Программируемый контроллер включения и выключения 3-фазного двигателя
Программируемый контроллер 3-фазного двигателя, который автоматически включает / выключает, может быть выполнен с помощью программируемого реле времени. В этом случае можно запрограммировать максимум восьмикратную продолжительность. Система имеет два программируемых реле времени для установки времени пуска и останова двигателя и две цепи управления, которые связаны с переключателями пуска и останова стартера 3-фазного двигателя. Блок-схема системы приведена на рис. 1.
Рис. 1: Блок-схема программируемого контроллера 3-фазного двигателя.
Предположим, что одинаковые значения времени установлены на обоих переключателях времени. Таким образом, если время начала, скажем, 8 часов утра запрограммировано для режима таймера 1 ВКЛ, то 8,01 утра будет запрограммировано для режима выключения таймера 1 в переключателе времени запуска. И, если время остановки, скажем, 9 часов утра, запрограммировано для режима включения таймера 2, то 9,01 утра будет запрограммировано для режима выключения таймера 2 в переключателе времени остановки. Когда время достигает 8 часов утра, переключатель времени запуска подключает первичную обмотку трансформатора X1 к 230 В переменного тока. Выход источника питания подключается к выводу 4 сброса IC1. R4 и C3 действуют как самозапускающиеся компоненты. Выход моностабильности на выводе 3 становится высоким в течение периода, равного 1,1 × R5 × C4, что почти равно пяти секундам.
Посмотрите товары для изобретателей. Ссылка на магазин.
Трехфазные драйверы нового поколения
20 марта 2008
Направления разработок 5-го поколения интегральных драйверов IR для электропривода
Поскольку современные разработки массового электропривода для промышленных приложений и бытовой техники ориентированы в основном на применение трехфазных асинхронных электродвигателей и бесконтактных двигателей постоянного тока, компания International Rectifier уделяет большое внимание совершенствованию соответствующей элементной базы, в том числе высоковольтных микросхем драйверов МОП-затворов. ИС трехфазных драйверов являются наиболее перспективным техническим решением для управления инверторами приводов мощностью до нескольких киловатт. Они позволяют интегрировать на одном кристалле необходимый набор функций управления и защиты силовой электроники, создавать наиболее простую, компактную и стабильную схему управления, не требуют сложных схем питания, обладают высоким быстродействием. Рост требований к силовой электронике массового привода, прежде всего по цене, компактности, КПД, надежности, отражается и на требованиях к драйверам. Технология драйверов 5-го поколения была разработана компанией IR специально для того, чтобы иметь возможность удовлетворять эти растущие требования на длительную перспективу. Эта технология позволяет повысить уровень интеграции функциональных возможностей при сохранении площади кристалла и цены.
В новых разработках драйверов IR для электропривода мощностью до нескольких киловатт можно выделить два основных направления.
Первое преследует цель создания максимально компактных ИС с минимальной ценой при ограниченном росте функциональных возможностей. Эти ИС предназначены для замены ИС предыдущего поколения при модернизации электроники привода, с целью снижения цены и упрощения схемотехники.
Второе направлено на разработку ИС для привода нового поколения с существенно более высокой эффективностью, широким набором функциональных возможностей при сохранении уровней цены и сложности схемотехники.
В рамках этих направлений IR уже приступила к серийному производству нескольких новых семейств драйверов.
Трехфазные драйверы для модернизации серийной продукции
Первым из новых семейств этого направления является серия IRS2336Dx, которая должна заменить популярную серию IR2136x предыдущего поколения.
Общая характеристика серии
В семейство входят 600-вольтовые драйверы IRS2336D и IRS23364D. Диапазон выходных напряжений первого равен 10…20 В (предназначен для управления силовыми МОП-транзисторами), второго 12…20 В (предназначен для управления IGBT). Драйверы выпускаются в 28-выводных корпусах DIP, SOIC и 44-выводном PLCC в бессвинцовом исполнении. Температурный диапазон эксплуатации микросхем от -40 до 125°С, хранения — от -55 до 150°С. Изделия этой серии относятся к классу ИС для индустриальных приложений по стандарту JEDEC JESD 47-E. Микросхемы в корпусах для поверхностного монтажа отвечают требованиям устойчивости к воздействию влажности уровня MSL-3 по JEDEC J-STD-020C. Схема включения этих микросхем представлена на рис. 1.
