. Ты удивишься, подумав, что это практически невозможно сделать в домашних условиях.
Сегодня «Так Просто!»
предлагает твоему вниманию простую схему, следуя которой, сделать это будет вовсе не сложно! Такую конструкцию без труда сможет сделать каждый, ведь все необходимые для такого двигателя инструменты найдутся в любом доме. Да и времени на такой
эксперимент
уйдет совсем немного. Забудь о том, что тебе говорили на уроках физики: вечный двигатель таки существует!
Как сделать простой моторчик своими руками
Изготовление
- Возьми проволоку и намотай ее на батарейку. Достаточно будет сделать 10-15 мотков.
- Аккуратно вытащи батарейку. У тебя должен получиться вот такой ротор. Зафиксируй концы провода на краях катушки, как показано на фото ниже, для этого можно завязать провод на узел.
- У тебя должно получится что-то наподобие этого (для контраста на фото один свободный конец проволоки натерли наждачной бумагой, а второй — нет).
- Для следующего этапа тебе понадобится скрепка и простой карандаш.
- С помощью карандаша выгни скрепку вот таким образом и прикрепи к батарейке, как показано на фото.
- Точно так прикрепи вторую скрепку к другой стороне батарейки и соедини всё в единую конструкцию с помощью липкой ленты.
- Положи на верх батарейки магнит, он должен «прилипнуть» к батарейке. Ротор должен быстро закрутиться, если этого не произошло — попробуй немного подтолкнуть его пальцем.
Вот и всё, твое оригинальное изобретениеготово. Кстати, будь внимательным: нельзя надолго оставлять ротор в неподвижном состоянии, батарейка и катушка будут очень сильно нагреваться!
Удиви всех друзей — покажи им, как легко создать моторчик своими руками из подручных средств!
Это настоящая творческая лаборатория! Команда истинных единомышленников, каждый из которых специалист в своем деле, объединенных общей целью: помогать людям. Мы создаем материалы, которыми действительно стоит делиться, а источником неиссякаемого вдохновения служат для нас любимые читатели!
Правда ли работает? Есть ли ток?
Сколько нужно проволоки(СМ)
А как можно увеличить скорость вращения проволоки?
а проволоку любую можно? я использовала тонкую медную,но ничего не получилось. не работает, что делать?!
Вечный двигатель здесь не причём. Работает сила Ампера. Двигатель
остановится когда кончится батарейка.
А пальчиковМи можно
У меня не получяется выгнуть скрепку. Покажите как пожалуйста. Мне 12 дет
по ходу ток короткого замыкания движет ротор!
В этой статье я расскажу вам о том, как сделать паровой двигатель своими руками. Двигатель будет небольшой, однопоршневой с золотником. Мощности вполне хватит, чтобы вращать ротор небольшого генератора и использовать этот двигатель в качестве автономного источника электричества в походах.
Как сделать ДВС для моделей своими руками?
Перевёл alexlevchenko92 для mozgochiny.ru
Предлагаю вниманию мозгочинов статью о том, как сделать реактивный двигатель своимируками.
Внимание! Строительство собственного реактивного двигателя может быть опасным. Настоятельно рекомендуем принять все необходимые меры предосторожности при работе с поделкой, а также проявлять крайнюю осторожность при работе с инструментами.
В самоделке заложены экстремальные суммы потенциальной и кинетической энергии (взрывоопасное топливо и движущие части), которые могут нанести серьёзные травмы во время работы газотурбинного двигателя. Всегда проявляйте осторожность и благоразумие при работе с двигателем и механизмами и носите соответствующую защиту глаз и слуха.
Цилиндр и золотниковая трубка.
Отрезаем от антенны 3 куска:
Первый кусок 38 мм длиной и 8 мм диаметром (сам цилиндр).
Второй кусок длиной 30 мм и 4 мм диаметром.
Третий длиной 6 мм и 4 мм диаметром.
