Как работают релейная защита и автоматика


Устройство

Релейное управление постоянно совершенствуется, разрабатываются новые конструкции, применяются новые полупроводниковые схемы. Но принцип действия релейной защиты остается, он не зависит от прогресса.

Все аппараты состоят из четырех стандартных типовых частей. К ним относятся элементы наблюдения, логики, исполнения и сигнализации. Блок наблюдения следит за процессами и отслеживает его параметры. Блок логики принимает решение если наступает отклонение измеряемых характеристик от заданных значений. Исполнительный блок выполняет необходимые действия при подаче команды. Сигнальный блок предназначен для человека.

Основная защита присоединения

Согласно определению ПУЭ (п. 3.2.14) – “На каждом из элементов электроустановки должна быть предусмотрена основная защита, предназначенная для ее действия при повреждениях в пределах всего защищаемого элемента с временем, меньшим, чем у других установленных на этом элементе защит.”

Таким образом на любом присоединении всегда есть основная защита (см. Миф 2). Это любая защита, которая защищает весь участок и действует быстрее, чем другие защиты. Все просто и понятно. Теперь примеры.

Для линии 0,4, 6 или 10 кВ основная защита – это максимальная токовая защита (МТЗ). Защищает всю линию и работает быстрее остальных защит. Токовая отсечка срабатывает быстрее, чем МТЗ, но она защищает только часть линии, т.е. не может являться основной защитой. То же самое с защитой от перегрузки – хоть и реагирует на повреждения на всем участке, но срабатывает намного медленнее, чем МТЗ.

МТЗ вообще является основной защитой для большей части присоединений 0,4-6 кВ, за исключением генераторов и мощных двигателей, там основная защита – дифференциальная. Как это получается? МТЗ остается на присоединении, она реагирует на все виды КЗ, но появляется еще одна защита – дифференциальная. Дифференциальная защита двигателя или генератора также реагирует на КЗ на всем участке, но срабатывает быстрее, чем МТЗ. Звание основной защиты переходит ей, а МТЗ становится резервной.

Еще один пример с защитой силовых трансформаторов. Трансформаторы мощностью до 6,3 МВА имеют в качестве основной защиты МТЗ, а вот начиная с 6,3 МВА и выше добавляется дифференциальная. Она и становится основной вместо МТЗ, а МТЗ переходит в разряд резервных.

Таким образом не важно на каком принципе работает защита (см. Миф 1), главное, чтобы выполнялись условия п.3.2.14

Может ли быть несколько основных защит на одном присоединении? (см. Миф 4) Да, может.

Например, для масляных силовых трансформаторов 6,3 МВА и больше обычно 2 основных зашиты – дифференциальная и газовая. Обе подходят под определение по п.3.2.14 потому, что работают без выдержки времени и на всем защищаемом участке. Иногда на присоединении ставят по 3 основных защиты, например, для АТ 220 кВ и выше большой мощности (две дифференциальные и газовая)

Виды релейной защиты

В прошлой статье из раздела «РЗА для начинающих» мы описали принцип работы релейной защиты и автоматики и ее назначение. В данном же материале мы рассмотрим основные виды защитных устройств.

Заметим, что РЗА подразделяются на виды в зависимости от назначения и функций. Все они так или иначе срабатывают, когда значение некой величины превышает заданные параметры, так называемую уставку.

