Образование переменного электрического тока


Производство и передача переменного электрического тока

Переменным током называется ток, величина и направление которого периодически меняются. Именно благодаря переменному току в наших домах сегодня есть свет и тепло. Только благодаря переменному току работают все промышленные предприятия и производства нашего времени. Не будь переменного тока, технологический прогресс современной цивилизации был бы попросту невозможен.

Для получения переменного тока используются электромеханические устройства, называемые индукционными генераторами. В них получаемая тем или иным способом механическая энергия передается ротору, ротор вращается, в результате механическая энергия вращения ротора преобразуется в электрическую энергию посредством электромагнитной индукции.

Напомним, что если вращать магнит внутри проводящей рамки, то в рамке будет индуцироваться переменный ток. На этом принципе и работает генератор. Только в промышленном генераторе роль рамки играет статор, а роль магнита — ротор с намагничивающей обмоткой, по сути — вращающийся электромагнит.

В промышленном генераторе статор представляет собой огромную стальную конструкцию в виде кольца с пазами на его внутренней стороне. В эти пазы уложена медная трехфазная обмотка. Магнитное поле, как мы уже сказали, создается ротором, который представляет собой стальной сердечник с парой (или с несколькими парами, в зависимости от номинальной скорости вращения ротора) полюсов, формируемых током обмотки ротора. Постоянный ток подается к обмотке ротора от возбудителя.

По принципиальной схеме двухполюсного индукционного генератора переменного тока легко понять, что силовые линии магнитного поля ротора пересекают витки обмотки статора, при этом один раз за один оборот магнитный поток ротора изменяет свое направление по отношению к одним и тем же виткам статора.

Таким образом в обмотке статора получается именно переменный ток, а не пульсирующий постоянный. Если речь идет об атомной электростанции, то механическое вращение ротор генератора получает от пара, который под огромным давлением подается на лопасти турбины сопряженной с ротором. Пар на атомной электростанции получается из воды, которая разогревается теплом от ядерной реакции, подводимым к воде через теплообменник.

В России частота переменного тока в сети равна 50 Гц, это значит, что ротору двухполюсного генератора необходимо совершить 50 оборотов за секунду. Так, на атомной электростанции ротор совершает 3000 оборотов в минуту, что как раз и дает частоту генерируемого тока в 50 Гц. Направление генерируемого тока изменяется по синусоидальному (гармоническому) закону.

Обмотка генератора разделена на три части, поэтому переменный ток получается трехфазным. Это значит, что в каждой из трех частей обмотки статора получаемые ЭДС смещены по фазе относительно друг друга на 120 градусов. Действующее значение генерируемого на электростанции напряжения может быть от 6,3 до 36,75 кВ, в зависимости от вида генератора.

Чтобы передать электрическую энергию на большое расстояние, используются высоковольтные линии электропередач (ЛЭП). Но если электричество передавать без преобразования, при том же напряжении какое выходит с генератора, то потери энергии при передаче окажутся колоссальными, и до конечного потребителя практически ничего не дойдет.

Дело в том, что потери энергии в передающих проводах пропорциональны квадрату величины тока и прямо пропорциональны сопротивлению проводов (см. Закон Джоуля-Ленца). Значит для более эффективной передачи и распределения электроэнергии, напряжение необходимо сначала в несколько раз повысить, чтобы во столько же раз уменьшился ток и следовательно сильно сократились транспортные потери. И только повышенное напряжение имеет смысл передавать на ЛЭП.

Поэтому электричество от электростанции сначала подается на трансформаторную подстанцию. Здесь напряжение повышается до 110-750 кВ и только после — подается на провода ЛЭП. Но потребителю необходимо 220 или 380 вольт, поэтому в конце линии высокое напряжение обратно понижают, при помощи опять же трансформаторных подстанций, до 6-35 кВ.

На подстанции вблизи нашего дома или встроенной в дом, установлен трансформатор. Здесь напряжение снова понижается — от 6-35кВ до 220 (380) вольт, которые уже раздаются потребителям. Через вводно-распределительное устройство в разные помещения расходится сеть проводов и кабелей.

Получение переменного синусоидального тока

Метод получения переменного тока

Преимущество переменного тока перед постоянным током состоит в:

  1. Его достаточно легко перемещать на большие расстояния с минимальными потерями.
  2. Величину напряжения можно изменять с помощью трансформатора.
  3. Электродвигатели переменного тока простые в эксплуатации, конструкции и имеют небольшой вес.

Если рамку из медной проволоки поместить в электромагнитное поле и начать вращать, то на ее концах появится разность потенциалов. И если рамку замкнуть через нагрузку тогда потечёт электрический переменный синусоидальный ток. Величина и полярность переменного тока будет зависеть от положения рамки в электромагнитном поле, и при равномерном ее вращении получим переменный синусоидальный ток.