Рис. 1. Схема включения ИС серии IRS2336xD
Она во многом схожа со схемой для драйверов серии IR2136x, отсутствует лишь цепь бутстрепного ультрабыстрого диода.
Для упрощения перехода со старых ИС серии IR2136x на новые сохранено расположение и назначение выводов. ИС имеет 6 входов управления ключами инвертора (HIN-верхними, LIN-нижними), совместимых с КМОП- и ТТЛ-логикой любого уровня (включая 3,3 В), что позволяет реализовать управление драйвером напрямую от микроконтроллера. Выходы управления ключами инвертора (HO-верхние, LO-нижние) синфазны со входами HIN, LIN у драйвера IRS23364D и находятся в противофазе у IRS2336D.
Типовой уровень выходных токов драйверов новой серии (выводы HO, LO микросхемы) составляет 180 мА и 330 мА (втекающий/вытекающий ток затвора). Графики из справочных листов драйверов серии IRS2336xD (рис. 2) помогут подобрать частоту переключения драйверов при известных величине заряда затвора ключей инвертора и напряжении шины постоянного тока.
Рис. 2. Зависимость максимальной частоты переключения драйвера от заряда затвора транзистора и напряжения шины постоянного тока
Вход En (Enable) предназначен для дистанционного управления драйвером. Разрешение на работу драйвера дается при высоком логическом уровне на входе, запрещение при низком (уровень 0,8 В). Входной фильтр ИС на этом входе устраняет возможность срабатывания от ложных импульсов длительностью до 200 нс.
Интегрированный бутстрепный контур
В новых драйверах роль бутстрепного диода выполняют BootFET — бутстрепные МОП-транзисторы, интегрированные в кристалл ИС, что во многих случаях исключает необходимость применения внешних бутстрепных ультрабыстрых диодов и резисторов. Три бутстрепных транзистора подсоединены ко входу питания Vcc и к выходам Vв1, Vв2, Vв3 источников питания с плавающим уровнем, как показано на рис. 3.
Рис. 3. Подключение BootFET в ИС IRS2336xD
Интегральные BootFET включены только при высоком уровне выходов LO управления нижними ключами инвертора (рис. 4).
Рис. 4. График состояния BootFET
Напряжение Vвs на конденсаторе между выходами B и S циклически повышается в зависимости от времени нахождения выхода LO на низком уровне, емкости конденсатора, напряжения исток-сток (коллектор-эмиттер) и падения напряжения на антипараллельном диоде инвертора. Временные диаграммы бустрепных транзисторов примерно повторяют состояние выходов LO. BootFET находятся в проводящем состоянии при высоком уровне выхода LO и когда Vвs не превышает напряжение питания микросхемы Vcc (равное 15 В) более чем на 10%.
Интегральные бутстрепные транзисторы способны заменить внешние бутстрепные диоды в большинстве практических приложений. Ограничения в их применении могут быть связаны или со специфической схемотехникой (например, при реализации схем 6-шаговой модуляции) или с более низким, чем у ультрабыстрых диодов, быстродействием (в типовых бутстреных цепях обычно применяют диоды со временем обратного восстановления 100 нс). В этих случаях задача может быть решена дополнением схемы включения обычной бутстрепной цепью с ультрабыстрым диодом.
Повышенная устойчивость к помехам
С целью обеспечения высокой помехоустойчивости в драйверах новой серии сохранено разделение сигнальной и силовой земли, как это ранее было сделано в серии IR2136x. Выход сигнальной земли Vss используется в схемах защиты от перегрузки по току и формирования управления на входах HIN, LIN. Выход силовой земли COM совместно с выходами LO применяется при формировании управления нижними ключами инвертора. Помимо этого в новых драйверах применяются усовершенствованные входные фильтры. Отличие в логике работы такого фильтра иллюстрирует рис. 5.
