Расчетная проверка трансформаторов тока по условию 10% погрешности


Устройство трансформатора тока Одним из требований при выборе трансформаторов тока (ТТ) является их расчетная проверка на 10% погрешность. Что это значит и для чего это нужно? Это значит, что в аварийном режиме, когда ток в первичной обмотке трансформатора тока достигнет некоторого расчетного значения, погрешность ТТ не должна превышать 10%.
В противном случае ток во вторичной обмотке трансформатора тока будет отличаться более чем на 10% от первичного (с учетом коэффициента трансформации), что может привести к несрабатыванию защиты.

Существует несколько способов проверки ТТ на 10% погрешность:

  1. По кривым предельной кратности
  2. По паспортным данным ТТ
  3. По действительным вольт-амперным характеристикам, снятым у ТТ перед включением электроустановки
  4. По типовой кривой намагничивания электротехнической стали, используемой для изготовления ТТ.

Все эти способы описаны в книгах Шабада М.А. Мы же подробно остановимся на способе проверки трансформатора тока по его паспортным данным. Почему именно на нем? Потому что на этапе проектирования электроустановки снять действительные вольт-амперные характеристики трансформатора не представляется возможным, получить от заводов-изготовителей ТТ кривые предельной кратности также бывает достаточно проблематично, не говоря уже о кривой намагничивания электротехнической стали, из которой изготовлен сердечник ТТ.

Существует два способа проверки ТТ на 10% погрешность по его паспортным данным:

  1. По известным паспортным данным ТТ и его нагрузке определяется фактический коэффициент предельной кратности Кпк.факт и сравнивается с минимально требуемым Кпк.мин
  2. Определяется минимально требуемый коэффициент предельной кратности Кпк.мин, а затем с учетом фактической вторичной нагрузки ТТ определяется номинальный Кпк.ном. Затем выбирается трансформатор тока с ближайшим большим стандартным значением коэффициента Кпк.ном

Рассмотрим более подробно первый вариант (определение фактического Кпк.факт и сравнение его с минимально требуемым Кпк.мин).

Определение фактического коэффициента предельной кратности Кпк.факт

Итак, для определения фактического коэффициента предельной кратности Кпк.факт необходимы следующие исходные данные:

а) Паспортные данные ТТ, а именно

  • Sном — номинальная вторичная нагрузка трансформатора тока, ВА;
  • Zтр — внутреннее сопротивление трансформатора тока, Ом;
  • Кпк.ном – номинальный коэффициент предельной кратности;
  • Iперв — первичный номинальный ток трансформатора тока, А;
  • Iвтор — вторичный номинальный ток трансформатора тока, А.

б) Должна быть известна схема соединения трансформаторов тока и вторичной нагрузки

в) Необходимо знать какие устройства подключены к вторичной обмотке ТТ, а также какими проводами выполнено это соединение.

Теперь необходимо определить значение вторичной нагрузки, подключенной к цепям ТТ. Для этого воспользуемся готовыми формулами, позаимствованными из книги Шабада М.А.

Таблица 1 – Расчетные формулы для определения вторичной нагрузки трансформаторов тока Zн.расч

Понятно, что в формулах Zн.расч – расчетное значение вторичной нагрузки, подключенной к цепям ТТ; rпр – сопротивление проводов соединяющих трансформатор тока и реле защиты; rпер – переходное сопротивление. Принимается равным 0,1 Ом; Zр, Zр.ф, Zр.обр – сопротивление реле.

Так как сейчас в основном используются микропроцессорные реле защиты, потребляемая ими мощность по токовым цепям очень мала. Поэтому в формулах вместо Zр, Zр.ф, Zр.обр подставляем значение потребляемой мощности по токовым цепям микропроцессороного реле (в Омах). Если же в каждой фазе и в нулевом обратном проводе установлено свое отдельное реле, то в формулы необходимо подставлять значение потребляемой мощности каждого этого реле.