Вращение рамки в электромагнитном поле

В зависимости от частоты вращения рамки получим различную частоту переменного тока. Чтобы увеличить значение ЭДС добавляют число витков, и получается многовитковая катушка. Для генерации переменного тока применяют синхронные генераторы. Синхронный генератор переменного тока хорошо выдерживает большие токовые перегрузки, легко стабилизирует частоту переменного тока и э.д.с.

Электростанции работают на трехфазных генераторах, вырабатывающих трёхфазное напряжение. Такое напряжение считается экономически выгодным, а с технической стороны хорошим решением для работы электрических генераторов. Для генераторов, ротор которого имеет частоту вращения 3000 об/ мин с частотой 50 Гц необходимо всего два полюса, а при 1500 об/ мин генератор имеет четыре полюса.

Синхронный генератор содержит статор с обмотками, ротор с катушкой возбуждения и щётки. Щётки скользят по кольцам и, поэтому электромагнитное поле не меняет знак и направление. Есть возможность менять величину тока возбуждения и автоматически поддерживать режим работы синхронного генератора. Новые проститутки омска индивидуалки, девушки по вызову.


Устройство генератора

В промышленных объемах электроэнергию вырабатывают трехфазными синхронными генераторами. В частном случае используют однофазные и трехфазные генераторы. Для электроинструмента с большими пусковыми токами используют синхронные генераторы, которые хорошо выдерживают большие кратковременные токовые перегрузки. Для частных домов, где нет больших перегрузок, применяют асинхронные генераторы.

Катушки трехфазного генератора могут иметь два вида соединений, как и для трехфазной нагрузки-это соединения “звезда” и “треугольник”. В генераторах электрический ток получают в трех обмотках соединенных по схеме ”звезда”. Такой вид соединения более экономный, так как не имеет четвертого провода.

Из общей точки соединения обмоток, при одинаковых напряжениях и нагрузках на 3 фазах, провод не выводится. Так в симметричных сетях при одинаковых нагрузках общий провод не обязателен. В электрических низковольтных сетях, для однофазных нагрузок равномерная нагрузка невозможна, поэтому здесь используют четырех проводные сети с глухозаземленной нейтралью.

Напряжение между фазами называют линейным напряжением, а между фазой и центральным проводом – фазным напряжением. В электростанциях и подстанциях применяют схему соединения “звезда”. Для низковольтных сетей до 1000 В линейное напряжения (между фазами) составляет 380 В, а напряжение между фазой и нейтралью (фазное) 220 В.

Сети до 1000 В с использованием различных нагрузок в разных фазах могут иметь перекос фаз. По правилам ПУЭ сети до 1000 В должны быть четырех проводными с глухозаземленной нейтралью. Таким образом, на понижающей подстанции нулевой провод с вторичной обмотки трансформатора, соединяется с заземляющим устройством и четвертым проводом идет к потребителям.

Четырех проводная вторичная обмотка подстанции

Не всегда рационально использовать синхронные генераторы. Иногда возникает необходимость получить переменное напряжение из постоянного 12-220 В или 24-220 В. В этом случае используют электронные преобразователи. В дешёвых вариантах электронных преобразователей синусоида переменного тока нечистая. Поэтому они подходят для активной нагрузки (лампы накаливания, тэны, различные обогреватели). Для индуктивной нагрузки (электродвигатели) нужна чистая синусоида переменного напряжения. Такие электронные преобразователи значительно дороже.

Переменный электрический ток

Переменный ток – или AC (Alternating Current). Обозначение (

Электрический ток называется переменным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток, который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

i = Imsin(2πft)

График переменного тока

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.

Период переменного тока

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц ( Гц ):

1гц = 10 3 кгц = 10 6 мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ , то частота f = 1 Гц ( Герц ).

1c = 10 3 мс = 10 6 мкс = 10 12 нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле f = 1/Τ можно определить частоту переменного тока:

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω. Угловая скорость ω связана с частотой f следующим соотношением:

При частоте 50 Гц угловая скорость равна 314 рад/с ( 2 × 3,14 × 50 = 314 ).

Мгновенное значение ( i,u,e,p ) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение ( Im,Um,Em,Pm ).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R , создаёт тепловыделение равное данному переменному току, за тоже время t ( I,U,E,P ).

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью 0х и радиусом-вектором r . Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси 0х . От окружности (точка а ) по оси 0х отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.

Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β , пока радиус-вектор повернется на угол β = 360° , и получим точки аналогично точке с . Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока.

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

ЭДС в обмотке генератора

При равномерном вращении ротора в его обмотке (на рис. 12.2, а — в витке) наводится э. д. с., определяемая формулой

Подставляя выражение магнитной индукции, получим

При β = 90°, т. е. в положении проводника под серединой полюса, наводится наибольшая ЭДС.

Уравнение ЭДС можно записать так:

Учитывая формулу

, получим такую же зависимость э.д.с. от времени, как при вращении рамки (см. рис. 12.1), считая начальным положение витка (t=0), когда его плоскость совпадает с нейтралью:

Таким образом, и в данном случае э. д. с. является синусоидальной функцией времени (рис. 12.5). Такой же результат получается, если вращать полюса, а проводники оставить неподвижными.