  • Самым распространенным видом защиты на напряжении 6-10кВ является токовая защита. По принципу действия данная защита реагирует на превышения током заданной величины уставки. Одним из самых распространённых исполнений токовой защиты является – максимально-токовая защита (МТЗ). МТЗ является самым популярным видом защиты, так как используется практически повсеместно.
  • Так же, существует еще и Направленная максимальная токовая защита. Кроме заданных параметров, она дополнительно контролирует направления мощности.
  • Для шин и питающих линий подстанций необходима дополнительная защита – ЛШЗ (Логическая защита шин), которая по своей сути является ускорением МТЗ питающих присоединений.
  • Дуговая защита необходима Комплектным распределительным устройствам (КРУ) и трансформаторным подстанциям (КТП) — она защищает их от тяжёлых повреждений и возгорания. Специальные оптические датчики задействуются, когда повышается освещенность. Помимо этого, дуговая защита оснащена датчиками, которые реагируют на повышенное давление. ​​
  • Для правильной работы силовые трансформаторы нуждаются в охлаждении – для этого их погружают в специальные баки с маслом. Однако в нештатной ситуации масло может активно выделять газ, что может привести к серьезной аварии. Газовая защита предупреждает такую ситуацию, контролируя уровень масла в резервуаре.
  • Дифференциальная защита сравнивает токи на участках между защищенными линиями или аппаратом. При коротком замыкании, релейная защита отключает поврежденный участок. Данный вид защиты необходим для трансформаторов, генераторов, двигателей, воздушных линий электропередачи, реакторов, сборных шин и ошиновок.
  • Дифференциально-фазная защита (ДФЗ) защищает линии электропередач высокого напряжения и реагирует на разность фаз токов манипуляции I1+k*I2 генерируемых полукомплектами защиты устанавливаемых с двух сторон линии электропередач. Фаза тока манипуляции передаётся с помощью специальной высокочастотной аппаратуры связи прямо по силовым проводам самой линии электропередач, что позволяет отказаться от необходимости организации специального канала связи.
  • Дистанционная защита понадобится на сложных объектах, где не справится МТЗ и другие виды защит – в случаях когда ток замыкания сопостовим с допустимым режимом работы защищаемого элемента сети. ДЗ способно вычислить расстояние от участка, где случилось замыкание и, исходя из полученной дистанции, сработает с большей или меньшей выдержкой по времени.
Функция представленных видов защиты, как вы уже поняли, предупреждать аварии и отключать поврежденные участки. Однако РЗА – это еще и автоматика, которая служит для самостоятельного включения питания после исправления неполадки.

Так, электроавтоматика тоже имеет свои виды:

  • Автоматический ввод резерва (АВР) подключит к питанию запасные источники, если использование основного невозможно.Подробнее об АВР можно узнать в специальной статье от наших специалистов.
  • Автоматическое повторное включение (АПВ) через заданное время снова запустит отключенный выключатель. АПВ используют на сборных шинах подстанций, линиях электропередачи 1кВ и выше, на трансформаторах и электродвигателях.
  • Чтобы разгрузить сеть при понижении частоты, используется Автоматическая частотная разгрузка (АЧР) – она отключает наименее важных потребителей энергии.
  • Устройство резервирования при отказе выключателя (УРОВ) также применятся для сетей, напряжение которых превышает 1 кВ. Если выключатель поврежденного участка выдаст отказ на отключение, УРОВ отключит следующий, во избежание аварии. Больше информации об УРОВ можно узнать из нашего обзора.

Классификация реле по принципу работы

Большинство защитных устройств в виде реле работает по принципам электромагнитной индукции, однако контролируемые признаки и способ реакции могут быть разными. На данный момент к наиболее популярным можно отнести виды релейной защиты, работающие по следующим схемам:

  • Газовые. Также к этой группе можно отнести масляные датчики-контроллеры. В обоих случаях задача устройства заключается в фиксации утечек охлаждающих веществ трансформатора. В случае разгерметизации каналов подачи масла или газа реле автоматически отключает оборудование.
  • Дифференциальные. Такие реле используются также в трансформаторах, генераторах и на подстанциях, контролируя токовые величины. Стандартная модель реакции предполагает отключение устройства, если входные величины имеют большую разницу с выходными показателями.
  • Направленно максимальные. Простейшие реле, активизирующие защиту при фиксации избыточно высоких показателей напряжения, мощности или силы тока.
  • Дистанционные. Блокировочные реле, которые фиксируют короткие замыкания и помехи в цепи, после чего отключают аппаратуру.
  • Дуговые. Такие реле устанавливаются на комплектных трансформаторах и подстанциях. С помощью оптических датчиков и сенсоров давления они фиксируют признаки возгорания, запуская соответствующие системы пожаротушения.