Возьмём трубку №2 и сделаем в ней отверстие диаметром 4 мм посередине. Возьмем трубку №3 и приклеим перпендикулярно трубке №2, после высыхания суперклея, замажем все холодной сваркой (например POXIPOL).
Крепим круглую железную шайбу с отверстием посредине к куску №3 (диаметр — чуть больше трубки №1), после высыхания укрепляем холодной сваркой.
Как сделать поршень с шатуном
Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.
Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.
Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).
Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.
Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.
Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.
Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.
Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.
Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника — 4 мм.
Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.
Косметическая доработка двигателя. Бак теперь имеет свою собственную деревянную площадку и блюдце для таблетки сухого горючего. Все детали покрашены в красивые цвета. Кстати в качестве источника тепла лучше всего использовать самодельную спиртовую горелку
или
примус
Испытание финальной версии самодельного парового двигателя
Поскольку нефтепродукты постоянно растут в цене (ведь нефти свойственно заканчиваться), стремление к экономии на горючем вполне понятно, и мини-двигатель
мог бы стать неплохим решением.
Как сделать водородный двигатель своими руками
Создание генератора водорода — эффективный способом существенного сокращения топливных расходов. Задача — подать в камеру сгорания специальный газ (система Брауна). Ниже приведена простая пошаговая инструкция.
Сборка электролита
Используйте 8 электролитических пластин из нержавеющей стали (16×20 см), уложив их друг на друга. У них уже должно быть отверстие сверху. Просверлите еще по одному отверстию толщиной 1 см. Между ними поместите ПВХ проставки (толщиной 3 мм). Стальные пластины не должны касаться друг друга. С помощью винтового соединения скрепите конструкцию.
Подготовка пластикового контейнера
Подготовьте ёмкость. Вставьте два длинных винта внутрь крышки, зазоры закройте герметиком. Прикрепите провод к каждому винту, обмотав его вокруг, оставьте снаружи контейнера. Сделайте еще одно отверстие в крышке и вставьте туда резиновый шланг, погрузив его в воду. Другой конец трубки должен открываться в пластиковый корпус воздухозаборника автомобиля.
Нужно будет просверлить отверстие в корпусе, чтобы вставить трубку. Для более прочного соединения используйте фитинги из ПВХ на обоих концах. Налейте дистиллированную воду, заполнив половину объёма. Положите пол чайной ложки соли или полную пищевой соды, хорошо перемешайте.
Поместите электролит из нержавеющей стали в контейнер, убедившись, что он хорошо погружен. Любые промежутки внутри ёмкости должны быть заполнены герметиком, чтобы предотвратить утечку газа. Внутри тары мгновенно образуются пузырьки, газ начал вырабатываться.
Подключение к источнику питания
Соедините выводы винтов контейнера с положительными и отрицательными клеммами источника постоянного тока с помощью зажимов. Если провода не обеспечивают убедительного соединения, используйте вместо этого барашковые гайки.
Можно подключить его напрямую к аккумулятору, отрицательный контакт подключается к аналогичному выводу батареи, а положительный — к реле зажигания блока предохранителей. Это необходимо для того, чтобы генератор включался только тогда, когда автомобиль тоже включен.
Сделать полноценный водородный двигатель для автомобиля своими руками не получится, поскольку технология довольно сложная.
Вам нужно войти, чтобы оставить комментарий.
Насколько экономичен мини-двигатель внутреннего сгорания?
Как известно, ДВС делятся на бензиновые и дизельные, причем как первые, так и вторые сегодня претерпевают значительные изменения. Причиной модернизации, как самих механизмов, так и топлива, является значительно ухудшившаяся экология, на состояние которой влияют и выхлопы техники, работающей на жидком горючем. Так, к примеру, появился эко-бензин, разведенный спиртом в пропорции от 8:2 до 2:8, то есть спирта в таком топливе может содержаться от 20 до 80 процентов. Но на этом модернизация и закончилась. Тенденция уменьшения бензиновых двигателей в объеме практически не наблюдается. Самые маленькие образцы устанавливаются в авиамодели, более крупные используются на газонокосилках, лодочных моторах, снегоходах, скутерах и другой подобного рода технике
.