Рис. 5. Логика работы обычного и усовершенствованного входных фильтров
Входной фильтр с обычной логикой работы бланкирует появление высокого уровня на выходе на время фильтрации tFIL,IN, и длительность выходного импульса по отношению ко входному уменьшается на время фильтрации (пунктирная линия на рис. 5). В усовершенствованном фильтре выходной сигнал также появляется с задержкой tFIL,IN, но длительность выходного импульса совпадает с длительностью входного (сплошная линия). Это позволяет эффективно устранять срабатывание схемы как от положительных, так и от отрицательных импульсных помех длительностью менее tFIL,IN. При более длинных входных импульсах длительность входных и выходных импульсов совпадает с достаточно высокой точностью (рис. 6).
Рис. 6. Длительность импульса на выходе усовершенствованного входного фильтра
В драйверах серии IRS2336xD усовершенствованные входные фильтры установлены на входах HIN, LIN управления инвертором (время фильтрации 350 нс) и на входе EN (200 нс).
Обеспечение надежного управления ключами инвертора
Временные задержки между сигналами управления на входе и выходными сигналами меняются в диапазоне 400…750 нс, а времена нарастания и спада на выходе — в диапазонах 110…190 нс и 35…75 нс соответственно. В трехфазных драйверах предусмотрено несколько ступеней функциональной защиты для предотвращения одновременного включения транзисторов инвертора и возникновения сквозных токов.
Специальная логическая схема устанавливает низкий уровень на выходах управления затворами верхнего и нижнего ключей при одновременном появлении высокого логического уровня на входах управления, тем самым блокируя работу драйвера.
В динамическом режиме работы драйвера разброс времен задержки между входным и выходным сигналами и фронтов выходных сигналов каналов драйвера может привести к перекрытию выходных сигналов и нежелательному срабатыванию ключей инвертора. Для предотвращения этого в схеме драйвера предусмотрен логический узел, который обеспечивает одинаковое время срабатывания верхнего и нижнего каналов драйвера, управляющих стойкой инвертора. Максимальная разница времен срабатывания составляет 50 нс (параметр МТ справочного листа). Помимо этого устраняется разница во временах срабатывания как между нижними, так и между верхними ключами.
Для предотвращения сквозных токов инвертора в драйверах предусмотрен узел формирования фиксированной паузы на переключение. Номинальная длительность паузы 300 нс (диапазон 190…420 нс). Схема формирования пауз обеспечивает для каналов управления верхним и нижним ключом разброс длительности пауз не более 60 нс. Это же относится и к разбросу длительности пауз между схемами управления всеми тремя стойками инвертора.
Высокая устойчивость к отрицательному смещению на выходе
Напряжение на выходах трехфазного инвертора (средние точки стоек) при идеальных условиях работы меняется от нуля (шина нулевого потенциала) до напряжения шины постоянного тока. На средней точке стойки Vs может за короткое время возникнуть значительное отрицательное смещение, которое будет передано на выход драйвера. Причиной этого может быть наличие индуктивной нагрузки, паразитные индуктивности в стойках инвертора, коммутация больших токов в течение коротких промежутков времени. Такая ситуация может происходить как в рабочем режиме, так и в режиме короткого замыкания, выключения при перегрузке по току и т.д. Драйверы новой серии способны успешно противостоять таким воздействиям. График на рис. 7 иллюстрирует возможность работы драйверов серии IRS2336xD при ударных отрицательных смещениях напряжения до минус 60 В.
Рис. 7. Устойчивость к отрицательному смещению на выходе (средней точке стойки) в зависимости от времени
С учетом этого драйверы новой серии являются гораздо более надежными силовыми ИС для управления инверторами приводов в реальных условиях эксплуатации.
Функции защиты
В новых ИС сохранены функции защиты, реализованные ранее в ИС серии IR2136x.
