Чем отличается система шин от секции шин: определим основные признаки

Первоначально надо понять, что такое система шин и секции шин отдельно, а потом уже разбираться, чем отличается система шин от секции шин. На первый взгляд, кажется, что несложно найти пояснения всем специализированным терминам, но намного сложнее разобраться в исключениях из правил или многоплановом использовании шинопроводов разных типов и категорий. Постараемся в статье распознать, чем отличается система шин от секции шин, более подробно, делая акценты на основные технические характеристики и спектры возможностей.

Что такое система шин и почему могут возникать путаницы при определении силового кабеля?

Первоначально воспользуемся определением «система шин» из технической литературы, и поймем, что под данным понятием подразумевается специальный комплект элементов. Эти элементы могут быть связаны между собой, формируя работоспособную энергосистему. Абсолютно все элементы присоединены к электрическим распределительным устройствам, поэтому и способны бесперебойно и по назначению функционировать.

Важно помнить! Все существующие распределительные устройства на подстанциях отличаются номинальным, то есть прописанным в технических документах, уровнем напряжения, а также определенной мощностью генераторов, трансформаторов. Каждая созданная сеть рассчитана на определенную мощность, режим работы и на количество обслуживаемых объектов.

И если, например, потенциальному заказчику для реализации проекта будет необходимо использовать распределительные устройства с одной системой шин, то само энергооборудование будет содержать выключатель и два разъединителя. Один – шинный, а второй – линейный.

В кругу специалистов для понятия «система шин» ввели синоним – «сборные шины». И если о них заходит разговор, то каждый понимает, что речь идет о стандартном устройстве, которое представляет собой продуманную систему шинопроводов. И все элементы системы фиксируются на специальных опорах, при этом защищены изоляционным материалом или специальными внешними коробами. Их монтаж проходит в специально отведенных для этого помещениях, технических коридорах. Первостепенная задача системы шин или сборных шин – сформировать энергетический канал с бесперебойной подачей необходимых силовых импульсов к имеющимся объектам и ответвленным магистралям.

Системы шин перед эксплуатацией обязательно тестируются, то есть разработчики и производителя всегда планово проводят типовые испытания систем шин и секций шин, и в этом отличий нет.

Если к системе шин планируют создать отходящие присоединения, то применяют отпайки, через которые и запитывают новые элементы.

Радиальная шина

Слои корда в каркасе покрышки не перекрещиваются. Они выполнены в виде меридианов – от одного края шины до другого. Место контакта с дорожным покрытием усиливается металлокордом. Это покрытие помогает быстрее отводить тепло от шины, оно принимает на себя большую часть нагрузки. Благодаря ему не происходит деформации протектора, рисунок остается постоянным.

Плюсы

Нити каркаса испытывают только радиальные нагрузки. Таким образом уменьшается напряжение на них. Подобная особенность конструкции дает возможность уменьшить слойность каркаса, лучше отводить тепло и облегчить шину.

Использование модульного брекера с разными видами корда, улучшает сцепные характеристики. При этом не происходит изменение формы протектора, и уменьшение пятна контакта.

Стойкость к фронтальным проколам.

Минусы

Единственным недостатком считается слабость к боковым порезам. Так как число нитей в каркасе радиальных шин меньше и проложены они в радиальном направлении, то их проще повредить, в отличие от диагональных, где они пересекаются.

Что такое двойная система шин и как она формируется специалистами?

Первоначально представьте, что специалистами создана система шин, она успешно функционирует. Потом возникает необходимость расширять проект, увеличивать подачу мощности. Тогда специалисты могут посоветовать заказчику создать двойную систему шин. Она обычно создается для обеспечения резервирования одной системы шин.

Для монтажа и комплектации слаженной системы используются разъединители, рубильники, дополнительные выключатели органично дополняют уже имеющиеся присоединения с первой системы.

Иногда бывает так, что в двойной системе одна из шинных систем делается рабочей, а вторая – резервной, то есть вспомогательной, аварийной, запасной, на случай, если будет необходимо увеличить подачу напряжения, возобновить подачу импульса. Но чаще всего на силовых подстанциях коммутация или соединение электрических цепей происходит параллельно, то есть для одних присоединений формируется одна система шин, а вторая обслуживает другие участки.