Если в информации на реле потребляемая по токовым цепям мощность дается в Вт или ВА, пересчет в Омы производится по формуле

Zр(Ом) = Sр(Вт) / I 2перв

Аналогично выполняется перевод номинальной мощности трансформатора тока из ВА в Омы

Zном.тт(Ом) = Sном.тт(ВА) / I 2перв

Сопротивление проводов rпр рассчитывается по формуле

rпр = Lпр / (γпр · Sпр) , Ом

где: Lпр – длина проводов от зажимов ТТ к реле, м Sпр – сечение проводов, мм2; γпр – удельное электрическое сопротивление, в зависимости от материала проводов

  • γпр = 57 м/Ом · мм2 – для меди
  • γпр = 34,5 м/Ом · мм2 – для алюминия

Теперь необходимо определить фактический коэффициент предельной кратности по формуле

Проверка измерительных трансформаторов

Проверка трансформаторов тока

При новом включении производится осмотр трансформаторов тока и их цепей, проверяются сопротивление постоянному току и электрическая прочность изоляции вторичных обмоток, определяются однополярные зажимы, проверяются характеристики намагничивания, коэффициенты трансформации. При плановых проверках производятся осмотр трансформаторов тока, проверка сопротивления обмоток, сопротивления изоляции и снятие характеристик намагничивания. Если при проверке вынимаются встроенные трансформаторы тока, необходимо дополнительно проверить полярность обмоток и коэффициенты трансформации на разных отпайках. Полярность выводов обмоток трансформаторов тока проверяется с помощью магнитоэлектрического прибора с обозначенной полярностью обмотки и нулем в середине шкалы по схеме, приведенной на рисунке 1. Источник постоянного тока, в качестве которого используется электрическая батарейка Б или аккумулятор напряжением 4—6 В, подключается последовательно с добавочным сопротивлением Rд к первичной обмотке трансформатора тока. При этом положительный полюс батарейки подключают к «началу», а отрицательный к «концу» первичной обмотки.

Рисунок 1 – Определение полярности обмоток трансформатора тока.

Замыкая и размыкая ключом К цепь первичной обмотки трансформатора тока, наблюдают за отклонением стрелки магнитоэлектрического прибора, подключенного к вторичной обмотке. Если при замыкании первичной цепи стрелка прибора будет отклоняться вправо, а при размыкании влево, значит, выводы первичной и вторичной обмоток трансформатора тока, к которым подключен плюс батареи и плюс прибора, являются однополярными. Для увеличения отклонения стрелки прибора, используемого в схеме проверки, можно изменять величину добавочного сопротивления, а также напряжение батарейки. Характеристика намагничивания, представляющая зависимость напряжения на зажимах вторичной обмотки трансформатора тока от тока намагничивания, является основной характеристикой, по которой можно определить исправность трансформатора тока, а также возможность его применения в различных схемах релейной защиты. Для снятия характеристики намагничивания при разомкнутой первичной обмотке на зажимы вторичной обмотки трансформатора тока подается переменное напряжение через регулировочный автотрансформатор AT (рисунок 2).

Рисунок 2 – Снятие характеристики намагничивания трансформатора тока.

Увеличивая напряжение, подаваемое на вторичную обмотку, фиксируют несколько значений напряжения и тока. При новом включении таким образом снимают 10—12 точек, по которым строят характеристику намагничивания (рисунок 3). При плановых проверках трансформаторов тока снимаются три-четыре точки и проверяется совпадение с характеристикой, снятой ранее. Желательно снимать характеристику намагничивания до насыщения, т. е. до таких значений, когда наступает насыщение трансформатора тока и характеристика намагничивания загибается. Измерение тока и напряжения при снятии характеристики намагничивания следует производить приборам электромагнитной или электродинамической системы, реагирующими на действующие значения измеряемых величин. Перед проверкой характеристики намагничивания и после нее производится размагничивание сердечника путем двух-трех плавных подъемов и снижений напряжения до нуля. При наличии короткозамкнутых витков во вторичной обмотке трансформатора тока его характеристика намагничивания снижается, как показано на рисунок 3, что может быть обнаружено при сравнении полученной характеристики с характеристикой, снятой ранее, или с характеристиками однотипных трансформаторов тока. Наиболее наглядно различие характеристик при наличии короткозамкнутых витков проявляется в их начальной части при токах намагничивания 0,1—1 А.

