Как работают транзисторы — простое объяснение

Здравствуйте, продолжим знакомство с биполярными транзисторами. В предыдущем посте был рассмотрен транзистор в качестве электронного ключа. Но это ещё не все возможности биполярных транзисторов, можно сказать даже ключевой режим работы – это лишь малая доля в схемах, где используются транзисторы. В львиной доле транзисторных схем транзистор используется в качестве усилительного прибора. В данных схемах транзистор используется в так называемой активной области. Транзистор в качестве усилительного прибора, включается в усилительный каскад, который кроме транзистора содержит ещё цепи питания, нагрузку и цепи связи с последующим каскадом.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Схемы включения транзистора

Для биполярных транзисторов возможны три схемы включения, которые обладают способностью усиливать мощность: с общим эмиттером (ОЭ)

,
общей базой (ОБ)
и
общим коллектором (ОК)
. Схемы отличаются способом включения источника сигнала и нагрузки (RН).


Схема с общим эмиттером


Схема с общей базой


Схема с общим коллектором.
Для всех схем включения транзистора при отсутствии сигнала, подаваемого от источника (еГ), необходимо установить начальный режим по постоянному току

– режим покоя. При этом как и говорилось в предыдущем посте эмиттерный переход должен быть открытым, а коллекторный – закрытым. Для транзисторов p-n-p это достигается подачей отрицательного напряжения на коллектор (коллекторного напряжения E0C) и отрицательного напряжения на базу (напряжения смещения E0B). Для транзисторов n-p-n полярность этих напряжений должна быть противоположной. Режим покоя транзистора опредяляется положением его рабочей точки, которое зависит от тока эмиттера IE (практически равного току коллектора IС и зависящего от E0B) и от напряжения E0C.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.

β = IC / IB

Усилительные параметры транзистора

Усилительные свойства транзисторов для малого переменного сигнала оцениваются с помощью различных систем параметров, связывающих входные токи и напряжения, но нормируются только два основных параметра: h21e и fТ (или fh21b). Зная параметр транзистора h21e для заданного режима покоя IE, можно с помощью следующих формул определить основные параметры усилительного каскада в области НЧ:

где S — проводимость транзистора, re — сопротивление эмиттера транзистора.

Таким образом, можно вычислить значения |K|

— коэффициент усиления напряжения транзистора,
|Ki|
— коэффициент усиления тока транзистора,
ZВХ
— входное сопротивление транзистора:

Параметры усилительного каскадаСхема включения
ОЭОБОК
|K|S*RHS*RHS*RH /( 1 + S*RH)
|Ki|h21eh21e/(1 + h21e)h21e
ZВХh21e*rereh21e*RH

Области применения усилительных каскадов ОЭ, ОБ и ОК определяются их свойствами.

Каскад с общим эмиттером

обеспечивает усиление, как по напряжению, так и по току. Его входное сопротивление порядка сотен Ом, а выходное – десятков кОм. Отличительная особенность – изменяет фазу усиливаемого сигнала на 180°. Обладает лучшими усилительными свойствами по сравнению с ОБ и ОК и поэтому является основным типом каскада для усиления малых сигналов.

Каскад с общей базой

обеспечивает усиление только по напряжению (практически такое же, как ОЭ). Входное сопротивление каскада в (1+h21e) раз меньше, чем ОЭ, а выходное – в (1+h21e) раз больше. В отличие от ОЭ каскад ОБ не изменяет фазы усиливаемого сигнала. Малое входное сопротивление каскада ОБ ограничивает его применение в УНЧ: практически он используется только как элемент дифференциального усилителя.

Каскад с общим коллектором

обеспечивает усиление только по току (практически такое же, как ОЭ). В отличие от ОЭ каскад ОК не изменяет фазы усиливаемого сигнала. При К = 1 каскад ОК как бы повторяет усиливаемое напряжение по величине и фазе. Поэтому такой каскад называется эмиттерным повторителем. Входное сопротивление ОК зависит от сопротивления нагрузки RH и велико (почти в h21e раз больше RH), а выходное сопротивление зависит от сопротивления источника сигнала RГ и мало (почти в h21e раз меньше RГ). Каскад ОК благодаря большому входному и малому выходному сопротивлению находит применение как в предварительных, так и в мощных УНЧ.