В прямоугольной системе координат э. д. с. можно изобразить в функции угла β=ωt или в функции времени t. Зависимость e(ωt) и e(t) можно изобразить одной кривой, но при разных масштабах по оси абсцисс, отличающихся в ω раз.

Получение переменного электрического тока

Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.

Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.

Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.

Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.

Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.

Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.

Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.

Принцип действия генератора — получение переменной электродвижущей силы (напряжения)


Переменное синусоидальное напряжение

Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.

Обычно обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.

Получение трехфазного переменного напряжения и тока

Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.

Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока – ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Переменный электрический ток

Переменный электрический ток

(AC, аббревиатрура от англ. alternating current) — это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

. Для его описания используют следующие параметры (см. график):


Период (T)
— длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;

Частота (f)

— параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения — 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.

Амплитуда тока (Im)

— максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика — высота синусоиды;

Фаза

— состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

. Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.

Tweet

Получение однофазного переменного тока. Как известно, постоянный ток представляет собой установившееся поступательное движение свободных электронов. Переменный ток можно представить как колебательное движение электронов. Переменным током называют такой электрический ток, изменения которого по величине и направлению повторяются через равные промежутки времени. Образование переменного тока можно пояснить на следующем примере.

Рис. 1

В магнитном поле, образованном между северным и южным полюсами электромагнита, под действием посторонней силы вращается по окружности проводник (рис. 1). Пересечение проводника магнитными силовыми линиями вызывает появление в нем электродвижущей силы.

Передвигаясь в магнитном поле, проводник занимает различные положения, в которых меняется угол пересечения проводника магнитными силовыми линиями. В положениях 1 и 3 направления движения проводника и действия силовых линий совпадают. В этом случае величина электродвижущей силы будет равна нулю; проводник не пересекает магнитные силовые линии. Наибольшего значения она достигнет, если направление магнитных силовых линий составляет с направлением движения проводника прямой угол, т. е. в положениях 2 и 4. В промежуточных положениях э.д.с.. будет равняться каким-то величинам, промежуточным между нулем и максимальной величиной.

Изменение э. д. с. и переменного тока можно изобразить следующим образом. В положении 1, когда направление движения проводника совпадает с направлением силовых линий магнитного поля, величина тока равна нулю. По мере движения проводника к точке 2 ток достигает максимальной величины, после чего до точки 3 он постепенно уменьшается и в точке 3 достигает нуля. При движении проводника от точки 3 к точке 1 картина повторяется. Однако, пользуясь правилом правой руки, установим, что ток имеет направление, противоположное тому, которое он имел при движении проводника от точки 1 к точке 3.

Если величину тока при движении проводника от точки 1 до точки 3 обозначить отрезками, соответствующими значениям тока в различных точках и расположенными выше горизонтальной линии, а соответствующие значения тока при движении проводника от точки 3 к точке 1 — отрезками ниже горизонтальной линии (так как направление тока меняется) и соединить вершины отрезков плавной линией, получим синусоиду (рис. 2). Э.д.с. и ток, изменяющиеся согласно синусоиде, называют синусоидальными.

Рис. 2

Период и частота тока. При изменении переменного тока по синусоиде величина его возрастает от нуля до максимального значения, после чего опять уменьшается до нуля; затем меняет направление и проходит те же стадии. Время, в течение которого ток совершает полный цикл изменений по величине и направлению, называют периодом и измеряют в секундах. Число периодов в секунду называют частотой переменного тока, которую измеряют в герцах (гц).

Все электростанции России и большинство стран Европы вырабатывают переменный ток частотой 50 гц, в США — частотой 60 гц. Для питания электрических железных дорог в России используют постоянный ток, а во многих зарубежных странах — переменный различной частоты. В радиотехнике используют переменные токи самой высокой частоты — до нескольких миллиардов герц, в телефонной технике применяют ток частотой порядка сотен тысяч герц.

Сдвиг фаз. Если между полюсами магнита расположить не один, а два сдвинутых между собой проводника, при вращении этих проводников в них будут наводиться э.д.с. с одинаковыми амплитудами и частотами. Углы, под которыми проводники расположены относительно нейтральной линии, называют -начальными фазными углами, или начальными фазами. Разность начальных фаз синусоидальных величин с одинаковой частотой называют углом сдвига фаз, или просто сдвигом фаз. При одновременном достижении двумя синусоидами нулевых и положительных (или отрицательных) амплитудных значений они совпадают по фазе.

Цепь переменного тока с активным сопротивлением. В цепи переменного тока сопротивление проводника по сравнению с цепью постоянного тока возрастает. Это связано с тем, что у поверхности проводника плотность тока больше, чем в середине. Сопротивление проводников переменного тока называют активным. К активным сопротивлениям относятся электрические лампы накаливания, электронагревательные приборы, прямолинейные проводники небольшой длины. Единицей измерения сопротивления в цепях переменного тока, так же как и постоянного, служит ом.