Рисунок 3 – Характеристики намагничивания трансформаторов тока. 1 — исправного; 2 — с закороченными витками.

Рисунок 4 – Схема для снятия характеристики намагничивания трансформаторов тока с вторичным током 1 А.

Для некоторых типов трансформаторов тока, насыщение которых происходит при больших значениях напряжения (например, 400—600 В), необходима специальная испытательная схема, позволяющая снимать характеристику до начала насыщения. Такая схема, которая используется для снятия характеристик намагничивания трансформаторов тока с вторичным номинальным током 1 А, показана на рисунке 4. В этой схеме для повышения напряжения, подаваемого на зажимы вторичной обмотки трансформатора тока, используется специальный трансформатор Т на напряжение 220/2 000 В. При этом не следует подавать на вторичную обмотку слишком больших напряжений, поскольку это опасно для междувитковой изоляции. Поэтому рекомендуется подавать на вторичную обмотку одноамперных трансформаторов тока такое напряжение, чтобы на один виток вторичной обмотки приходилось не более 1—1,2 В. Характеристика намагничивания может сниматься и при подаче тока в первичную обмотку, как показано на рисунке 5. Ток в первичную обмотку трансформатора тока подается при этом через промежуточный трансформатор Т 220/12 В, мощностью 500—600 ВА, величина его регулируется автотрансформатором AT. Напряжение на ветви намагничивания измеряется с помощью вольтметра V, подключенного к зажимам вторичной обмотки. Вольтметр должен иметь высокое внутреннее сопротивление 1,5— 2 кОм/В и пределы измерения 10—2 000 В. Снятие характеристики намагничивания при подаче тока в первичную обмотку трансформатора тока особенно удобно при проверке одноамперных трансформаторов тока, когда отсутствует специальное устройство для подачи достаточно большого напряжения на зажимы вторичной обмотки.

Рисунок 5 – Снятие характеристики намагничивания при подаче тока в первичную обмотку трансформатора тока.

Рисунок 6 – Принципиальная схема каскадных трансформаторов тока.

В установках напряжением 500 кВ и выше применяются каскадные трансформаторы тока, схема которых показана на рисунке 6. Особенность проверки таких трансформаторов тока состоит в том, что отдельно должна проверяться каждая ступень каскада. Затем после соединения обеих ступеней проверяется характеристика намагничивания каждой обмотки трансформатора тока в полной схеме. У встроенных трансформаторов тока характеристику намагничивания следует снимать дважды: до закладки трансформатора тока во втулку для проверки его исправности и. после установки втулки вместе с трансформатором тока на место. При этом характеристику намагничивания можно снимать только на одной из отпаек. Характеристика намагничивания для других отпаек встроенного трансформатора тока определится пересчетом по следующим формулам: где U, Iнам, w — напряжение, ток намагничивания и число витков обмотки для ответвления, на котором снималась характеристика намагничивания; U’, I’нам, w’ — напряжение, ток намагничивания и число витков обмотки для ответвления, на которое производится пересчет характеристики.

Рисунок 7 – Определение коэффициента трансформации трансформатора тока.

Рисунок 8 – Определение ответвлений у встроенного трансформатора тока.

Коэффициент трансформации трансформатора тока проверяется по схеме, показанной на рисунке 7. В первичную обмотку от нагрузочного трансформатора НТ подается ток не меньше 20% номинального. Коэффициент трансформации трансформатора тока определяется как отношение первичного тока I1 ко вторичному I2 и сравнивается с его номинальным значением. У встроенных трансформаторов тока необходимо проверить коэффициенты трансформации для всех ответвлений и правильность маркировки ответвлений. Проверка правильности маркировки ответвлении может быть выполнена при определении коэффициентов трансформации или другим более простым способом.

Рисунок 9 – К определению ответвлений обмотки встроенного трансформатора тока 600/5.