Что такое обходная система шин или как прожить без форс-мажорных ситуаций?

Представим ситуацию, что одна из цепей была повреждена или замечены сбои в секции шин, нарушается работа целой системы. Нормально функционировать энергооборудование уже не может, поэтому необходимо проводить ремонтно-профилактические работы, выполнять диагностику цепи. И в таких форс-мажорных случаях при работе секций шин и системы шин в выигрыше остаются собственники объектов с обходной системой шин. В чем ее преимущества?

  • Обходная система шин обеспечивает нормальную коммутацию на подстанциях, когда идет присоединение к распределительным устройствам нескольких систем, которые функционируют либо одновременно, либо попеременно.
  • Обходная система шин обеспечивает должную защиту секций шин, позволяет переводить систему в ремонтный режим. А это значит, что когда одна из систем отключается или аварийно выходит из строя, то на подстанции срабатывает резервное подключение, то есть вступает в действие обходная система шин.
  • Обходная система шин переводит в резерв не существующие две системы шинопроводов, а стандартные выключатели любого из имеющихся присоединений. И это становится возможным благодаря продуманным подключениям обходной системы к каждому присоединению через разъединитель.

Таким образом, становится понятнее, что ж такое система шин. Это понятие является широким в энергосистеме, так как существует несколько типов и видом систем шин, а все они могут секционироваться, то есть разделяться на секции шин распределительных устройств. И это свойство очень важное и полезное, так как при сегментации шин удается обеспечить подстанции большую надежность. И когда степень секционирования НКУ такова, что позволяет выделить поврежденный участок в системе шин, провести ремонтные работы, оставляя при этом в работе часть присоединений.

Применение обходной системы шин

Схемы РУ с одной или двумя системами шин всех модификаций имеют общий существенный недостаток, заключающийся в том, что ремонт выключателей или разъединителей присоединений неизбежно связан с перерывом работы потребителей. При напряжениях 110 кВ и выше длительность ремонта выключателей, особенно воздушных, настолько велика, что отключение присоединений часто становится недопустимым. Исключить отмеченный недостаток позволяет применение обходной системы шин. Ниже рассмотрены примеры использования обходных шин и способы их подключения.

Схема РУ с одной рабочей и обходной системами шин. Простейший вариант такой схемы получается при добавлении обходной системы к рабочей не-секционированной системе шин (рис. 1.12). Схема включает следующие элементы: рабочую систему шин А1, обходную систему шин АО, обходной выключатель QO, выключатели присоединений Ql, Q2, разъединители QS1, QS2.

Любое присоединение, например W1, подключается к рабочей системе шин А1 через линейный разъединитель QS2, выключатель Q1, шинный разъединитель QS1, а к обходной системе шин — через обходной разъединитель QSO1. В нормальном режиме рабочая система шин находится под напряжением. Выключатели присоединений, линейные и шинные разъединители включены.

Обходной выключатель QO и обходные разъединители QSO1 отключены, обходные разъединители, обозначенные на схеме QSO, включены. Обходная система шин находится без напряжения. На время ремонта или ревизии любого линейного выключателя он может быть заменен обходным выключателем QO.

Например, при замене выключателя Q1 надо произвести следующие операции:

— включить обходной выключатель QO для проверки исправности обходной системы шин;

— отключить QO;

— включить QSO1;

— включить QO;

— отключить выключатель Q1;

— отключить разъединители QS1 и QS2.

Рис. 1.12

Достоинства схемы: разъединители во всех цепях предназначены только для обеспечения безопасности выполнения ремонтных работ, что соответствует их главному назначению; возможность ревизии и опробования выключателей без перерыва работы; простота схемы определяет небольшую стоимость выполнения РУ.

Недостатки схемы: при КЗ на линии должен отключиться соответствующий выключатель, а все остальные присоединения должны остаться в работе. Однако при отказе этого выключателя отключатся выключатели источников питания.

Короткое замыкание на рабочей системе шин или на шинных разъединителях также вызывает автоматическое отключение всех источников питания. В обоих случаях прекращается электроснабжение всех потребителей на время, необходимое для устранения повреждения.