Вывод FAULT предназначен для передачи информации об аварийной ситуации за время работы таймера, программируемого внешней цепью RRCIN, CRCIN. Номинал резистора может быть выбран в диапазоне от 0,5 до 2 Мом, керамический конденсатор может иметь емкость до 1 нФ. Работа драйвера блокируется в двух случаях — при низком напряжении питания (уровень 8,9…8,2 В) и при наличии высокого уровня на входе ITRIP.
Рисунок 8 иллюстрирует вторую из этих ситуаций. При высоком уровне сигнала на выводе ITRIP напряжение на выводах VRCIN и VFAULT снижается до уровня на выводе Vss (сигнальная земля).
Рис. 8. Временные диаграммы работы таймера и выхода FAULT
Когда уровень сигнала на выводе ITRIP становится низким, запускается таймер, который спустя время tFLTCLR (определяется постоянной времени RС-цепи) производит сброс входа FAULT, уровень сигнала на котором снова становится высоким.
Вход ITRIP может быть использован для обнаружения перегрузки по току в шине нулевого потенциала инвертора. В этом случае выходы ИС переводятся на низкий уровень и выдается сигнал аварийной ситуации по выходу FAULT. Номиналы делителя R0, R1, R2 (рис. 9) определяются исходя из порогового уровня 0,46 В на входе ITRIP и уровня тока срабатывания защиты.
Рис. 9. Схема обнаружения перегрузки по току
Аналогичным образом может быть обеспечена защита от перегрева. Параметры термистора Rt и резисторов R3, R4 должны быть выбраны таким образом, чтобы пороговое напряжение 0,46 В было достигнуто при максимально допустимой температуре. Рисунок 9 показывает, как обеспечить одновременную реализацию этих возможностей с помощью развязывающих диодов.
(Продолжение следует)
Литература
1. Data sheet IR2136x
2. Data sheet IRS2336xD.
Получение технической информации, заказ образцов, поставка — e-mail
Силовой миниблок для сильноточных POL-конверторов
Компания International Rectifier анонсировала iP1206 — новое техническое решение для реализации понижающих синхронных конверторов, применяемых при питании телекоммуникационного и сетевого оборудования. Микросхема является новейшим дополнением в семействе iPOWIRTM силовых миниблоков, содержащих все пассивные компоненты и полупроводниковые приборы для реализации силовой части синхронных преобразователей. На базе iP1206 можно реализовать однофазный конвертор с выходным током до 30 А и двухфазный конвертор с двумя независимыми выходами на токи по 15 А. Обе опции основаны на противофазной работе каналов с целью снижения пульсаций входного напряжения и тока. Для достижения высокой объемной плотности в iP1206 применены полноценный ШИМ-контроллер и оптимизированный силовой каскад на современных полупроводниковых приборах.
Поскольку новая микросхема содержит все важные с точки зрения качества преобразования полупроводниковые и пассивные компоненты, то для создания высококачественного преобразователя требуется дополнительно всего несколько пассивных мощных компонентов. При этом существенно снижаются требования к квалификации разработчика и печатной плате. Особенностями iP1206PBF являются постоянная частота ШИМ 600 кГц в каналах, ограничение тока без потерь, защита от перенапряжения и перегрева, режим старта со смещением, трэкинг выходного напряжения.
Диапазон входных напряжений составляет 7,5…14,5 В, выходных 0,8…5,5 В. Микросхема выпускается в корпусе LGA. Для упрощения освоения применения iP1206 компания предлагает демонстрационный преобразователь IRDCiP1206-B 2х15А и онлайн-моделирование работы преобразователя iP1206 Spice circuit simulation.
•••
Наши информационные каналы
Контроллер трехфазного двигателя своими руками
Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки. Далее будут рассмотрены основные настройки дельта принтера. Для управления и настройки принтера мы используем программу Pronterface
. Калибровка принтера делится на три этапа:
1 Этап. Корректируем плоскость по трем точкам
Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей. Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z
соответствует осям
A, B, C
.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера. Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна
A= X-52 Y-30
;
B= X+52 Y-30
;
C= X0 Y60
.
