Триггеры. Симметричный триггер на биполярных транзисторах. RS-триггеры на логических элементах


Принцип работы электронного триггера.

Слово триггер(trigger), по английски означает — спусковой крючок. Функция триггера — мгновенное переключение из одного устойчивого состояние в другое, под действием внешнего, управляющего фактора. Существуют пневматические, механические и релейные схемы триггеров. Но электронные схемы, по надежности и самое главное — быстродействию, безусловно,вне конкуренции. Электронная схема триггера состоит из двух усилительных каскадов и по своей сути, является одной из разновидностий мультивибратора.

Выход каждого из каскадов подключен к входу другого, но не через конденсаторы, как в обычном симметричном мультивибраторе а через резисторы. Номиналы этих резисторов подобраны так, что каскад с полностью открытым транзистором, уверенно запирает транзистор другого каскада. Если подать на триггер питающее напряжение, то оба каскада начинают «бороться» между собой, пытаясь закрыть друг-друга.

Как бы не были транзисторы близки по характеристикам, один из них(присвоим ему номер1) обязательно окажется «сильнее» и закроет другой (для удобства обозначим его как номер 2) Все происходит очень быстро, выглядит так, что транзистор 1 мгновенно оказывается открытым, а другой (2) закрытым. В таком состоянии триггер может находиться очень долго. Можно назвать его — 1-м устойчивым состоянием.

Если подать на вход закрытого каскада(2) имульс напряжения, достаточный, что бы его открыть на короткое время, то открывшись он «запрет» каскад 1, пребывающий до этого момента в открытом состоянии. Закрывшись, каскад 1 перестает запирать каскад 2, и тот так и останется открытым. Таким образом, каскады поменяются местами, триггер окажется во 2-м устойчивом состоянии.

В таком состоянии он может находиться очень долго, если не подать открывающий импульс, на закрытый каскад 1. Каскад 1 открываясь, запрет каскад 2 и триггер вернется в первоначальное состояние(1). Получается, что наш триггер имеет два устойчивых состояния и два управляющих входа, подав на которые импульсы достаточной амплитуды, можно эти состояния менять.

Краткие теоретические сведения

Триггеры предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений).

Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

RS-триггер

Основным триггером, на котором базируются все остальные триггеры является RS-триггер. RS-триггер имеет два логических входа:

  • R – установка 0 (от слова reset);
  • S – установка 1 (от слова set).

RS-триггер имеет два выхода:

  • Q – прямой;
  • Q- обратный (инверсный).

Состояние триггера определяется состоянием прямого выхода. Простейший RS-триггер состоит из двух логических элементов, охваченных перекрёстной положительной обратной связью.

Рассмотрим работу триггера:

Пусть R=0, S=1. Нижний логический элемент выполняет логическую функцию ИЛИ-НЕ, т.е. 1 на любом его входе приводит к тому, что на его выходе будет логический ноль Q=0. На выходе Q будет 1 (Q=1), т.к. на оба входа верхнего элемента поданы нули (один ноль – со входа R, другой – с выхода ). Триггер находится в единичном состоянии. Если теперь убрать сигнал установки (R=0, S=0), на выходе ситуация не изменится, т.к. несмотря на то, что на нижний вход нижнего логического элемента будет поступать 0, на его верхний вход поступает 1 с выхода верхнего логического элемента.

Будет интересно➡ Как устроен трехфазный выпрямитель

Триггер будет находиться в единичном состоянии, пока на вход R не поступит сигнал сброса. Пусть теперь R=1, S=0. Тогда Q=0, а =1. Триггер переключился в “0”. Если после этого убрать сигнал сброса (R=0, S=0), то все равно триггер не изменит своего состояния. Для описания работы триггера используют таблицу состояний (переходов). Обозначим:

  • Q(t) – состояние триггера до поступления управляющих сигналов (изменения на входах R и S);
  • Q(t+1) – состояние триггера после изменения на входах R и S.

Таблица переходов RS триггера в базисе ИЛИ-НЕ

RSQ(t)Q(t+1)Пояснения
Режим хранения информации R=S=0
11
11Режим установки единицы S=1
111
1Режим установки нуля R=1
11
11*R=S=1 запрещённая комбинация
111*

RS-триггер можно построить и на элементах “И-НЕ” (рисунок 2.2).

Входы R и S инверсные (активный уровень “0”). Переход (переключение) этого триггера из одного состояния в другое происходит при установке на одном из входов “0”. Комбинация R=S=0 является запрещённой.