Указанные недостатки устраняются путем разделения рабочей системы шин на секции и равномерным распределением источников питания и отходящих линий между секциями. В таких схемах РУ в цепи каждой секции предусматривается отдельный обходной выключатель или в целях экономии для обеих секций используют один обходной выключатель (рис. 1.13).

Рис.1.13

Эта схема состоит из следующих элементов:

— рабочей системы шин А, секционированной секционным выключателем QB на две секции 1ВА и 2ВА;

— обходной системы шин АО;

— выключателей присоединений Q1 ,Q2;

— обходного выключателя QO;

— разъединителей QS1, QS2.

Обходной выключатель QO может быть присоединен к любой секции с помощью развилки из двух разъединителей QS3 и QS4. Например, при включенном разъединителе QS3 и при отключенном QS4 обходной выключатель будет подключен к секции 1ВА.

Режимы работы секционного выключателя QB зависят от типа электроустановки (электростанция или подстанция), для которой предназначена данная схема РУ. Здесь же следует отметить, что одновременное включение разъединителей QS3 и QS4 недопустимо, так как в противном случае секционный выключатель QB будет шунтирован.

В этой схеме обходной выключатель QO также может заменить выключатель любого присоединения, например Q1, для чего надо произвести следующие операции:

— отключить разъединитель QS4 (если он был включен);

— включить разъединитель QS3 (если он был отключен);

— кратковременно включить обходной выключатель QO для проверки исправности обходной системы шин;

— включить QSO1 и включить QO;

— отключить выключатель Q1;

— отключить разъединители QS1 и QS2.

После указанных операций линия W1 будет получать питание через обходную систему шин и выключатель QO от первой секции 1ВА (рис. 1.14).

Иногда функции обходного и секционного выключателей совмещают (рис. 1.15). Здесь обходной выключатель QO присоединяется к рабочим секциям через перемычку из двух разъединителей QS1 и QS2. В нормальном режиме эта перемычка включена, обходной выключатель присоединен к секции 2ВА и также включен.

Таким образом, секции 1ВА и 2ВА соединены между собой через QS4, QO, QSO, QS2, QS1, и обходной выключатель выполняет функции секционного выключателя. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки QS2, а затем использовать QO по его назначению. При этом на все время ремонта линейного выключателя параллельная работа секций нарушается.

Рис. 1.14 Рис. 1.15

Достоинства схемы: при КЗ на сборных шинах или при отказе линейных выключателей при КЗ на линии теряется только 50 % всех присоединений; возможность ревизий и опробование выключателей без перерыва работы; относительная простота схемы и низкая стоимость РУ.

Недостаток схемы заключается в том, что при ремонте рабочей системы шин необходимо отключить все источники питания и отходящие линии.

Схема (рис. 1.15) может использоваться для подстанций (110 кВ) при числе присоединений до шести включительно, когда нарушение параллельной работы линии допустимо и отсутствует перспектива дальнейшего развития.

При большем числе присоединений (более 7) рекомендуется схема с отдельным обходным и секционным выключателями. Это позволяет сохранить параллельную работу линий при ремонтах выключателей.

Рассмотренные схемы можно применять при парных линиях или линиях, резервируемых от других подстанций, а также радиальных, но не более одной на секцию.

На электростанциях возможно применение схемы с одной секционированной системой шин, но с отдельными обходными выключателями на каждую секцию.

Как уже отмечалось, в схемах с одной рабочей и обходной системами шин при необходимости ремонта рабочей системы шин требуется отключение всех присоединений на время ремонта, из-за чего нарушается электроснабжение потребителей. Применение схемы с двумя рабочими и обходной системами шин устраняет этот недостаток.

Схема РУ с двумя рабочими и обходной системами шин (рис.1.16) включает рабочие системы шин А1 и А2, обходную систему шин АО, выключатели присоединений Ql, Q2,, обходной выключатель QO, шиносоединительный выключатель QA, разъединители QS1, QS2, Каждое присоединение, например W1, подключается к рабочим системам шин через развилку из двух шинных разъединителей QS1 и QS2, что позволяет осуществлять работу как на одной, так и на другой системе шин.