В электрической цепи переменного тока, которая имеет только активное сопротивление, напряжение на концах сопротивления и ток, протекающий по цепи, совпадают по фазе.

Цепь переменного тока с индуктивностью. При протекании по проводнику электрического тока вокруг него возникает магнитное поле. Всякое изменение тока в электрической цепи (включение, выключение и т.д.) вызывает появление в цепи э.д.с. самоиндукции вследствие пересечения проводника своим же собственным магнитным полем. Следовательно, в цепи действуют напряжение источника тока и э.д.с., возникающая в результате самоиндукции.

Однако э.д.с. самоиндукции направлена так, что она всегда препятствует изменению тока. При увеличении тока в цепи она направлена против э.д.с. источника напряжения. Следовательно, ток в цепи не может установиться сразу. В случае уменьшения тока в цепи возникает э.д.с. самоиндукции такого направления, что, мешая току исчезнуть, она поддерживает убывающий ток.

Электрическая цепь, в которой возникает э.д. с. самоиндукции, оказывает сопротивление прохождению электрического тока. Сопротивление, возникающее в результате действия э.д.с. самоиндукции, называют индуктивным. Единицей его измерения служит ом. Учитывая, что э. д. с. самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, для его протекания напряжение сети должно уравновешивать э.д.с. самоиндукции, т. е. напряжение в сети в каждый момент должно быть равно и противоположно направлению э. д. с. самоиндукции.

Напряжение, приложенное к зажимам цепи, опережает ток по фазе на 90°, а ток в свою очередь опережает э.д.с. самоиндукции также на угол 90°.

Электрическая цепь переменного тока с активным и индуктивным сопротивлениями. На практике не существует отдельно индуктивного сопротивления: всякая обмотка, кроме индуктивности, обладает также активным сопротивлением. Сумму индуктивного и активного сопротивлений, соединенных последовательно, называют полным сопротивлением.

Электрическая цепь переменного тока с конденсатором. При включении в электрическую цепь постоянного тока конденсатора он зарядится током, протекающим по цени. После того как конденсатор зарядится, кратковременный ток в цепи прекратится: для постоянного тока конденсатор представляет бесконечно большое сопротивление.

При отключении конденсатора от источника тока он остается заряженным. Путем соединения пластины конденсатора проводником можно разрядить конденсатор, причем в цепи потечет ток, направление которого противоположно направлению тока при зарядке.

При включении конденсатора в цепь переменного тока конденсатор будет попеременно заряжаться то в одном, то в другом направлении. В цепи будет проходить переменный ток. В первую четверть периода цель с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора. В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную энергию. Следовательно, в цени с емкостью происходит только обмен энергией между сетью и конденсатором без ее потерь.

Емкость и индуктивность электрической цепи проявляют противоположные свойства в цепи переменного тока, взаимно компенсируя друг друга в той или другой степени.

Электрическая цепь с последовательным соединением активного сопротивления, индуктивности и конденсатора. Активное, индуктивное сопротивление и сопротивление конденсатора называют полным или кажущимся сопротивлением цепи. Явление, при котором э.д.с. самоиндукции полностью компенсируется разностью потенциалов, возникающей на пластинах конденсатора, называют резонансом напряжений. Резонанс напряжений характеризуется обменом энергии между магнитным полем индуктивной катушки и электрическим полем конденсатора. При резонансе напряжений частичные напряжения на конденсаторе и индуктивном сопротивлении могут значительно превышать напряжение, приложенное к цепи, а ток при малом активном сопротивлении достигать большой величины. В технике сильных токов резонанс напряжений может быть причиной нарушения режима нормальной работы электрической цепи.

Электрическая цепь с параллельным соединением активного сопротивления, индуктивности и конденсатора. При параллельном соединении индуктивности и емкости наблюдается резонанс токов. Резонанс токов — явление, при котором сдвиг фаз между током и напряжением уменьшается до нуля.

При резонансе токов наблюдается колебание энергии между магнитным нолем индуктивной катушки и электрическим полем емкости. В конденсаторе энергия накапливается при увеличении приложенного напряжения и возвращается обратно при его уменьшении. Катушка же потребляет энергию для создания магнитного поля, а при уменьшении тока и исчезновении магнитного поля возвращает ее обратно.

Мощность переменного тока. Мощность, потребляемая в любой момент электрической цепью, содержащей активное сопротивление и индуктивность, называют мгновенной. Она состоит из мощности, расходуемой в активном сопротивлении, и мощности, потребляемой индуктивностью при возрастании тока и возвращаемой обратно в цепь при убывании тока. В электрических расчетах в основном применяют активную мощность, которая представляет произведение действующих значений тока и напряжения на «косинус фи» (cos φ). Активную мощность измеряют, как и в цепях постоянного тока, в ваттах или киловаттах.