Что же касается , сегодня действительно сделано немало для того, чтобы этот двигатель стал по-настоящему микроскопическим. В настоящее время концерном Toyota
созданы самые маленькие микролитражки
Corolla II, Corsa и Tercel
, в них установлены дизельные двигатели
1N
и
1NT
объемом всего 1.5 литра. Одна беда – срок службы таких механизмов чрезвычайно низкий, и причина тому – очень быстрая выработка ресурса цилиндро-поршневой группы. Существуют и совсем крошечные дизельные ДВС, объемом всего 0.21 литра. Их устанавливают на компактную мототехнику и строительные механизмы, но мощности большой ожидать не приходится, максимум, что они выдают – 3.25 л.с. Впрочем, и расход топлива у таких моделей небольшой, о чем говорит объем топливного бака – 2.5 литра.
Насколько эффективен самый маленький двигатель внутреннего сгорания?
Обычный ДВС, действие которого основано на возвратно-поступательном движении поршня, теряет производительность по мере уменьшения рабочего объема. Все дело в значительной потере КПД при преобразовании этого самого движения ЦПГ во вращательное, столь необходимое для колес. Однако еще до Второй Мировой Войны механик-самоучка Феликс Генрих Ванкель создал первый действующий образец роторно-поршневого ДВС, в котором все узлы только вращаются. Логично, что данная конструкция, очень напоминающая электромотор, позволяет сократить количество деталей на 40 %, по сравнению со стандартными двигателями.
Несмотря на то, что до сегодняшнего дня не решены все проблемы данного механизма, срок службы, экономичность и экологичность соответствуют установленным мировым стандартам. Производительность же превосходит все мыслимые пределы. Роторно-поршневой ДВС с рабочим объемом 1.3 литра позволяет развить мощность в 220 лошадиных сил
. Установка же турбокомпрессора увеличивает этот показатель до 350 л.с., что очень даже существенно. Ну, а самый маленький двигатель внутреннего сгорания из серии «ванкелей», известный под маркой
OSMG 1400
, имеет объем всего 0.005 литра, однако при этом выдает мощность в 1.27 л.с. при собственном весе 335 граммов.
Основное преимущество роторно-поршневых двигателей – отсутствие шумов, сопровождающих работу механизмов, благодаря низкой массе работающих узлов и точному балансу вала.
Как сделать простейший двигатель внутреннего сгорания?
Устройство ДВС изучается в школе старшеклассниками. Поэтому даже подросток сможет сделать простейший двигатель внутреннего сгорания своими руками. Для его изготовления нужно взять:
- Проволоку.
- Лист картона.
- Клей.
- Моторчик.
- Несколько шестерен.
- Батарейку 9V.
- Сначала из картона следует вырезать круг, который будет играть роль коленчатого вала.
- Далее из картона для изготовления шатуна нужно вырезать прямоугольник размером 15х8 см, сложить его вдвое и затем — еще на 90˚. На его концах делаются отверстия.
- Далее из картонного листа изготовляется поршень с отверстиями для поршневых пальцев.
- Размер поршневых пальцев должен соответствовать размеру отверстия в поршне.
- Поршень закрепляется пальцем на шатуне, а его проволокой нужно прикрепить к коленвалу.
- В соответствии с размером поршня следует свернуть из картона цилиндр, а в соответствии с размером коленчатого вала — коробочку для самого коленвала.
Самый маленький дизельный двигатель как источник энергии
Если говорить о полноценном , то на сегодняшний день самые небольшие размеры имеет детище инженера Йесуса Уайлдера. Это 12-цилиндровый двигатель V-образного типа, полностью соответствующий ДВС Ferrar
i и
Lamborghini
. Однако на деле механизм является бесполезной безделушкой, поскольку работает не на жидком топливе, а на сжатом воздухе, и при рабочем объеме в 12 кубических сантиметров имеет очень низкий КПД.