Для этого на два любых ответвления вторичной обмотки подается через автотрансформатор переменное напряжение (рисунок 8). Измеряя напряжения между каждой парой ответвлений, по максимальной величине напряжения определяют выводы, соответствующие максимальному коэффициенту трансформации А и Д. После того как эти выводы найдены, на них подается напряжение от автотрансформатора AT. Затем проверяют распределение напряжения по обмотке трансформатора тока, измеряя напряжение между одним из выводов, например А, и всеми другими ответвлениями. Наименьшее напряжение соответствует ответвлению с наименьшим коэффициентом трансформации. Аналогично находят и другие ответвления, сопоставляя результаты измерений с заводской схемой распределения витков между ответвлениями.

Проверка трансформаторов напряжения

При новом включении производится осмотр трансформатора напряжения и его вторичных цепей, проверяются электрическая прочность изоляции, полярность обмоток и маркировка вторичных цепей, измеряются напряжение короткого замыкания и сопротивление обмоток на постоянном токе, проверяются исправность вторичных цепей напряжения и надежность действия плавких предохранителей и автоматов, а также цепей контроля и сигнализации при повреждениях. При плановых проверках, которые проводятся 1 раз в 3—4 года и совмещаются с капитальным ремонтом трансформатора напряжения, производится осмотр, проверяются электрическая прочность изоляции, исправность устройств защиты и контроля цепей напряжения. После ремонтов с отсоединением обмоток от выводов производится проверка однополярных зажимов. Определение полярности обмоток трансформатора напряжения производится по той же схеме, что и трансформаторов тока. Источник постоянного тока подключается к обмотке высшего напряжения, а прибор — к обмотке низшего напряжения.

Рисунок 10 – Определение напряжения короткого замыкания трансформатора напряжения

Некоторыми особенностями отличается проверка полярности выводов трехфазного трансформатора напряжения, у которого отсутствует нулевой вывод первичной обмотки. Поэтому зажимы батарейки постоянного тока в этом случае подключаются к выводам двух фаз высшего напряжения, а прибор к нулевому и фазному выводам обмотки низшего напряжения. При этом в случае, если обмотки трансформатора напряжения соединены по схеме Y/Y-12, стрелка прибора будет отклоняться вправо при замыкании цепи постоянного тока, когда положительный вывод прибора будет подключен к той фазе, на вывод высшего напряжения которой подан плюс батарейки постоянного тока. Величина напряжения короткого замыкания, которая необходима для определения внутреннего сопротивления трансформатора напряжения, измеряется по схеме, приведенной на рисунке 10. Напряжение, подаваемое на выводы обмотки низшего напряжения, плавно увеличивается до тех пор, пока ток не достигнет номинального значения. Напряжение короткого замыкания будет равно: а сопротивление трансформатора напряжения, приведенное к стороне низшего напряжения (Ом): где UH — номинальное напряжение на стороне низшего напряжения ТН; Uк — напряжение на стороне низшего напряжения, измеренное при опыте короткого замыкания, когда ток в обмотке низшего напряжения был равен номинальному.

Рисунок 11 – Определение коэффициента трансформации трансформатора напряжения. а — прямым измерением; б — методом сравнения; в — дополнительной обмотки пятистержневого трансформатора напряжения.