Активная мощность расходуется на совершение полезной работы и измеряют ее ваттметром. Кроме активной мощности в цепях переменного тока имеется реактивная мощность, которая расходуется при нарастании тока на создание магнитных полей в индуктивной части цепи. При уменьшении тока цепь становится своего рода генератором, т. е. энергия, запасенная в ней, возвращается к генератору, питающему эту цепь. Такое перераспределение энергии от генератора к цепи и обратно бесполезно загружает линию и обмотку генератора, создавая лишние потере энергии.

Реактивную мощность измеряют в ватт-амперах реактивных (вар) или киловольт-амперах реактивных (квар).

Наряду с указанными мощностями имеется также полная или кажущаяся мощность, являющаяся произведением действующих значений напряжения и тока.

Коэффициентом мощности — «косинус фи» (cos φ) в цепи переменного тока называют отношение активной мощности к полной мощности. Коэффициент мощности для синусоидального переменного тока является косинусом сдвига фаз между током и напряжением. Когда в цепи существует только активная нагрузка, т. е. вся мощность является активной, коэффициент мощности достигает своей максимальной величины и равняется единице.

Реактивная мощность потребляется нагрузкой, но если не принять специальных мер, она загрузит в ущерб активной мощности электрическую линию, соединяющую нагрузку с источникам энергии. Поэтому всегда принимают меры, чтобы разгрузить источник энергии от реактивной мощности. По линии к потребителю должна поступать реактивная мощность только минимально необходимой величины.

«Косинус фи» измеряется особым прибором, называемым фазометром.

В практике эксплуатации электрических сетей необходимо стремиться получать больший «косинус фи»; чем меньший cos φ имеет потребитель, тем меньшую активную мощность будет отдавать генератор, тем менее он будет загружен по активной мощности и тем меньше будет к. п. д. машины. Низкий «косинус фи» приводит к необходимости увеличения полной мощности электрических станций и трансформаторов, понижению к. п. д. трансформаторов и генераторов, увеличению потерь мощности и напряжения в проводах и увеличению сечения проводов.

В связи с этим приходится учитывать не только активную энергию, забираемую потребителем от электростанции, а также и реактивную энергию. Поэтому потребитель, имеющий реактивную нагружу, обязан установить электросчетчики активной и реактивной нагрузки.

Низкий «косинус фи» может быть получен из-за недогрузки электродвигателей переменного тока, неправильного выбора типа электродвигателя, повышения напряжения в сети.

Увеличить «косинус фи» можно за счет правильного выбора типа, мощности и скорости вновь устанавливаемых двигателей, увеличения загрузки двигателей, недопущения работы двигателей вхолостую продолжительное время, качественного ремонта электродвигателей, применения неподвижных конденсаторов.

Небольшой вес конденсаторов, отсутствие вращающихся частей, незначительные потери в них, безопасность и надежность в работе, несложное обслуживание позволили широко применять их для повышения «косинуса фи». Конденсатор следует подбирать таким образом, чтобы его емкостное сопротивление было близко по величине индуктивному. Конденсатор подключается параллельно к нагрузке с индуктивностью.

Поделись статьёй с друзьями! Пусть и другие узнают о нас!

Нравится

Электрический ток

Современная жизнь немыслима без радио и телевидения, телефона и интернета, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе действия которых лежит использование электрического тока.

Диэлектрики и проводники.

Постоянный и переменный электрический ток.

Электрическим током называется направленное движение электрически заряженных частиц. В зависимости от взаимодействия электрического тока с теми или иными веществами эти вещества делят на проводники, диэлектрики и полупроводники. Проводниками называют материалы, хорошо проводящие электрический ток, диэлектриками — вещества, не проводящие тока. Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему сопротивлению прохождению электрического тока.

Для возникновения и существования электрического тока необходимо наличие свободных заряженных частиц и силы, вызывающей их упорядоченное движение. Обычно источником такой силы является электрическое напряжение на концах электрической цепи. Если напряжение не меняется во времени, то в цепи протекает постоянный ток, если меняется — переменный ток.

Переменный ток

Электрический ток, величина и направление которого изменяются через равные промежутки времени, называют переменным. Такой ток условно обозначают знаком
Переменный ток в отличие от постоянного, который все время имеет одно направление и не меняет своей величины, изменяется по синусоидальному закону

Получение однофазного переменного тока. Такой ток получают от генераторов переменного тока. Схема простейшего генератора переменного тока показана на рисунке ниже:

Между полюсами N и S электромагнита вращается стальной цилиндр А, на котором укреплена рамка, изготовленная из медного изолированного провода. Концы рамки присоединены к медным кольцам, изолированным от вала. К кольцам прижаты неподвижные щетки Щ, которые соединены проводами с приемником энергии R. Вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон индуктируются электродвижущие силы, которые, суммируясь, образуют общую электродвижущую силу. При каждом обороте рамки направление общей электродвижущей силы изменяется на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами электромагнита. Индуктируемая в рамке электродвижущая сила также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Следовательно, при равномерном вращении рамки в ней будет индуктироваться электродвижущая сила, периодически изменяющаяся по величине и направлению.