Другое дело – самый маленький дизельный двигатель, разработанный учеными Великобритании. Правда, в качестве горючего для него требуется не солярка, а особая самовозгорающаяся при увеличении давления смесь метанола с водородом. При тактовом движении поршня в камере сгорания, объем которой не превышает одного кубического миллиметра, возникает вспышка, приводящая механизм в действие. Что любопытно, микроскопических размеров удалось добиться путем установки плоских деталей, в частности, те же поршни являются ультратонкими пластинами. Уже сегодня в ДВС с габаритами 5х15х3 миллиметра крошечный вал вращается со скоростью 50.000 об/мин, вследствие чего производит мощность порядка 11,2 Ватта.
Пока перед учеными стоит ряд проблем, которые необходимо решить перед тем, как выпускать дизельные мини-двигатели на поточное производство. В частности, это колоссальные теплопотери из-за чрезвычайно тонких стенок камеры сгорания и недолговечность материалов при воздействии высоких температур. Однако, когда все-таки крошечные ДВС сойдут с конвейера, всего нескольких граммов топлива хватит, чтобы заставить механизм при КПД в 10 % работать в 20 раз дольше и эффективнее аккумуляторов таких же размеров.
Очень простой ДВС
Основная задача – попытка предложить конструкцию ДВС максимально простую со всех точек зрения. Основные критерии: · В двигателе нет никаких ноу хау от которых было бы неизвестно или даже которые где-то не применялись бы · Количество отдельных деталей должно быть минимально · Сами детали максимально просты · Нет деталей которые сильно отличаются по сложности от других (исключение КШМ-его принимаем как классический) Исходя из этих критериев, задаем общий облик: 1. Как наиболее эффективный выбираем четырехтактный ДВС 2. Число цилиндров 1 или 2
На рисунке 1 показаны основные детали предполагаемого ДВС. КШМ классический, на рисунке его нет. Плита (поз 1) является основой обеспечивающей жесткость между двумя отдельными цилиндрами (поз 4, 5) и тремя корпусами коренных подшипников (поз 8-9). Цилиндры к плите крепятся шпильками с прижимными планками через бурт, либо вворачиваются в посадочные отверстия на резьбе.
Рисунок 2: болты крепления коренных подшипников (поз. 10) запрессовываются в отверстия плиты, от проворачивания фиксируются «лыской» на головке болта и «тупика» на плите. Затем в отверстия плиты запрессовываются центрующие втулки (поз. 12). А на них запрессовываются верхние корпуса коренных подшипников (поз.8) Укладывается каленвал и устанавливаются нижние крышки коренных подшипников (поз. 9) фиксируя их гайками (рис.1, поз. 11) Поршни с шатунами устанавливаются в цилиндры и монтируются шатунные вкладыши и крышки. Завинчиваются в цилиндры головки, ориентируя их газовыми каналами с помощью регулировочных колец (рис.3, поз. 1) Увеличенная длинна передней части плиты (рис.1, размер Б) необходима для монтажа шестерни привода масляного насоса на каленвале. Монтируется сам масляный насос на кронштейн, закрепленный на корпусе переднего коренного подшипника (на рисунку не показано) монтируется масляная система – набор стальных трубок. Далее монтируются передняя и задние крышки ДВС (рис.1, поз2-3) с сальниками. С низу ДВС закрывает поддон (рис.1, поз. 13) Механизмы ДВС 1 КШМ классический – Квал-Шатун-Поршень. 2 ГРМ количество клапанов один . Первый в мире ДВС имел 1 выпускной клапан нижнего расположения и автоматический впускной, находящийся в камере сгорания. Предлагается следующая схема ГРМ: с одним главным клапаном (перекрывает газовый канал цилиндра) и атмосферный клапан (управляет потоками газов перед главным клапаном). Рисунок 3: 1 Головка 2 Цилиндры 3 Главный клапан 4 Якорь 5,6 нижний и верхний электромагнит 7 Корпус атмосферного клапана 8 Заслонка атмосферного клапана 9 Атмосферный клапан 10 Съемная рубашка охлаждения 11 Регулировочное кольцо
Предлагается электромагнитная схема управления главным клапаном для управления заслонкой атмосферного клапана также предлагается электромагнитный привод. Можно применить и «классический» механический привод с распредвалом, толкателями и т. д., но это усложнит конструкцию. В схеме 2 необычных решения, заставляющих сомневаться в ее работоспособности: А) Один клапан главный и общий атмосферный на 2 цилиндра. В) Электромагнитный привод клапанов Попробуем теоретически обосновать работоспособность этой схемы: A. Рассмотрим взаимную работу главных и атмосферного клапанов (рис.4).