Производительность усилителя

Поскольку общий тип подключения к излучателю в основном принят, давайте сначала разберемся с несколькими важными терминами, относящимися к этому режиму подключения.

Входное сопротивление

Поскольку входная цепь смещена в прямом направлении, входное сопротивление будет низким. Входное сопротивление — это сопротивление, создаваемое переходом база-эмиттер потоку сигнала.

По определению это отношение небольшого изменения напряжения базы-эмиттера (ΔV BE ) к результирующему изменению тока базы (ΔI B ) при постоянном напряжении коллектор-эмиттер.

Входное сопротивление, Ri= frac DeltaVBE DeltaIB

Где R i = входное сопротивление, V BE = напряжение базы-эмиттера, а I B = ток базы.

Выходное сопротивление

Выходное сопротивление транзисторного усилителя очень высокое. Ток коллектора изменяется очень слабо с изменением напряжения коллектор-эмиттер.

По определению это отношение изменения напряжения коллектора-эмиттера (ΔV CE ) к результирующему изменению тока коллектора (ΔI C ) при постоянном базовом токе.

Выходное сопротивление = Ro= frac DeltaVCE DeltaIC

Где R o = выходное сопротивление, V CE = напряжение коллектор-эмиттер, а I C = напряжение коллектор-эмиттер.

Эффективная нагрузка на коллектор

Нагрузка подключена к коллектору транзистора, и для одноступенчатого усилителя выходное напряжение берется с коллектора транзистора, а для многоступенчатого усилителя то же самое собирается с каскадных каскадов транзисторной цепи.

По определению это общая нагрузка, видимая током коллектора переменного тока. В случае одноступенчатых усилителей эффективная нагрузка коллектора представляет собой параллельную комбинацию R C и R o .

Эффективная нагрузка коллектора, RAC=RC//Ro

= fracRC timesRoRC+Ro=RAC

Следовательно, для одноступенчатого усилителя эффективная нагрузка равна нагрузке коллектора R C.

В многоступенчатом усилителе (то есть имеющем более одного каскада усиления) также учитывается входное сопротивление R i следующего каскада.

Эффективная нагрузка коллектора становится параллельной комбинацией R C , R o и R i, т. Е.

Эффективная нагрузка коллектора, RAC=RC//Ro//Ri

RC//Ri= fracRCRiRC+Ri

Поскольку входное сопротивление R i довольно мало, следовательно, эффективная нагрузка уменьшается.

Текущая прибыль

Коэффициент усиления по току, когда наблюдаются изменения входных и выходных токов, называется коэффициентом усиления по току

. По определению это отношение изменения тока коллектора (I C ) к изменению базового тока (I B ).

Текущая прибыль, beta= frac DeltaIC DeltaIB

Значение β колеблется от 20 до 500. Коэффициент усиления по току указывает, что входной ток становится β-кратным в токе коллектора.

Усиление напряжения

Коэффициент усиления по напряжению, когда наблюдаются изменения входных и выходных токов, называется коэффициентом усиления по напряжению

. По определению это отношение изменения выходного напряжения (ΔV CE ) к изменению входного напряжения (ΔV BE ).

Коэффициент усиления по напряжению, AV= frac DeltaVCE DeltaVBE

= fracИзменитьввыводтекущий разэффективныйнагрузкаИзменитьввходтекущий развводсопротивление

= frac DeltaIC timesRAC DeltaIB timesRi= frac DeltaIC DeltaIB times fracRACRi= beta times fracRACRi

Для одной ступени R AC = R C.

Тем не менее, для многоступенчатой,

RAC= fracRC timesRiRC+Ri

Где R i — входное сопротивление следующей ступени.