У трехобмоточных трансформаторов напряжения, имеющих две обмотки низшего напряжения, необходимо измерять три значения ик, как и у трехобмоточного силового трансформатора (между обмоткой высшего напряжения и каждой обмоткой низшего напряжения, а также между двумя обмотками низшего напряжения). У всех трансформаторов напряжения при новом включении проверяется коэффициент трансформации. Коэффициент трансформации трансформаторов напряжения с номинальным первичным напряжением до 10 кВ проверяется по схеме рисунке 11, а при подаче на первичную обмотку переменного напряжения 220—380 В. Для трансформаторов напряжения 35 кВ и выше определение коэффициента трансформации по схеме рисунке 11, а затруднено из-за малой величины напряжения на стороне низшего напряжения. В подобных случаях для определения коэффициента трансформации целесообразно использовать схему сравнения, приведенную на рисунке 11, б. При этом обмотки высшего напряжения двух проверяемых однофазных трансформаторов напряжения соединяют параллельно, а на обмотку низшего напряжения одного из них подают напряжение 50—60 В. Напряжения, измеренные на зажимах обмоток низшего напряжения, должны быть равны, если равны коэффициенты трансформации обоих трансформаторов напряжения. На рисунке 11, в приведена схема измерения коэффициента трансформации дополнительной обмотки пятистержневого трансформатора. В этой схеме напряжение подается на выводы двух фаз стороны высшего напряжения, а обмотка третьей фазы шунтируется, что необходимо для правильного определения коэффициента трансформации. У всех трансформаторов напряжения производится измерение тока намагничивания при подаче номинального напряжения на обмотку низшего напряжения. Следует иметь в виду, что ток намагничивания трансформаторов напряжения 110 кВ и выше достигает 10 А и выше, вследствие чего для проверки необходим достаточно мощный источник питания. Поскольку кривые тока или напряжения могут быть сильно искажены, при новом включении и при плановой проверке следует производить измерение тока намагничивания по одной и той же схеме, используя потенциометр или автотрансформатор. Использование разных схем может привести к существенно различным замерам. Измерение тока намагничивания следует производить быстро, так как вторичные обмотки не рассчитаны на длительное прохождение столь больших токов. При измерении тока намагничивания трансформаторов напряжения следует строго соблюдать правила техники безопасности, так как при этом сторона высшего напряжения находится под высоким напряжением. Во время проверки трансформаторов напряжения производится проверка автоматов и предохранителей, установленных в их вторичных цепях для защиты от коротких замыканий.

Определение минимально необходимого коэффициента предельной кратности Кпк.мин

Все трансформаторы тока, используемые для питания аппаратуры РЗА, должны обеспечивать точную работу измерительных органов защиты в конкретных расчетных условиях, для чего полная погрешность трансформаторов тока не должна превышать 10% при I1расч.

В общем случае минимально необходимый коэффициент предельной кратности Кпк.мин определяется по формуле:

Кпк.мин ≥ Ktd · I1расч / Iперв.тт

где: Ktd — переходный размерный коэффициент;

I1расч – ток, при котором должна быть обеспечена работа ТТ с погрешностью меньше 10% для правильного функционирования релейной защиты. Значения I1расч различны для разных видов защиты;

Iперв.тт – номинальный первичный ток ТТ.

Примечание: для микропроцессорных устройств могут быть свои требования к Кпк.мин. Так, для устройств Siemens типа 7SJ80, 7SJ81, 7SJ82 минимально требуемый коэффициент предельной кратности должен быть Кпк.мин ≥ 20.

Таблица – Определение минимально необходимого коэффициента предельной кратности Кпк.мин

Вид защитыК
td
I
1расч
Примечание
МТЗ и ТОНезависимая времятоковая х-ка1,1I
сраб.то — ток срабатывания наивысшей токовой ступени (как правило, токовой отсечки)
К
пк.мин ≥ 20 (для Siemens типа 7SJ80, 7SJ81, 7SJ82) /td>
Зависимая времятоковая х-ка1,1I
сраб.МТЗ.уст — ток, при котором начинается установившаяся (независимая) часть характеристики
ДЗШ0,5I
кз.макс – максимальный ток короткого замыкания в месте установки защиты
ДЗТКЗ внутри защищаемой зоны0,5I
внутр.КЗ – максимальный ток КЗ при повреждении внутри защищаемой зоны
К
пк.мин ≥ 25 (для Siemens типа 7UT82, 7UT85)
КЗ вне защищаемой зоны2I
внеш.КЗ – максимальный ток КЗ при повреждении вне защищаемой зоны (приведенный к стороне ВН)
ДЗЛ (функция 87L дифференциальной защиты линии)КЗ на защищаемой линии0,5I
внутр.КЗ – максимальный ток КЗ при повреждении на защищаемой линии
Для Siemens типа 7SD82
КЗ вне защищаемой линии1,2I
внеш.КЗ – максимальный ток КЗ при повреждении вне защищаемой линии