Из рис. 3 и рис. 4 следует: 1) переключение клапанов происходит 1 раз за 1 оборот К-вала, требование к быстроте закрытия и открытия не очень жесткие 2) поршень не должен «догонять» открытый главный клапан 3) так как главный клапан 1, его диаметр можно сделать достаточно большим, увеличивая сечение седло-клапан 4) главный клапан омывается поочередно горячими и холодными газами. Что снижает его термонапряженность, улучшает испарение топлива, хотя несколько снижает плотность свежего заряда 5) есть возможность сделать газовый канал главного клапана в головке минимально коротким, уменьшая передачу тепла отработанных газов в тело головки 6) требование к герметичности заслонки атмосферного клапана не очень высокие и незначительный переток газа через зазоры не сильно отразится на работе ДВС. B. Электромагнитный привод клапанов. Главное – обеспечить быстродействие клапанов и герметичность главного. Быстродействия можно добиться за счет: 1) минимальный вес подвижных деталей 2) Отсутствие «мощных» пружин, устраняет их резонанс. Хотя возможно и целесообразно добавить в систему «мягкую» пружину, работающую на открытие главного клапана. 3) Создание мощной магнитной силы 4) Герметичность: вообще-то достигается не усилием прижатия. А точностью подгонки сопрягаемых поверхностей. Усилие нужно для быстродействия. При притирке клапана, он даже под своим весом уже должен быть герметичен (проверка керосином), т. е. мощная магнитная сила закрытия нужна для быстродействия и удержания клапана в начале такта сжатия. По мере роста давления в цилиндре, напряжение с катушки магнита вообще можно снять, а клапан будет удерживаться высоким давлением в цилиндре.
Имея такую конструкцию ГРМ, где общий клапан открыт при тактах выпуск-впуск напрашивается еще один способ продувки цилиндра с использованием газодинамических процессов во впускном и выпускном тракте (рис. 6):
1) впускная труба, 2) канал главного клапана, 3) ресивер, 4) выпускная труба, 5) глушитель Особенность в том, что нет механических клапанов, что делает систему максимально простой. Но требует сложного расчета. Чтобы обеспечить следующие процессы: 1) так как впускная система соединены между собой через канал главного клапана непосредственно. На такте выпуска поток отработанных газов должен полностью уходить в ресивер и выпускную трубу не попадая во впускную. Для этого выходное отверстия впускной трубы должно быть направлено в направлении потока отработанных газов, чтобы добиться эффекта эжекции 2) выпускной тракт необходимо рассчитать так, чтобы пока поршень находится вблизи ВМТ волна отработанных газов уходила из ресивера, создавая в нем разряжение, которое заполняло бы свежим воздухом из впускной трубы, объем воздуха должен быть достаточным для дальнейшего заполнения цилиндра, и отработанные газы минимально попадали бы в цилиндр Система питания Система питания может быть дизельной и на бензине. На бензине – инжекторная – впрыск через форсунку перед клапаном. Топливо должно впрыскиваться в самый первый момент спуска, после переключения заслонки атмосферного клапана на подачу свежего заряда, чтобы топливо не попадало в выпускную систему. Предлагается еще один способ подачи топлива – через отверстие в седле клапана непосредственно в сечение «седло-клапан» (рис.5)
Элементы системы: 1) Эл. магнитный клапан, 2) запорная игла с сердечником, 3) пружина, 4) воздушный штуцер, 5) катушка клапана, 6) топливный штуцер А) Топливный жиклер Б) эмульсионная камера, В) кольцевой канал в седле, Ц) воздушный жиклер, Д) отверстия подачи топливной эмульсии Система является как бы гибридной, от инжектора имеется электромагнитный клапан, дозировано подающий топливо на каждый цикл в самом начале такта впуска. От карбюратора есть эмульсионная камера Б, откуда эмульсия через кольцевой канал В и отверстие подачи Д за счет разряжения на такте впуска засасывается в цилиндр, причем в самом