Цепи питания биполярных транзисторов

Для обеспечения заданного режима работы биполярного транзистора требуется установить положение точки покоя, определяемое током покоя IС. С этой целью на электроды транзистора должны быть поданы два напряжения: коллекторное и напряжение смешения базы. Полярность этих напряжений зависит от структуры транзистора. Для транзисторов p-n-p оба этих напряжения должны быть отрицательными, а для n-p-n – положительными, относительно эмиттера транзистора.. Величины коллекторного и базового напряжения должны быть различны; кроме того, различными оказываются и требования к стабильности этих напряжений. Поэтому используются две отдельные цепи питания – коллектора и базы.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Питание коллектора

Цепи питания коллектора

содержат элементы, показанные ниже.

В многокаскадных усилителях коллекторные цепи всех каскадов подключаются параллельно к одному общему источнику E0C. В этом случае цепь питания коллектора содержит развязывающий фильтр RфCф. Назначение такого фильтра – устранить паразитную обратную связь через общий источник питания. При питании от сети переменного тока, кроме того, уменьшаются пульсации напряжения питания. Резистор Rф включают последовательно с нагрузкой RН, и на нём теряется часть коллекторного напряжения. Поэтому рекомендуется сопротивление Rф выбирать исходя из допустимого падения напряжения:

Напряжение между коллектором и эмиттером транзистора UCE выбирается в пределах

При этом минимальное значение UC не должно быть менее 0,5 В, иначе рабочая точка переходит в область насыщения и возрастают нелинейные искажения.

Схема цепей питания базы

Цепи питания базы

содержат элементы, показанные ниже


Схема с фиксированным током


Схема с фиксированным напряжением


Схема с автоматическим смещением
Заданный режим работы транзистора устанавливается путём подачи на его базу требуемого напряжения смещения UB

или создания в цепи базы требуемого
тока смещения IB
. В обоих случаях между эмиттером и базой устанавливается напряжение UBE,равное (в зависимости от IB) 0,1…0,3 В (для германиевых транзисторов) или 0,5…0,7 В (для кремниевых). Смещение базы может осуществляться от общего с коллектором источника питания E0C или от отдельного источника питания базовых цепей E0В.

При питании от E0C смещение базы может быть фиксированным (по току или напряжению) или автоматическим. Схемы с фиксированным током

и с
фиксированным напряжением
не обеспечивают стабильности рабочей точки транзистора при изменении температуры.

Режимы работы транзистора в усилителе

Перед тем как подавать на вход усилителя на транзис­торе сигнал, подлежащий усилению, необходимо обеспе­чить начальный режим работы (статический режим, ре­жим по постоянному току, режим покоя). Начальный режим работы

характеризуется постоянными токами элек­тродов транзистора и напряжениями между этими элект­родами. Используют термин «начальный режим работы транзистора» и фактически равноценный ему термин «на­чальный режим работы усилителя». Для определенности обратимся к схеме с общим эмиттером и соответствующим выходным характеристикам транзистора. Тогда начальный режим работы характеризуется положением так называе­мой начальной рабочей точки (НРТ) с координатами (Uкэн, Iкн), где Uкэ и Iкн — начальное напряжение между коллектором и эмиттером и начальный ток коллек­тора. Для стабильной работы усилителя стремятся не до­пускать изменения положения начальной рабочей точки. Для характеристики проблемы обеспечения начально­го режима традиционно и вполне оправданно рассматри­вают следующие три схемы:

• с фиксированным током базы;

• с коллекторной стабилизацией;

• с эмиттерной стабилизацией.

На практике первую из этих схем почти никогда не используют. Из остальных двух схем предпочтение часто отдают схеме с эмиттерной стабилизацией. Рассмотрим каждую из этих схем.

Схема с фиксированным током базы (рис. 2.14). На по­добных схемах источник напряжения Ек обычно не изоб­ражают.