где:

  • МТЗ и ТО – максимальная токовая защита и токовая отсечка;
  • ДЗШ – дифференциальная защита шин;
  • ДЗТ – дифференциальная защита трансформатора;
  • ДЗЛ – дифференциальная защита линии

Как проверить трансформатор тока

Устройства, пропорционально преобразующие переменный ток из одной величины в другую на основе принципов электромагнитной индукции, называют трансформаторами тока (ТТ). Их широко используют в энергетике и изготавливают разными конструкциями от маленьких моделей, размещаемых на электронных платах до метровых сооружений, устанавливаемых на железобетонные опоры.
Цель проверки — выявление работоспособности ТТ без оценки метрологических характеристик, определяющих класс точности и углового сдвига фаз между первичным и вторичными векторами токов.

Возможные неисправности

. Трансформаторы выполняются автономными устройствами в изолированном корпусе с выводами для подключения к первичному оборудованию и вторичным устройствам. Ниже приведены основные причины неисправностей:

— повреждение изоляции корпуса; — повреждение магнитопровода; — повреждение обмоток: — обрывы; — ухудшение изоляции проводников, создающее межвитковые замыкания; — механические износы контактов и выводов.

Методы проверок

. Для оценки состояния ТТ проводится визуальный осмотр и электрические проверки.

Визуальный внешний осмотр

. Проводится в первую очередь и позволяет оценить:

— чистоту внешних поверхностей деталей; — появление сколов на изоляции; — состояние клеммников и болтовых соединений для подключения обмоток; — наличие внешних дефектов.

Проверка изоляции

. (эксплуатация ТТ с нарушенной изоляцией не допускается!).

Испытания изоляции

. На высоковольтном оборудовании трансформатор тока смонтирован в составе линии нагрузки, входит в нее конструктивно и подвергается совместным высоковольтным испытаниям отходящей линии специалистами службы изоляции. По результатам испытаний оборудование допускается в эксплуатацию.

Проверка состояния изоляции

. К эксплуатации допускаются собранные токовые цепи с величиной изоляции 1 мОм.

Для ее замера используется мегаомметр с выходным напряжением, соответствующим требованиям документации на ТТ. Большинство высоковольтных устройств необходимо проверять прибором с выходным напряжением в 1000 вольт.

Итак, мегаомметром измеряют сопротивление изоляции между:

— корпусом и всеми обмотками; — каждой обмоткой и всеми остальными.

Работоспособность трансформатора тока можно оценить прямыми и косвенными методами.

1. Прямой метод проверки

Это, пожалуй наиболее проверенный способ, который по другому называют проверкой схемы под нагрузкой.

Используется штатная цепь включения ТТ в цепи первичного и вторичного оборудования или собирается новая цепь проверки, при которой ток от (0,2 до 1,0) номинальной величины пропускается по первичной обмотке трансформатора и замеряется во вторичной.

Численное выражение первичного тока делится на замеренный ток во вторичной обмотке. Полученное выражение определяет коэффициент трансформации, сравнивается с паспортными данными, что позволяет судить об исправности оборудования.

ТТ может содержать несколько вторичных обмоток. Все они, до начала испытаний, должны надежно подключаться к нагрузке или закорачиваться. В разомкнутой вторичной обмотке (при токе в первичной) возникает высокое напряжение в несколько киловольт, опасное для человека и оборудования.

Магнитопроводы многих высоковольтных трансформаторов нуждаются в заземлении. Для этого в их клеммной коробке оборудуется специальный зажим с маркировкой буквой “З”.

На практике часто есть ограничения по проверке ТТ под нагрузкой, связанные с условиями эксплуатации и безопасности. Поэтому используются другие способы.

2. Косвенные методы

Каждый из способов предоставляет часть информации о состоянии ТТ. Поэтому следует применять их в комплексе.