начале впуска. Далее камера и каналы просто продуваются воздухом из воздушного жиклера, унося в цилиндр оставшиеся пары топлива. На такте «выпуск» отработанные газы имея небольшое давление могут попасть в каналы и смесительную камеру и далее в воздушный штуцер, но их количество не значительно и не должно повлиять на работу системы. Особенность: электромагнитный клапан всеже не форсунка, где топливо подается под достаточно высоким давлением от электронасоса. Здесь жиклер большого диаметра и подача топлива под небольшим давлением, которое можно получить от верхнего расположения топливного бака и, возможно, создания избыточного давления (подпора газом) в самом баке. Также система хорошо подойдет для питания сжиженным газом использую газобаллонное оборудование.
Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.
Форум самодельщиков: Бензиновый ДВС для моделей своими руками — Форум самодельщиков
Клапана шариковые, очень просто. Шарики можно выдерти из подшипника, но не очень маленького. Для этого нужно замотать его в тряпку(чтоб шарики не порозлетались), поставить на ченить железное и влупить сверху молотком или кувалдой. впускной клапан — просто пускает воздух в одну сторону К седлу шарик надо акуратно пристукать — постучать по нему молотком, когда он лежит в седле. Впускной клапан лучше сделать с регулировкой поджима, я сначала без нее сделал, но потом пришлось переделать.вот схема впускного клапана, рисовал сам, я не художник, но думаю будет понятно. Пружинку на впускной клапан нужно найти чем помягче, после зборки двигателя нужно сделать минимальный поджим с помощю болта выпускной клапан поджимается пружинкой чуть сильнее, там необязательно делать регулировочный винт. а вот схема расприделителя для выпускного клапана Для зажигания лучше найти готовую котушку зажигания, пофиг от чего и подключить её по класической схеме у меня есть катушка зажигания, но нет кондеров чтоб ее подключить, и я сделал зажигание изстарого трасформатора Оно конечно не самое лучшее, но работает. Ищете трансформатор, надо чтоб давал хорошую искру, при подключнении на вторичку 12 — 18 вольт. надо его хорошенько пропарафинить, а то прошьет. Прерыватель из кнопки тут не подойдёт — искры не будет. нужно вырезать полоску жести, выгнуть ее как на фотографии и прикрутить под кривошипом, так что бы вал кривошипа черкал жестяной контакт Пальцами нужно подогнуть полоску так, чтобы ток размыкался, не замыкался а РАЗМЫКАЛСЯ в средине хода поршня. Кстате, на вал кривошипа надо надеть кольцо из медной проволоки, для улучшения контакта. Один провод к валу, другой к полоске. но еще имеет значение и трансформатор, например мой дает искру, способную хорошо поджигать топливо при 18 вольтах. свечу можно сделать самодельную, но когда я делал, то не знал как, просто вклеил в двигатель свечу от мотоцикла. надеюсь, вы знаете как работает двигатель Ленуара, если кто не знает — все описано тут я не хочу прорекламировать этот сайт, просто сам делал из него, там нашёл как сделать шариковые клапана и все остальное. вот мой выпускной клапан, хорошо видно шарик Клапана и свечу к цилиндру надо припаять или приклеить эпоксидным клеем. у меня клапана из алюминия, не паяются, да и паяльника нет.Поэтому я их склеивал. Щели уплотняем ватой, пропитаной эпоксидкой, все соединения надо для прочности покрыть тканью, пропитаной эпоксидкой. но я потом еще сделал, чтоб дым не с клапана выходил, а через выхлопную трубу) gam_romka_er, сделай че побольше, такой маленький ленуар работать не будет ИМХО.Надо как минимум 5 кубиков обьема и клапана должны быть в головке цилиндра, не путай с обычным двухтактником. дохрена ж я написал
Типы и принципы работы
Существует понятие вечных двигателей первого порядка и второго. Первый порядок
– это устройства, которые производят энергию сами по себе, из воздуха,
второй тип
– это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.