Классификация реле

Все применяемые реле в системе могут быть выполнены на основе определённого оборудования. Релейная защита может быть выполнена на следующих типах реле:

Электромеханической конструкции. Принцип их действия основан на притягивании и отпускании подвижной части реле при прохождении, через катушку электромагнита, электрического тока. При этом происходит размыкание или замыкание контактов;

  • Полупроводниковые. Они изготавливаются на основе полупроводниковых приборов (диодов, транзисторов, тиристоров) которые выполняют роль электрического ключа в схеме;
  • Цифровые. Основаны на работе микропроцессорной техники, обработка данных происходит не в аналоговом, а в цифровом формате, образуя блок релейной защиты. Существует возможность программирования таких цифровых устройств, что добавляет в работу РЗА автоматизации без участия персонала.

Устройства РЗА можно разделить также и по сложности их применения. К простым относятся:

  1. Максимальная токовая или токовая отсечка. Она применяется даже в обычных автоматических выключателях, применяемых в быту;
  2. От минимального и максимального напряжения. В быту это так называемые устройства барьеры.
  3. Дифференциальная, которая основана на сравнении токов, проходящих по каждой из фаз;
  4. Газовая. Это одна из разновидностей защит трансформаторов от выхода из нормального рабочего режима работы;
  5. Замыкание на землю. Срабатывает при пробивании изоляции или касании токопроводящих частей к земле.

Сложные виды РЗА включают в свой состав:

  1. Устройства контроля изоляции как цепей постоянного таки переменного тока;
  2. Системы отбора напряжения;
  3. Различные системы контроля температур, давления и других параметров оборудования;
  4. Контроль и наблюдение за сопротивлением изоляции цепей аккумуляторных батарей и т. д.

Чтобы добиться надёжности и правильной работы электрических аппаратов входящих в данную защиту, нужно чтобы все элементы были выполнены из качественных комплектующих таких как реле, трансформаторов тока и т. д. В настоящее время релейная защита это очень популярная и востребованная часть электроэнергетики.

ТИПЫ ПРОМЕЖУТОЧНЫХ РЕЛЕ

Питание схем защиты и автоматики осуществляется от специальных цепей оперативного тока. По типу оперативный ток может быть переменным или постоянным.

Источниками напряжения постоянного оперативного тока могут служить аккумуляторные батареи, батареи конденсаторов или выпрямительные устройства, шинки переменного опертока питаются напряжением от трансформаторов собственных нужд.

Поскольку работают промежуточные реле в цепях оперативного напряжения, в зависимости от его типа они производятся с катушками на постоянный и переменный ток.

РП – 23.

Данный тип промежуточного реле предназначен для работы в цепях постоянного напряжения. РП – 23 состоит из катушки напряжения с магнитным сердечником. Подвижной частью магнитной системы является якорь, который при подаче напряжения на катушку притягивается к сердечнику.

С якорем механически связана траверса, на которой закреплены четыре контактных мостика. Притягиваясь к сердечнику, якорь опускает траверсу, сжимая пружину, на которой она установлена. При этом происходит замыкание нормально разомкнутых контактов и размыкание нормально замкнутого.

Неподвижные контакты РП – 23 выполнены в форме уголков из тонких медных пластин. Каждый из уголков может быть установлен одним из двух способов. Благодаря этому можно получить четыре типа комбинаций вариантов контактных групп (р – группа на размыкание, з – группа на замыкание):

  • 1 р, 4 з;
  • 2 р, 3 з;
  • 3 р, 2 з;
  • 4 р, 1 з.

Такая инвариантность позволяет приспособить этот прибор к работе в составе любой схемы.

При размыкании создаётся два воздушных промежутка на каждый контакт, благодаря чему повышается их дугогасительная способность.

Это свойство важно при работе релейного аппарата в цепях отключения высоковольтных выключателей, соленоиды которых обладают большой индуктивностью и поддерживают напряжение электрической дуги при разрыве цепи.

РП – 23 выпускается в различных модификациях для работы в оперативных цепях напряжением 24 В, 48 В, 110 В и 220 В.

РП – 25.