Определение достоверности маркировки выводов обмоток

. Целостность обмоток и их вывода определяются “прозвонкой” (замером омических активных сопротивлений) с проверкой или нанесением маркировки. Выявление начал и концов обмоток осуществляется способом, позволяющим определить полярность.

Определение полярности выводов обмоток

. Вначале ко вторичной обмотке ТТ подсоединяется миллиамперметр или вольтметр магнитоэлектрической системы с определенной полярностью на выводах.

Допускается использовать прибор с нулем в начале шкалы, однако, рекомендкеься посередине. Все остальные вторичные обмотки из соображений безопасности шунтируются.

К первичной обмотке подключается источник постоянного тока с ограничивающим его ток разряда сопротивлением. Обыкновенной батарейки от карманного фонарика с лампочкой накаливания вполне достаточно. Вместо установки выключателя можно просто дотронуться проводом от лампочки до первичной обмотки ТТ и затем отвести его.

При включении выключателя в первичной обмотке формируется импульс тока соответствующей полярности. Действует закон самоиндукции. При совпадении направления навивки в обмотках стрелка движется вправо и возвращается назад. Если прибор подключен с обратной полярностью, то стрелка будет двигаться влево.

При отключении выключателя у однополярных обмоток стрелка двигается импульсом влево, а в противном случае – вправо.

Аналогичным способом проверяется полярность подключения других обмоток.

Снятие характеристики намагничивания

. Зависимость напряжения на контактах вторичных обмоток от проходящего по ним тока намагничивания называют вольтамперной характеристикой (ВАХ). Она свидетельствует о работе обмотки и магнитопровода ТТ, позволяет оценить их исправность.

С целью исключения влияния помех со стороны силового оборудования ВАХ снимают при разомкнутой цепи у первичной обмотки.

Для проверки характеристики требуется пропускать переменный ток различной величины через обмотку и замерять напряжение на ее входе. Это можно делать любым проверочным стендом с выходной мощностью, позволяющей нагружать обмотку до насыщения магнитопровода ТТ при котором кривая насыщения переходит в горизонтальное направление.

Данные замеров заносят в таблицу протокола. По ним методом аппроксимации вычерчивают графики.

Перед началом замеров и после них необходимо обязательно проводить размагничивание магнитопровода путем нескольких плавных увеличений токов в обмотке с последующим снижением до нуля.

Для замеров токов и напряжений следует пользоваться приборами электродинамической или электромагнитной систем, воспринимающих действующие значения тока и напряжения.

Появление в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. Поэтому, при первом использовании исправного трансформатора делают замеры и строят график, а при дальнейших проверках через определенное время контролируют состояние выходных параметров.

Источник

Пример проверки ТТ на 10% погрешность

Рассмотрим пример проверки трансформатора тока на 10% погрешность.

Дано:

Трансформатор тока с параметрами Sном = 10 ВА; Zтр = 0,3 Ом; Кпк.ном = 10; Iперв = 600 А; Iвтор = 5 А.

К трансформатору тока подключен терминал типа 7SJ80 в котором задействована максимальная токова защита и токовая отсечка. Уставка срабатывания токовой отсечки Iсраб.то = 3150 А. Схема соединения трансформаторов тока – полная звезда. Максимальное значение тока КЗ в месте установки защиты IКЗ.макс = 12,45 кА. Терминал релейной защиты устанавливается в релейном отсеке шкафа КРУ и соединятеся с трансформаторами тока медными проводами сечением 2,5 мм2.

Примеры интервалов для трансформаторов

Ниже приведена величина межповерочного интервала для различных моделей трансформаторов тока (указано в годах):

  • ТТИ-А – 5;
  • Т-0,66 – 8;
  • ТОП-0,66 – 8;
  • ТШП-0,66 – 16;
  • ТОЛ-10 – 8;
  • ТПЛ-10 – 8.

Различные изготовители могут устанавливать разные межповерочные интервалы для сходных моделей оборудования.

Необходимо учитывать, что трансформаторы, не прошедшие очередную поверку, не допускаются к эксплуатации. Поэтому владельцу необходимо следить за своевременной организацией и проведением данных работ.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]