Как правило, обе системы шин находятся в работе при соответствующем фиксированном (равномерном) распределении всех присоединений, например присоединения с нечетными номерами подключены к первой рабочей системе шин А1, присоединения с четными номерами подключены ко второй рабочей системе шин А2. В нормальном режиме шиносоединительный выключатель QA включен, обходной выключатель QO отключен и обходная система шин находится без напряжения.

Обходные разъединители QSO отключены; разъединитель обходного выключателя QO включен. Такое распределение присоединений увеличивает надежность системы, так как при КЗ на шинах отключается шиносоединительный выключатель QA и только половина присоединений теряет питание. Если повреждение на шинах устойчивое, то отключившиеся присоединения переводят на исправную систему шин.

Рис. 1.16

Достоинства схемы с двумя рабочими и обходной системами шин:

— имеются условия для ревизий и опробований выключателей без перерыва работы;

— существует возможность перегруппировки присоединений между системами шин, что бывает необходимо при изменении схемы сети, режима работы системы и др.;

— возможность проведения ремонта любой системы шин, сохраняя в работе все присоединения.

Недостатки этой схемы:

— отказ одного выключателя при аварии приводит к отключению всех источников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения;

— повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, то есть приводит к отключению всех присоединений;

— большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин (рис. 1.17). Обе рабочие системы шин находятся в работе при фиксированном распределении присоединений между секциями. Шиносоединительные выключатели QA1 и QA2 включены. Обходные выключатели QO1 и QO2 отключены. Обходная система шин находится без напряжения. Состояние секционных выключателей QB1 и QB2 определяется типом электроустановки, в которой применяется данная схема РУ.

Рис. 1.17. Схема с двумя секционированными рабочими и обходной системами шин

В этой схеме РУ при повреждении на шинах или при КЗ в линии и отказе линейного выключателя теряется только 25 % присоединений (на время переключений), при повреждении в шиносоединительном выключателе теряется 50 % присоединений. Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение схемы, где совмещены шиносоединительный и обходной выключатели.

В нормальном режиме разъединитель QS2 отключен, разъединители QS1, QSO, QS3 включены, обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта выключателя любого присоединения, например W1, отключают выключатель QOA1 и разъединитель QS3 и используют выключатель по его прямому назначению. В схемах с большим числом линий количество таких переключений значительно, что приводит к усложнению эксплуатации, поэтому имеется тенденция к отказу от совмещения шиносоединительного и обходного выключателей.

РУ, выполненные по схеме с двумя рабочими и обходной системами шин, применяются на электростанциях и подстанциях при напряжении 110-220 кВ. На станциях при числе присоединений 12-14 секционируется одна система шин, при большем числе присоединений — обе системы шин. На подстанциях секционируется одна система шин при напряжении 220 кВ и числе присоединений 12-15 или при установке трансформаторов мощностью 125 МВА и более; при напряжениях 110-220 кВ обе системы секционируются при числе присоединений более 15.

При напряжениях 330 кВ и выше применение схем с двумя рабочими и обходной системами шин нецелесообразно, так как разъединители в таких схемах используются в качестве оперативных аппаратов. Большое количество операций разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочного отключения тока нагрузки разъединителями. Кроме этого, необходимость установки шиносоединительного, обходного выключателей и большого количества разъединителей увеличивает затраты на сооружение РУ.

Что такое секции шин и насколько они важны для функционирования шинопроводов?

В технической литературе имеется определение «секций шин», и оно звучит следующим образом: секции шин – это определенные части системы шин, отделенные друг от друга коммутационными аппаратами. В сущесвующих ГОСТах прописаны различные типы секционирования. И чаще всего выделяют шесть типовых форм секционирования, а именно:

  1. Системы шин без внутреннего разделения, когда главная шина, вводные и выводные функциональные блоки, распределительные шины функционируют одной системой, не разделяются на блоки перегородками или барьерами.
  2. Системы шин с разделением шин и узлов функционирования, но при этом зажимы для внешних проводников от шин не разделяются барьерами из металла или пластика.
  3. Сегментирование шин и функциональных узлов с зажимами внешних проводников.
  4. Разделение функциональных узлов друг от друга, а также от имеющихся шин. Дополнительно барьерами отделены зажимы внешних проводников от блоков, но с шинами у них остается взаимосвязь.
  5. Разделение всех имеющихся в системе функциональных узлов друг от друга, а также от шин. Зажимы внешних проводников находятся в одном блоке, поэтому отделены и от шин, и от функциональных узлов. При таком сегментировании легко проводить испытания секции сборных шин, ее ремонтировать и вводить в эксплуатацию.
  6. Система шин, когда функциональные узлы находятся в одном отсеке с зажимами внешних проводников.