Внутренняя схема электрических соединений промежуточного реле этого типа аналогична РП – 23. Катушка РП – 25 предназначена для работы на переменном напряжении. Варианты исполнения оснащаются катушками на напряжение 100 В, 127 В или 220 В.

Рабочий ресурс электромагнитного механизма промежуточных реле РП – 23 и РП – 25 составляет 100000 срабатываний. Контактная группа выдерживает 10000 циклов замыкания – размыкания с полной электрической нагрузкой по току и напряжению.

Основные органы релейной защиты

Пусковые органы

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты

Катушка реле тока K1

(контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока
ТА
. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки реле
K1
, оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами
+EC
и
-EC
замкнётся, и запитает сигнальную лампу
HLW
.

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Виды защит в электрических цепях

При нарушении нормального режима работы электропривода для исключения выхода из строя электрооборудования и повышения надежности работы схемы в них применяется электрическая защита.

В схемах электропривода применяется следующие виды защит:

— нулевая;

— максимально-токовая;

— минимальная токовая;

— тепловая;

— специальные.

Нулевая защита обеспечивает защиту от самозапуска двигателей при чрезмерном понижении или кратковременном исчезновении питающего напряжении сети.

Защита осуществляется линейными контакторами переменного тока и магнитными пускателями и автоматическими выключателями.

При управлении от командоаппарата применяют реле защиты по напряжению.

Рис. Узлы схем нулевой защиты двигателей переменного и постоянного тока с помощью линейных контакторов (а
) и реле напряжения (
б-г
)

Рис. Узлы схем нулевой защиты двигателей переменного (а
) и постоянного (
б
) тока с помощью автоматического выключателя
QF
с минимальным расцеплением

Максимально-токовая защита – от к.з.

Осуществляется плавкими предохранителями, максимальными токовыми реле, автоматическими выключателями.

Рис. Узлы схем максимально-токовой защиты двигателей переменного (а
) и постоянного (
б
) тока, а также цепей схемы управления (
в
), осуществляемой плавкими предохранителями

Рис. Узлы схем максимально-токовой защиты двигателей переменного (а
) и постоянного (
б
) тока и схемы управления (
в
), осуществляемой автоматическими выключателями с максимально-токовым расцепителем

Тепловая защита – защита от перегрузок.

Осуществляется электротепловыми реле, максимально-токовыми реле и автоматическими выключателями с тепловыми расцепителями.

Защита действует на отключения двигателя от питающей сети и при последующем включении требует вмешательства оператора.

Рис. Узлы схем тепловой защиты двигателей переменного (а, б
) и постоянного (
в
) тока, осуществляемой тепловыми реле
FR
с воздействием на линейный контактор (
г
) и реле напряжения (
д
)

При работе в ПКР, когда характеристики нагрева реле и двигателя различны, его защиту от перегрузок следует осуществлять с помощью максимально-токовых реле. Ток уставок реле применяется в зависимости от допустимой перегрузки двигателя по отношению к номинальному току двигателя.

I

уст = (1,2 – 1,3)
I
ном.дв.

Часто такую защиту используют для защиты АД от перегрузок и работе на двух фазах, тогда ток реле принимается из условия

I

2ф >
I
у >
I
зф,

где I

2ф,
I
3ф – ток двигателя при работе на двух и трех фазах

Так как ток уставки ниже пусковых токов, то на время пуска контакты реле тока шунтируются контактами реле времени КТ.

Рис. Узлы схем включения контактов тепловой защиты, осуществляемой максимально-токовыми реле FA1
и
FA2
при повторно-кратковременном режиме работы двигателя
Рис. Узлы схем тепловой защиты двигателей переменного (а
) и пос-тоянного (
б
) тока, осуществляемой автоматическими выключателями с тепловым расцепителем

3-1. Токовая отсечка и максимальная токовая защита одиночных линий 35 и 110 кВ

Основные условия расчета. Основные условия расчета максимальных токовых защити токовых отсечек, изложенные в Главе 1, справедливы и для линий 35 и 110 кВ без ответвлений и с ответвлениями. В выражении (1-1), коэффициент самозапуска kсзп определяется по суммарному току самозапуска нагрузки всех трансформаторов, подключенных к защищаемой линии и ко всем следующим (по направлению тока) линиям того же напряжения. Для этого в расчетной схеме все нагрузки, подключаемые к каждому трансформатору, представляются сопротивлениями обобщенной или бытовой нагрузки, приведенными к рабочей максимальной мощности трансформатора. Высоковольтные двигатели учитываются отдельно.