Если неподвижные щетки Щ, соединенные проводами с приемником энергии R, образуют замкнутую электрическую цепь, то от источника энергии к приемнику будет протекать переменный однофазный ток.

Время, в течение которого переменный ток совершает полный цикл изменений по величине и направлению, называется периодом. Он обозначается буквой Т и измеряется в секундах. Число периодов в секунду называется частотой переменного тока. Она обозначается буквой f и измеряется в герцах.

Так как частота показывает число полных циклов изменения тока по величине и направлению за одну секунду, то период определяется как частное от деления одной секунды на частоту:

В технике применяют переменные токи различных частот. В России все электростанции вырабатывают электроэнергию переменного тока стандартной частоты — 50 гц. Этот ток называют током промышленной частоты и используют для снабжения электроэнергией промышленных предприятий и для освещения.

Получение трехфазного переменного тока. В технике широкое применение находит трехфазный переменный ток. Трехфазным током называют систему, состоящую из трех однофазных токов одинаковой частоты, сдвинутых по фазе на одну треть периода друг относительного друга и протекающих по трем проводам. Трехфазный ток получают в трехфазном генераторе, создающем три электродвижущие силы, сдвинутые по фазе на угол 120° (одну треть периода).

Простейший генератор трехфазного тока представляет собой кольцеобразный стальной сердечник, на котором расположены три обмотки: ω1, ω2 и ω3, сдвинутые одна относительно другой по окружности сердечника на 120°. Сердечник с обмотками называют статором генератора, а вращающийся внутри статора электромагнит — ротором. По обмотке ротора, называемой обмоткой возбуждения, проходит постоянный ток, который намагничивает ротор, образуя северный N и южный S полюсы. При вращении ротора созданное им магнитное поле пересекает обмотки статора, в которых индуктируется электродвижущая сила. Величина электродвижущей силы зависит от скорости, с которой магнитные силовые линии ротора пересекают магнитное поле статора. Полюсы ротора и обмотки статора должны быть такими, чтобы в каждой из обмоток статора возникала синусоидальная электродвижущая сила, сдвинутая по фазе на 120°.

Если к каждой из трех обмоток генератора подключить нагрузку, то в результате получатся три цепи однофазного переменного тока. При равенстве сопротивлений потребителей амплитуды токов в каждой цепи будут равны между собой, а фазовые соотношения между токами будут такими же, как и между электродвижущими силами в обмотках генератора. Каждую из обмоток генератора вместе с внешней цепью, присоединенной к ней, принято называть фазой. Чтобы из этих независимых однофазных систем образовать единую трехфазную систему, необходимо соединить отдельные обмотки. Обмотки генератора могут соединяться двумя способами: звездой и треугольником.

При соединении звездой обмоток генератора и потребителей (рис. 58) используются четыре провода вместо шести, необходимых в несвязанной системе. Сокращение количества проводов увеличивает экономичность устройства линии передачи энергии. Три провода, идущие от обмоток генератора к приемникам /, //, III, называют линейными, так как они составляют линию для передачи энергии от генератора к приемникам, а провод, соединяющий общие точки фаз генератора и потребителя — нулевым. Если нагрузки всех трех фаз одинаковы по величине, то суммарный ток в нулевом проводе будет равен нулю. Однако равномерную нагрузку можно обеспечить только при питании трехфазных потребителей, подключаемых и отключаемых всеми тремя фазами одновременно. Однофазные потребители включаются независимо один от другого, и при питании их не может быть достигнута полная равномерность нагрузки фаз. В этом случае нулевой провод должен поддерживать равенство разных напряжений потребителя

Напряжение между линейными проводами называют линейным, а напряжение, а каждой фазе — фазным. При соединении звездой линейный ток равен фазному, а фазное напряжение меньше линейного в 1,73 раза при одинаковой нагрузке фаз.

Однофазовые приемники, например лампы накаливания, можно подключать непосредственно к линейным проводам на линейное напряжение (рис. 59). Подобное соединение носит название соединения треугольником. Это соединение применяется для осветительной и силовой нагрузок. Фазы трехфазного генератора соединяют следующим образом: конец первой фазы с началом второй, конец второй с началом третьей и конец третьей с началом первой, а к точкам соединения фаз подключают линейные провода. Поскольку фазы потребителя или генератора при таком соединении подключаются непосредственно к линейным проводам, фазные напряжения их равны линейным, т. е. Uф=Uл, а линейные токи по абсолютной величине больше фазных в 1,73 раза при одинаковой нагрузке фаз. Соединение треугольником обмоток генераторов встречается довольно редко. В двигателях трехфазного тока концы обмоток можно соединить звездой или треугольником.

Мощность переменного тока. Основной величиной при электрических расчетах является средняя, или активная, мощность. Ее подсчитывают по формуле:

φ-угол сдвига фаз между током и напряжением.