Схема 3-фазного двигателя с программируемым контроллером
Рис. 2: Принципиальная схема программируемого контроллера 3-фазного двигателя. Поскольку на контакте 3 IC1 высокий уровень, реле RL1 получает питание в течение пяти секунд, что, в свою очередь, замыкает пусковой выключатель, расширяя трехфазное питание двигателя. Это практически аналогично физическому нажатию пускового выключателя 3-фазного пускателя двигателя в течение пяти секунд. Когда время достигает 9 часов утра, второй временной выключатель (выключатель останова) подает 230 В переменного тока на первичную обмотку трансформатора X2. Опять же, благодаря использованию двухполупериодного выпрямителя и схемы фильтра, 12 В постоянного тока подается на вторую моностабильную цепь, имеющую реле RL2. Нормально-замкнутая (N / C) клемма реле соединена последовательно с выключателем стартера 3-фазного двигателя. Итак, реле разрывает цепь, чтобы остановить двигатель. Это пример одной продолжительности времени с 8 утра до 9 утра. Таким образом, для включения и выключения трехфазного электродвигателя можно запрограммировать максимум восемь временных интервалов. Предусмотрена настройка дней недели для работы контроллера. Например, он может работать с понедельника по пятницу, с понедельника по субботу, все семь дней недели или только в определенный день недели. Эта система может найти множество применений, включая включение водяного насоса в многоэтажном коммерческом здании, чтобы заполнять верхние резервуары только в течение пяти или шести дней в неделю. Это также может оказаться полезным для фермеров, промышленных предприятий или железнодорожных станций, где используются 3-фазные двигатели. Электроника для самоделок вкитайском магазине.
Схема работы
Две идентичные цепи электропитания построены вокруг трансформаторов X1 и X2 со связанными компонентами, как показано на рис. 2. Устройство обеспечивает 12 В постоянного тока для двух цепей управления, построенных вокруг двух таймеров 555 IC1 и IC2, которые настроены в моностабильном режиме. Два таймера, используемые в этой системе, изготовлены Frontier, модель TM-619-2. Они работают на 230 В переменного тока при 50 Гц. Каждый переключатель имеет встроенное одиночное переключающее реле с номинальным сопротивлением 16А. Имеет ЖК-дисплейс помощью кнопок, таких как CLOCK, TIMER, DAY, HOUR, MIN и MANUAL, как показано на рис. 3. С помощью этих кнопок устанавливаются часы реального времени и программируются различные временные интервалы. Реле времени – это программируемое цифровое устройство, которое имеет цифровые часы реального времени и может программировать в течение максимум восьми временных интервалов. Продолжительность может быть для определенного дня, альтернативных дней, с понедельника по пятницу, с понедельника по субботу или с понедельника по воскресенье.
Рис. 3: Передняя часть реле времени.
Рис. 4: Задняя часть реле времени.
Рис. 5: Типичный пускатель для 3-фазного двигателя.
Удерживая кнопку часов, реальное время задается с помощью кнопок HOUR, MIN и DAY, а различные длительности программируются с помощью кнопок TIMER, HOUR, MIN и DAY.
Есть три режима, а именно: ВКЛ, АВТО и ВЫКЛ, написанные чуть ниже дисплея. По истечении времени программирования черный горизонтальный отрезок линии сохраняется в режиме AUTO из режима OFF нажатием кнопки MANUAL. Реле времени обеспечивает пять внешних выводов, пронумерованных от 1 до 5, как показано на рис. 4. На контакты 1 и 2 разъемов CON1 и CON2 для переключателей пуска и останова подается 230 В переменного тока, причем контакт 1 является нейтральным.
Токоведущие контакты 2 соединяются проводом с контактами 3, а выходное напряжение снимается с контактов 1 и 5. Имеется положение ячейки кнопки. CR2032 для хранения часов и запрограммированных времен. Это означает, что даже если 230 В переменного тока отключено, часы и запрограммированное время не нарушаются (при сбое в сети) в течение 60–90 дней. При наличии сетевого питания элемент заряжается непрерывно. Схема управления имеет два моностабильных мультивибратора с выдержкой времени в пять секунд.