Требования предъявляемые к релейной защите

Селективность (избирательность)

Селективность — свойство релейной защиты, характеризующее способность выявлять именно поврежденный элемент электроэнергетической системы и отключать этот элемент от исправной части электроэнергетической системы (ЭЭС). Защита может иметь абсолютную или относительную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне. А селективность отключения поврежденного элемента ЭЭС при этом обеспечивается дополнительными средствами (например, выдержкой времени срабатывания).

Быстродействие

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Чувствительность

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов, при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее её способность выполнять свои функции в любых условиях эксплуатации. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

Проблема оценки чувствительности релейной защиты

Одним из основных требований к релейной защите является требование чувствительности. Чувствительность защиты должна быть достаточной для её надёжного действия при КЗ в конце установленной для неё зоны в минимальном режиме энергосистемы и при замыканиях через переходное сопротивление (через дугу). В отечественной практике в качестве меры чувствительности используется коэффициент чувствительности, это регламентировано в ПУЭ.

Цитата из п. 3.2.20 ПУЭ:

«Оценка чувствительности основных типов релейных защит должна производиться при помощи коэффициента чувствительности, определяемого:

  • для защит, реагирующих на величины, возрастающие в условиях повреждений, — как отношение расчётных значений этих величин (например, тока, или напряжения) при металлическом КЗ в пределах защищаемой зоны к параметрам срабатывания защит;
  • для защит, реагирующих на величины, уменьшающиеся в условиях повреждений, — как отношение параметров срабатывания к расчётным значениям этих величин (например, напряжения или сопротивления) при металлическом КЗ в пределах защищаемой зоны.»

Итак, по нормативным требованиям чувствительность защит различного типа следует оценивать с помощью коэффициента чувствительности, определяемого при металлическом КЗ. Но насколько объективен этот показатель? Правильно ли сравнивать чувствительность, к примеру, реле тока (РТ) и реле сопротивления (РС) по их коэффициентам чувствительности? Ответ нет, неправильно. Обоснуем это утверждение на простом примере трёхфазного КЗ на стороне ВН трансформатора блока генератор-трансформатор. Параметры защищаемого объекта следующие.

  • Генератор: тип ТВФ-120-2У3 номинальная полная мощность Sном = 125 МВА номинальная активная мощность Pном = 100 МВА сверхпереходное индуктивное сопротивление X ”d* =0,192 о.е.
  • Трансформатор: тип ТДЦ-125000/220 номинальная мощность Sном = 125 МВА номинальное напряжение 242/10,5 кВ напряжение короткого замыкания uk = 11 %
  • Система: значение тока трёхфазного КЗ на выводах 220 кВ трансформатора – 21128 А расчётное напряжение – 235,5 кВ

Схема замещения защищаемого объекта при металлическом трёхфазном КЗ на стороне ВН трансформатора (по прямой последовательности) приведена на рис. 1. Место установки защиты обозначено флажком. Координата места повреждения обозначена как xf.

Рис. 1. Схема замещения трёхфазного КЗ на стороне ВН блока

Рассчитанные параметры схемы замещения:

  • ЭДС генератора Eг = 230/sqrt(3) = 133 кВ
  • эквивалентная ЭДС системы Eс = Eг = 133 кВ
  • сопротивление генератора X”d =81,25 Ом
  • сопротивление трансформатора Xт = 46,55 Ом
  • эквивалентное сопротивление системы Xс = 6,43 Ом

Рассчитанный по схеме замещения ток металлического трёхфазного КЗ на стороне ВН блока равен Iкз = 1039 А. Рассчитаем уставки РТ и РС исходя из условия равенства их коэффициентов чувствительности Kч при КЗ в указанной точке (примем для обоих реле Kч = 1,5). Ток срабатывания РТ при Kч = 1,5:

Iсраб = Iкз/Kч = 1039/1,5 = 693 А.