Таблица переходов RS триггера в базисе “2И-НЕ”

RSQ(t)Q(t+1)Пояснения
*R=S=0 запрещённая комбинация
1*
1Режим установки нуля R=0
11
11Режим установки единицы S=0
111
11Режим хранения информации R=S=1
1111

Синхронный RS-триггер

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как при изменении входных сигналов может возникать переходный процесс (в цифровых схемах этот процесс называется “опасные гонки”), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены, и сигнал на выходе комбинационной схемы соответствует выполняемой ею функции. Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала).

Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Принципиальная схема синхронного RS триггера приведена.

Таблица переходов синхронного RS-триггера

RSCQ(t)Q(t+1)Пояснения
1Режим хранения информации R = S = 0
111
111Режим установки единицы S =1
1111
11Режим установки нуля R=1
111
111*R = S = 1 запрещённая комбинация
1111*

В таблице 2.3. под сигналом С подразумевается синхроимпульс. Без синхроимпульса синхронный RS триггер сохраняет своё состояние.

D — триггеры.

Для использования триггеров в реальных счетных устройствах, необходимо иметь возможность дополнительного управления их состояниями — предустановки, обнуления, активации с помощью счетного тактового импульса. Что бы осуществить эту операцию в схему счетного триггера добавляется еще три входа. PRESET(PR) — восстанавливает на выходе триггера состояние 1, а СLEAR(CL) — состояние 0. С помощью тактового входа Т осуществляется общая синхронизация триггера, относительно других элементов схемы счетного устройства. Импульс поступающий на счетный вход D меняет состояние триггера, только при наличии 1 на тактовом входе.

Логические вентили(логические элементы).

Процессы, необходимые для функционирования любых технологических устройств ( в т. ч. и ПК) можно реализовать с помощью ограниченного набора логических элементов.

Буфер.

Буфер, представляет из себя усилитель тока, служащий для согласования различных логических вентилей, в особенности имеющих в своей основе разную элементную базу (ттл или КМОП).

Инвертор.

Элемент, служащий для инвертирования поступающих сигналов — логическая еденица превращается в ноль, и наоборот.

Логическая схема И.

И — элемент логического умножения. Еденица (высокий уровень напряжения) на выходе, появляется только в случае присутствия едениц, на обоих входах, одновременно.

Пример применения элемента И в реальном техническом устройстве: По тех. заданию, механический пресс должен срабатывать, только при одновременном нажатии двух кнопок, разнесенных на некоторое расстояние. Смысл тех. задания заключается в том, что бы обе руки оператора были заняты на момент хода пресса, что исключило бы возможность случайного травмирования конечности. Это может быть реализовано как раз, с помощью логического элемента И.

Логическая схема И — НЕ.

И-НЕ — наиболее часто используемый элемент. Он состоит из логических вентилей И и НЕ, подключенных последовательно.

Логическая схема ИЛИ.

ИЛИ — схема логического сложения. Логическая еденица на выходе, появляется в случае присутствия высокого уровня(еденицы) на любом из входов.

Логическая схема ИЛИ — НЕ.

ИЛИ — НЕ состоит из логических элементов ИЛИ и НЕ, подключеных последовательно. Соответственно, НЕ инвертирует значения на выходе ИЛИ.

Логическая схема исключающее ИЛИ.

Этот вентиль выдает на выходе логическую еденицу, если на одном из входов — еденица, а на другом, ноль. Если на входах присутствуют одинаковые значения — на выходе ноль.

Устройство триггера

Триггер по своей схемотехнике очень похож на простейшее электронное устройство — мультивибратор. Но в отличие от него, он имеет два устойчивых положения. Эти состояния обеспечиваются изменениями входного сигнала при достижении им определённого значения. Переход из одного положения в другое называют перебросом. В результате на выходе логического элемента возникает скачок напряжения, форма которого зависит от скорости процессов, проходящих в радиоприборах.

Наибольшее применение получил триггер, работающий на транзисторах. Связанно это со способностью последних работать в ключевом режиме. Биполярный транзистор — это полупроводниковый прибор, имеющий три вывода. Эти электроды называются:

  • эмиттер;
  • база;
  • коллектор.

В грубом приближении транзистор представляет собой два диода, объединённых электрической связью. Состоит он из двух p-n переходов. Название биполярный элемент получил из-за того, что одновременно в нём используются два типа носителей заряда. В триггерных схемах транзистор работает в режиме ключа, суть которого заключается в управлении силой тока коллектора путём изменения значения на базе. При этом коллекторный ток по своей величине превышает базовый.

При таком включении важны лишь токи, а напряжения особой роли не играют. Поэтому при возникновении определённого тока на базе транзистор открывается и пропускает через себя сигнал. Сигнал на коллекторе полупроводникового прибора будет обратным по входному знаку, то есть инвертированным. А значит, когда на базовом выходе будет присутствовать разность потенциалов, на коллекторном она будет равна нулю, и наоборот.