Рис. 2.14. Схема с фиксированным током базы

В соответствии со вторым законом Кирхгофа

Отсюда находим ток коллектора Iк:

что соответствует линейной зависимости вид:

Это уравнение описывает так называемую линию на­грузки (как и для схемы с диодом). Изобразим выходные характеристики транзистора и линию нагрузки (рис. 2.15).

Рис. 2.15. Выходные характеристики транзистора и линия нагрузки

В соответствии со вторым законом Кирхгофа

Отсюда находим ток базы iб:

Будем пренебрегать напряжением uбЭ, так как обычно Тогда iб

Таким образом, в рассматриваемой схеме ток iб задает­ся величинами Ек и Rб (ток «фиксирован»). При этом

Пусть iб = iб2. Тогда HPT займет то положение, которое указано на рис. 2.15. Легко заметить, что самое нижнее возможное положение начальной рабочей точки соответствует точке Y (режим отсечки, iб = 0), а самое верхнее положение — точке Z (режим насыщения, iб iб4).

Схему с фиксированным током базы используют ред­ко по следующим причинам:

• при воздействии дестабилизирующих факторов (например, температуры) изменяются величины и , что изменяет ток IКН и положение начальной рабочей точки;

• для каждого значения необходимо подбирать соответствующее значение Rб, что нежелательно при ис­пользовании как дискретных приборов (т.е. приборов, из­готовленных не по интегральной технологии), так и инте­гральных схем.

Схема с коллекторной стабилизацией (рис. 2.16). Эта схема обеспечивает лучшую стабильность начального режима. В схеме имеет место отрицательная обратная связь по напряжению (выход схемы — коллектор транзистора соединен со входом схемы — базой транзистора с помо­щью сопротивления Rб). Рассмотрим ее проявление на следующем примере. Пусть по каким-либо причинам (на­пример, из-за повышения температуры) ток iK начал уве­личиваться. Это приведет к увеличению напряжения uRK, уменьшению напряжения uкэ и уменьшению тока iб , что будет препятствовать значительному увеличению тока iK, т.е. будет осуществляться стабилизация тока коллектора.

Рис. 2.16. Схема с коллекторной стабилизацией

Схема с эмиттерной стабилизацией (рис. 2.17). В зару­бежной литературе такую схему называют схемой с Н-смещением (конфигурация схемы соответствует букве H).

Рис. 2.17. Схема с эмиттерной стабилизацией

Основная идея, реализованная в схеме, состоит в том, что­бы зафиксировать ток iэ и через это ток iK (iK iэ). С ука­занной целью в цепь эмиттера включают резистор Rэ и создают на нем практически постоянное напряжение uRЭ

. При этом оказывается, что

Для создания требуемого напряжения uRэ

используют делитель напряжения на резисторах R1 и R2. Сопротивле­ния R1 и R2 выбирают настолько малыми, что величина тока iб практически не влияет на величину напряжения uR2. При этом

В соответствии со вторым законом Кирхгофа

При воздействии дестабилизирующих факторов вели­чина uбэ изменяется мало, поэтому мало изменяется и ве­личина uRэ

.На практике обычно напряжение
uRэ
состав­ляет небольшую долю напряжения Ек.

Различают следующие режимы работы транзистора (классы работы): А, АВ, В, С и D. Рассматриваемые RС-усилители обычно работают в режиме А. В режиме А ток коллектора всегда больше нуля (iK > 0). При этом он увеличивается или уменьшается в зависимости от входно­го сигнала. В режиме В IКН = 0, поэтому ток коллектора мо­жет только увеличиваться. При синусоидальном входном сигнале в цепи коллектора протекают положительные полуволны тока. Режим АВ является промежуточным между режимами А и В. В режиме С на вход транзистора подается начальное запирающее напряжение, поэтому в цепи коллектора в каждый период входного сигнала ток протекает в течение времени меньшего, чем половина периода. Режимом D называют ключевой режим работы (транзистор находится или в режиме насыщения, или в режиме отсечки).

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]