Фото – Магнитный двигатель дудышева
Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.
Фото – Магнитный двигатель Лоренца
У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит о двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.
Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца
. Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.
Простейший асинхронный электромагнитный двигатель Тесла
основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.
Фото – Магнитный двигатель Тесла
Роторный кольцар Лазарева
пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:
Фото – Кольцар Лазарева
На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.
Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.
Линейный двигатель Шкондина
произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.
Фото – Двигатель Шкондина
Альтернативный двигатель Перендева
– это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.
Фото – Двигатель Перендева
Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.
Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.
Как сделать водородный двигатель своими руками
Создание генератора водорода — эффективный способом существенного сокращения топливных расходов. Задача — подать в камеру сгорания специальный газ (система Брауна). Ниже приведена простая пошаговая инструкция.
Сборка электролита
Используйте 8 электролитических пластин из нержавеющей стали (16×20 см), уложив их друг на друга. У них уже должно быть отверстие сверху. Просверлите еще по одному отверстию толщиной 1 см. Между ними поместите ПВХ проставки (толщиной 3 мм). Стальные пластины не должны касаться друг друга. С помощью винтового соединения скрепите конструкцию.
Подготовка пластикового контейнера
Подготовьте ёмкость. Вставьте два длинных винта внутрь крышки, зазоры закройте герметиком. Прикрепите провод к каждому винту, обмотав его вокруг, оставьте снаружи контейнера. Сделайте еще одно отверстие в крышке и вставьте туда резиновый шланг, погрузив его в воду. Другой конец трубки должен открываться в пластиковый корпус воздухозаборника автомобиля.
Нужно будет просверлить отверстие в корпусе, чтобы вставить трубку. Для более прочного соединения используйте фитинги из ПВХ на обоих концах. Налейте дистиллированную воду, заполнив половину объёма. Положите пол чайной ложки соли или полную пищевой соды, хорошо перемешайте.
Поместите электролит из нержавеющей стали в контейнер, убедившись, что он хорошо погружен. Любые промежутки внутри ёмкости должны быть заполнены герметиком, чтобы предотвратить утечку газа. Внутри тары мгновенно образуются пузырьки, газ начал вырабатываться.
Подключение к источнику питания
Соедините выводы винтов контейнера с положительными и отрицательными клеммами источника постоянного тока с помощью зажимов. Если провода не обеспечивают убедительного соединения, используйте вместо этого барашковые гайки.
Можно подключить его напрямую к аккумулятору, отрицательный контакт подключается к аналогичному выводу батареи, а положительный — к реле зажигания блока предохранителей. Это необходимо для того, чтобы генератор включался только тогда, когда автомобиль тоже включен.
Сделать полноценный водородный двигатель для автомобиля своими руками не получится, поскольку технология довольно сложная.
Вам нужно войти, чтобы оставить комментарий.
Как собрать двигатель самостоятельно
Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.
Фото – Магнитный двигатель на подвеске
Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.
Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.
Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.
Фото – Принцип работы магнита
Какие достоинства и недостатки имеют реально работающие магнитные двигатели
Достоинства:
- Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
- Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
- Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.
Недостатки:
- Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
- Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
- Даже после приобретения готового мотора, его бывает очень сложно подключить;
- Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.
Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.