Таким образом, существует шесть типов сегментирования, когда проявляются разные варианты изоляции и взаимодействия главной шины, функциональных блоков, распределительных шин, зажимов для отходящих проводников. При любой комплектации система шин работоспособна.

Одиночная секционированная система сборных шин

Схема, изображенная на рис. 4.5, сохраняет все достоинства схемы с одиночной СШ, кроме того, авария на сборных шинах приводит к отключению только одного источника и половины потребителей; вторая секция и все присоединения к ней остаются в работе. Рассмотрим достоинства этой схемы. При коротком замыкании на сборных шинах (в точке К

1) отключатся выключатель
Q
3 и секционный выключатель
QB
2, т.е. произойдет прекращение электроснабжения потребителей, подключенных к системе сборных шин
В
1.

При коротком замыкании на присоединении, например, в точке К

2 должен отключиться выключатель
Q
5, а все остальные присоединения должны остаться в работе. Однако при отказе этого выключателя отключится выключатель источника питания
Q
3 и секционный выключатель
QB
2, вследствие чего сборные шины
В
1 останутся без напряжения.

При коротком замыкании в точке К

3 отключаются выключатели
Q
1,
Q
3 и питание первой секции сборных шин
В
1 производится через секционный выключатель
QB 2
от второй секции сборных шин
В
2. При отключении одного источника питания нагрузку принимает оставшийся в работе источник питания. Таким образом, питание потребительских ТП в аварийных режимах не нарушается благодаря наличию резервированных питающих линий, например,
W
1 и
W
3, присоединенных к разным секциям потребительских ТП, каждая из которых должна быть рассчитана на полную нагрузку (стопроцентный резерв мощности по сети).

Схема может быть рекомендована для питания ответственных потребителей.

Недостатки этой схемы следующие:

‒ при повреждении и последующем ремонте одной секции ответственные потребители остаются без резерва, а потребители, не резервированные по сети, отключаются на все время ремонта (например, подключенные к нерезервированным линиям W

1 и
W
4);

‒ источник питания, подключенный к ремонтируемой секции, отключается на все время ремонта.

В рассматриваемой схеме секционный выключатель QB

1 включен в нормальном режиме работы. Такой режим обычно применяется на электростанциях, чтобы обеспечить параллельную работу генераторов, и на ТП для включения трансформаторов на параллельную работу. На СПП секционный выключатель
QB
2 в нормальном режиме работы обычно отключен в целях ограничения токов короткого замыкания.

Схема достаточно надежна и широко применяется для питания собственных нужд ТП, где в полной мере можно использовать ее достоинства, особенно благодаря применению КРУ.

Двойная система сборных шин

Стремление к дальнейшему повышению гибкости и надежности главных схем станций и подстанций обусловило применение двойной системы сборных шин (ССШ).

На рис. 4.6. представлена схема двойной несекционированной ССШ с подключением каждого присоединения через два шинных разъединителя (ШР) и один выключатель.

Для чего надо рекомендуется выполнять сегментацию шин и почему без этого не обойтись?

Для разделения основных элементов системы шин используют перегородки или металлические барьеры. Они необходимы, чтобы повысить безопасность персонала, который обслуживает энергосистему и локализировать нежелательные процессы.

При правильной сегментации ремонтные работы не будут останавливать процесс, все формы секционирования НКУ позволяют все восстановить быстро, без остановки системы.

Таким образом, обходная секция шин позволяет создать достойную функционирующую систему шинопроводов, которые и легко монтировать, и обслуживать, то есть вовремя выполнять технические осмотры, тестирование, ремонтные работы. В итоге становится понятно, что система шин – это комплект шинопроводов, которые для оптимизации лучше поддавать сегментированию, чтобы улучшить процесс подачи энергоимпульса при обслуживании нескольких силовых линий или объектов.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]