Эта способность транзисторов и используется в триггерах, схема которых построена на двух ключах с перекрёстными обратными связями. Когда используются транзисторные ключи с одинаковой обвязкой, то триггер считается симметричным, в другом же случае — несимметричным.

Принцип работы

Устойчивые состояния выхода триггера обеспечиваются двумя транзисторными ключами, охваченными положительной обратной связью (ПОС). Такие положения соответствуют состоянию, когда один из транзисторов открыт и находится в режиме насыщения, а второй ключ закрыт. При этом на коллекторе закрытого элемента присутствует разность потенциалов, равная его значению на входе — логическая единица, а на выводе открытого ключа напряжение отсутствует — логический ноль.

Биполярные компоненты при таком включении относительно друг друга всегда будут находиться в противоположном состоянии из-за обратной связи. Через неё один из транзисторов (закрытый) с высоким уровнем напряжения на своём коллекторном выводе обязательно будет поддерживать другой в открытом состоянии.

Вам это будет интересно Источники бесперебойного питания (ИБП) для компьютеров

Если предположить, что после подачи питания на устройство оба транзистора VT1 и VT2 окажутся открытыми, то через время из-за отличия характеристик радиоэлементов, стоящих в их плечах, возникнет перекос в коллекторных токах. А это благодаря ПОС приведёт к закрытию одного из ключей. То есть обратная связь спровоцирует лавинообразный процесс перехода одного транзистора в режим насыщения, а другого в режим отсечки.

Делители, собранные на резисторах R1, R4 и R2, R3, подбираются так, чтобы их коэффициент передачи был меньше единицы. Причём для поддержания уровня сигнала они шунтируются ёмкостью, ускоряющей скорость прохождения лавинообразных процессов и повышающей надёжность состояния.

Таким образом, принцип работы триггера заключается в прохождении следующих процессов. Если на схему подаётся напряжение Ek и Eb, то биполярный ключ VT1 начинает работать в режиме насыщения, а VT2 — отсечки. Импульс, пришедший на базу VT1, приводит к уменьшению величины тока, протекающего через коллектор и увеличению напряжения на переходе коллектор-эмиттер U1ke. Напряжение через С1 и R4 прикладывается к базе VT2. Это приводит к увеличению коллекторного тока на втором ключе и уменьшению напряжения на переходе U2ke, передаваемого через C2 и R3 на базу VT1.

Итогом этих процессов станет запирание VT1 и отпирание VT2. Такое состояние останется неизменным, пока на базу VT2 не придёт отрицательный уровень сигнала. Результатом этого будут обратные электрические процессы, и VT1 закроется, а VT2 откроется.

Характеристики приборов

Триггер условно можно назвать «автоматом», способным хранить один бит информации. Простейшего вида прибор имеет два выхода, находящихся по отношению друг к другу в инверсном состоянии. Важные параметры устройства связаны с синхронизацией (тактированием) выходов, зависящей от времени предустановки и выдержки. Первый параметр характеризуется интервалом времени, в течение которого поступает разрешающий фронт синхросигнала, а второй определяется временем нахождения устойчивого состояния в неизменном положении. Ряд других характеристик триггера связывают с сигналом, проходящим через него. К ним относится:

  • нагрузочная способность — характеризуется коэффициентом разветвления (Кр) и обозначает способность прибора управлять определённым количеством параллельно подключённых элементов к выходу устройства;
  • Ко — коэффициент объединения, обозначает наибольшее число входных напряжений, которые возможно завести на вход прибора;
  • tи — минимальная продолжительность входного сигнала, то есть длительность импульса, при котором триггер ещё может перейти в инверсное состояние;
  • tзд — коэффициент задержки, указывает на временной промежуток между подачей входного сигнала и появлением напряжения на выходе;
  • tр — длительность разрешения, определяется минимальным временем прошедшим между двумя импульсами сигнала на входе и спровоцировавшего переход триггера в другое состояние.

Вам это будет интересно Электронный преобразователь напряжения с 12 В на 220 В

Но наряду с этим выделяют и следующие технические параметры триггеров:

  • напряжение на входе — наибольшая величина разности потенциалов, которую может выдержать устройство без повреждения своей внутренней электрической схемы;
  • ток потребления — зависит от используемых элементов, обычно не превышает 2 мА;
  • разность потенциалов переключения — это минимальное значение, при котором происходит инвертирование выхода;
  • ток входа — обозначает минимальное значение необходимое для работы триггера;
  • ток выхода — значение тока, появляющееся на выходе и определяемое отдельно для логического нуля и единицы;
  • температурный диапазон — интервал, в котором технические параметры устройства не изменяются;
  • напряжение гистерезиса — разность амплитуд входного сигнала, приводящая к изменению состояния выхода устройства.
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]