Сопротивление срабатывания РС при Kч = 1,5:

Zсраб = Xт · Kч = 46,55·1,5 = 69,83 Ом.

Пусть РС будет ненаправленным с круговой характеристикой срабатывания (рис. 2).

Рис. 2. Характеристика срабатывания РС

Теперь выясним насколько реально чувствительны РТ и РС с одинаковым Kч = 1,5 к трёхфазным КЗ на стороне ВН защищаемого блока генератор-трансформатор. Очевидно, что и то, и другое реле в случае металлического трёхфазного КЗ в данной точке сработают надёжно. Какое же должно произойти КЗ, чтобы выбранные РТ и РС оказались к нему нечувствительными и отказали в срабатывании? Единственный параметр режима КЗ, который влияет на чувствительность реле в нашем примере – это переходное сопротивление в месте повреждения Rf. По мере увеличения Rf при каком-то его значении защиты перестают срабатывать. Для каждой конкретной точки КЗ это значение Rf будет своё. Если для каждой точки КЗ xf в пределах защищаемой зоны получить значения Rf, при которых защита перестаёт срабатывать, то полученная зависимость будет представлять собой вполне конкретную меру чувствительности этой защиты, причём с явным физическим смыслом. Назовём такую зависимость характеристикой чувствительности защиты (реле) к переходному сопротивлению. Для рассматриваемых РТ и РС характеристики чувствительности к переходному сопротивлению приведены на рис. 3. Координата xf = 0 о.е. соответствует стороне НН трансформатора блока, а xf = 1,0 о.е. – стороне ВН. Какую информацию можно получить из характеристик на рис. 3? Во-первых, оказывается, что РТ и РС с одинаковым коэффициентом чувствительности при металлическом КЗ на стороне ВН трансформатора блока имеют разную чувствительность к переходному сопротивлению, причём не только при КЗ на стороне ВН, но и в пределах всего трансформатора блока. Во вторых, чувствительность РТ к переходному сопротивлению оказывается более чем в 2 раза выше, чем у РС.

Таким образом, выясняется, что показатель коэффициента чувствительности является не вполне объективной мерой чувствительности измерительных органов релейной защиты. Выходит, что если мы хотим получить реальную картину, то сравнивать по чувствительности различные реле (различного типа, с различными формами характеристики срабатывания) с помощью коэффициента чувствительности нельзя.


Рис. 3. Характеристики чувствительности РТ и РС к переходному сопротивлению

Рекомендуемые записи

  • Моделирование релейной защиты в Simulink
    Программный комплекс Matlab/Simulink позволяет моделировать не только электрические сети, но и многое другое, в том…
  • История релейной защиты Насколько нам известно, вплоть до конца девятнадцатого века не было ни релейщиков, ни релейной защиты…
  • Моделирование релейной защиты в Simulink Программный комплекс Matlab/Simulink позволяет моделировать не только электрические сети, но и многое другое, в том…

Литература

  • Федосеев А. М. «Релейная защита энергетических систем»: Учебник для вузов. М.: «Энергия», 1976. − 560 с. с ил.
  • Чернобровов Н. В., Семенов В. А. «Релейная защита энергетических систем»: Учеб. пособие для техникумов. — М.: Энергоатомиздат, 1998. −800с.: ил.
  • Павлов, Г. М. «Автоматизация энергетических систем» : Учеб.пособие / Г. М. Павлов .— Ленинград : Изд-во Ленингр. ун-та, 1977 .— 237 с. : ил .— Библиогр.: с.233-234.
  • Булычев, А. В. Релейная защита электроэнергетических систем: учебное пособие / А. В. Булычев, В. К. Ванин, А. А. Наволочный, М. Г. Попов. — СПб.: Изд-во Политехн. ун-та, 2008. — 211 с.
  • РД 153-34.0-04.418-98 «Типовое положение о службах релейной защиты и электроавтоматики».
  • Шнеерсон Э. М. «Цифровая релейная защита» — М.: Энергоатомиздат, 2007. −549с.: ил.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]