При равномерной нагрузке трехфазной системы мощность, потребляемая каждой фазой, одинакова, поэтому мощность всех трех фаз

Активную мощность трехфазного переменного тока при соединении звездой и треугольником определяют по формуле

Понятие о cos φ и меры его увеличения. Кроме активной, в электрической цепи существует реактивная мощность. Активная и реактивная мощности составляют полную мощность S. Активная мощность Рарасходуется в цепи при выделении тепла или совершении полезной работы, а реактивная Рр— при нарастании тока на создание магнитных полей в индуктивной части цепи. При уменьшении тока цепь становится как бы генератором и энергия, запасенная в ней, передается генератору, питающему эту цепь. Такое передвижение энергии от генератора в цепь и обратно загружает линию и обмотку генератора, обусловливая лишние потери энергии в них. Отношение активной мощности к полной называют коэффициентом мощности. Он показывает, какая часть полной мощности фактически потребляется цепью, и подсчитывается по формуле

Таким образом, коэффициент мощности для синусоидального переменного тока и есть косинус угла сдвига фаз между током и напряжением.

Уличение cos φ зависит от типа, мощности и числа оборотов вновь устанавливаемых двигателей, увеличения их загрузки и т. д.

Понятие о тепловом действии тока. При прохождении тока по проводнику последний нагревается. Русский академик Э. X. Ленц и английский физик Д. П. Джоуль одновременно и независимо один от другого установили, что при прохождении электрического тока по проводнику количество теплоты, выделямое проводником, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого ток протекал по проводнику. Это положение называется законом Джоуля — Ленца и определяется по формуле:

где Q — количество теплоты, кал;

I— ток, протекающий по проводнику, а;

R — сопротивление проводника, ом;

Для предохранения электротехнических устройств от чрезмерных нагревов в электрическую цепь включают легкоплавкие предохранители, а для защиты электрических двигателей при токовых перегрузках, применяют тепловое максимальное реле.

Электрический ток.

Электрический ток

— направленное (упорядоченное) движение заряженных частиц. Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.

Различают переменный

(англ. alternating current, AC),
постоянный
(англ. direct current, DC) и
пульсирующий
электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток

— ток, направление и величина которого слабо меняются во времени.

Переменный ток

— ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток

— «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты

— ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток

— ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко)

— «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики:

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Основные типы проводников:

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы

— здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма

— ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты

— «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

§46. Получение переменного тока

В промышленности в основном применяют синусоидальный переменный ток, который в отличие от постоянного каждое мгновение изменяет свое значение и периодически направление. Для получения такого тока используют источники электрической энергии, создающие переменную э. д. с, периодически изменяющуюся по величине и направлению; такие источники называются генераторами переменного тока.

Принцип получения переменного тока. Простейшим генератором переменного тока может служить виток, вращающийся в равномерном магнитном поле (рис. 168, а). Пользуясь правилом правой руки, легко определить, что в процессе вращения витка направление э. д.с. е, индуцированной в рабочих участках 1 и 2 витка, непрерывно изменяется (показано стрелками), следовательно, изменяется и направление проходящего по замкнутой цепи тока i.

По закону электромагнитной индукции э. д. с, индуцируемая в витке при вращении его с окружной скоростью ? в магнитном поле с индукцией В,

e = 2lB? sin?,

где

2l — длина двух рабочих частей витка, находящихся в магнитном поле;

? — угол между направлением силовых магнитных линий и направлением движения витка в рассматриваемый момент времени (направлением вектора скорости ?).

При вращении витка с угловой скоростью ? угол ? = ?t, следовательно,

e = 2lBv sin ?t.

Переменный угол ? t называется фазой э. д. с. Величина 2lB ? представляет собой максимальное значение э. д. с. е, которое она принимает при ?t = 90° (когда плоскость витка перпендикулярна силовым магнитным линиям). Обозначив его Eт получим:

е = Ет sin ?t.

Полученная зависимость изменения э. д. с. е от угла ?t или от времени t графически изображается синусоидой (рис. 168,б). Э. д. с, токи и напряжения, изменяющие свои значения и направления по закону синусоиды, называются синусоидальными. Ось, по которой откладывают углы ? t, можно рассматривать как ось времени t.

Рассмотрим несколько отдельных положений витка. В момент времени, соответствующий углу ?t1 (см. рис. 168, а), когда виток находится в горизонтальном положении, его рабочие участки как бы скользят вдоль силовых магнитных линий, не пересекая их; поэтому в этот момент э. д. с. в них не индуцируется (точка 1 на рис. 168,б). При дальнейшем повороте витка стороны его начнут пересекать магнитные силовые линии. По мере увеличения угла поворота увеличивается и число силовых линий, пересекаемых сторонами витка в единицу времени, и соответственно возрастает индуцированная в витке э. д. с е.

В момент времени, соответствующий углу ?t2, виток пересекает наибольшее число силовых магнитных линий, так как его рабочие участки 1 и 2 движутся перпендикулярно силовым линиям магнитного поля; в этот момент э. д. с. е достигает своего максимального значения Ет (точка 2 на графике). При дальнейшем вращении витка число пересекаемых силовых линий уменьшается и соответственно уменьшается индуцированная в витке э. д. с. В момент времени, соответствующий углу рабочие участки витка опять как бы скользят вдоль магнитных силовых линий, в результате чего э. д. с. е будет равна нулю (точка 3). Затем рабочие участки 1 и 2 витка вновь начинают пересекать магнитные силовые линии, но уже в другом направлении, поэтому в витке появляется э. д. с. противоположного направления. В момент времени, соответствующий углу ?t4. при вертикальном расположении витка э. д. с. в достигает максимального значения — Ет (точка 4), затем она уменьшается, и в момент времени, соответствующий ?t5, снова становится равной нулю (точка 5). При дальнейшем движении витка с каждым


Рис. 168. Индуцирование синусоидальной э. д. с. (а) и кривая ее изменения (б)

новым оборотом описанный выше процесс индуцирования э. д. с. будет повторяться.

В современных генераторах переменного тока магниты или электромагниты, создающие магнитное поле, обычно располагаются на вращающейся части машины — роторе, а витки, в которых индуцируется переменная э. д. с,— на неподвижной части генератора — статоре. Однако с точки зрения принципа действия генератора переменного тока безразлично, на какой части машины — роторе или статоре — расположены витки, в которых индуцируется переменная э. д. с.

Работа приемников электрической энергии при переменном токе. Если подключить к генератору переменного тока электрическую лампу (см. рис. 168, а), то нить ее будет периодически накаляться и остывать. Однако если частота изменений переменного тока достаточно велика, то нить лампы не будет успевать охлаждаться и глаз человека не будет улавливать изменений ее накала. Такие же условия имеют место и при работе электродвигателей переменного тока; такой двигатель при работе получает от источника импульсы переменного тока, следующие один за другим с большой частотой, и его ротор будет вращаться с постоянной частотой.

Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

где n – это количество витков обмоток

а соотношение dФB/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.


Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.


Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.


Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.


Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.


Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Источник

Получение однофазного переменного тока.

Такой ток получают от генераторов переменного тока. Схема простейшего генератора переменного тока показана на рисунке ниже:

Между полюсами N

и
S
электромагнита вращается стальной цилиндр
А,
на котором укреплена рамка, изготовленная из медного изолированного провода. Концы рамки присоединены к медным кольцам, изолированным от вала. К кольцам прижаты неподвижные щетки
Щ,
которые соединены проводами с приемником энергии
R.
Вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон индуктируются электродвижущие силы, которые, суммируясь, образуют общую электродвижущую силу. При каждом обороте рамки направление общей электродвижущей силы изменяется на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами электромагнита. Индуктируемая в рамке электродвижущая сила также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Следовательно, при равномерном вращении рамки в ней будет индуктироваться электродвижущая сила, периодически изменяющаяся по величине и направлению.

Если неподвижные щетки Щ,

соединенные проводами с приемником энергии
R,
образуют замкнутую электрическую цепь, то от источника энергии к приемнику будет протекать переменный однофазный ток.

Время, в течение которого переменный ток совершает полный цикл изменений по величине и направлению, называется периодом.Он обозначается буквой Т

и измеряется в секундах. Число периодов в секунду называется
частотойпеременного тока. Она обозначается буквой f
и измеряется в герцах.

Так как частота показывает число полных циклов изменения тока по величине и направлению за одну секунду, то период определяется как частное от деления одной секунды на частоту:

Т=1/f,

откуда

f=1/T.

В технике применяют переменные токи различных частот. В России все электростанции вырабатывают электроэнергию переменного тока стандартной частоты — 50 гц.

Этот ток называют током промышленной частоты и используют для снабжения электроэнергией промышленных предприятий и для освещения.

Переменный ток характеризуется амплитудой, периодом, частотой и фазой. Амплитудой называется наибольшее значение, положительное или отрицательное, принимаемое переменным током. Периодом называется время, в течение которого происходит полное колебание тока в проводнике. Частота — величина, обратная периоду. Фаза характеризует состояние переменного тока с течением времени. При t = 0 фаза называется начальной. Мгновенное значение тока — значение переменного тока в данный момент времени. Переменный ток получил гораздо большее распространение в промышленности и быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности, чем генераторы постоянного тока. К периодическому режиму переменного тока может быть отнесён и синусоидальный. График синусоидальной функции называется волновой диаграммой. Тепловое действие тока, а также сила взаимодействия двух проводников, по которым проходит один и тот же ток, пропорциональны друг другу. Поэтому о величине тока судят по так называемому действующему (среднеквадратичному) значению тока. Действующее значение переменного тока равно по величине такому постоянному току, который, проходя через неизменное сопротивление R за период Т, выделяет то же количество тела, что и переменный ток. Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующее значение.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]