Переключатель времени запуска 1 подключен к первому моностабильному мультивибратору, построенному вокруг IC1, как показано на рисунке 2. Часы реального времени переключателя времени 1 устанавливаются путем нажатия и удерживания кнопки CLOCK и регулировки времени с помощью кнопок HOUR, MIN и DAY. Если в еженедельном режиме необходимо запрограммировать длительность в первый раз с 8:00 до 9:00, то в 8:00 запрограммирован режим 1 ВКЛ, а в первый раз запрограммировано 8:01 в режиме 1 ВЫКЛ.
Двигатель отключается с помощью второй цепи мультивибратора, как показано на рис. 2, в которой N / C и общие клеммы реле RL2 соединены последовательно с выключателем стартера. Часы реального времени устанавливаются нажатием и удерживанием кнопки CLOCK и настройкой времени с помощью кнопок HOUR, MIN и DAY. Время выключения, то есть 9 утра, запрограммировано в режиме 1 Вкл. С еженедельным выбором дня нажатием кнопки TIMER. Снова, нажав кнопку TIMER, 9,01 AM устанавливается в режим 1 ВЫКЛ с еженедельным выбором дня во втором таймере. Когда достигается время 9 AM, второй временной выключатель подает 230 В переменного тока через первичную обмотку понижающего трансформатора X2, а второй двухполупериодный выпрямитель выдает 12 В постоянного тока. Это напряжение поступает на вторую моностабильную схему мультивибратора, как показано на рис. 2.
Рис. 5 показывает фотографию типичного стартера для трехфазного электродвигателя вместе с внутренней сборкой стартера. Справа от фотографии показаны две кнопки; зеленая кнопка используется для запуска двигателя, а красная кнопка используется для его остановки. У этого также есть катушка реле. Когда пусковой переключатель кратковременно нажимается, ток течет через катушку, полоса реле тянется к железу катушки, и на двигатель подается трехфазное напряжение.
Рис. 6: Печатная плата контроллера трехфазного электродвигателя.
Рис. 7: Компонентная схема печатной платы.
Загрузите PDF-файлы для печатных плат и компонентов: нажмите здесь
Одна микросхема — один двигатель. STSPIN32F0 — готовое решение для управления BLDC-моторами
STMicroelectronics – мировой лидер по производству микроконтроллеров. За последние десять лет компания совершила революцию и создала наиболее мощную экосистему на базе бюджетных семейств STM8 и STM32. Также STMicroelectronics может похвастаться интересными наработками в области управления электродвигателями. Иногда компания экспериментирует и выпускает на рынок инновационные специализированные продукты. Ярким примером этого является микросхема STSPIN32F0, объединяющая микроконтроллер с ядром ARM Cortex-M0 и систему управления электродвигателем.
Как купить трехфазный счетчик
Вы можете купить трехфазный счетчик электроэнергии как отдельно, так и в составе комплекта с контроллером для дистанционной передачи показаний. Второй вариант выгоднее, так как в стоимость комплект включена скидка. Тем не менее, каждый компонент системы можно приобрести отдельно. Доставка осуществляется по Москве и всей России. За установкой, подключением и настройкой обращайтесь к нашим партнерам.
Если вам нужна помощь в подборе оборудования, обращайтесь к нашим консультантам по телефону или в онлайн-чате.
Источник
Регуляторы оборотов асинхронных однофазных двигателей 220 В
Для однофазной системы управления все подобные регуляторы скорости требуют наличие встроенного в двигатель тахогенератора. Контроллер сравнивает текущее значение частоты вращения вала электродвигателя, определяемое при помощи тахогенератора, и требуемое значение скорости, устанавливаемое потенциометром либо внешним аналоговым сигналом, и в зависимости от этого регулирует обороты величиной питающего напряжения. Такая схема очень надежна, однофазные регуляторы скорости получили широкое распространение в самом различном оборудовании. Все предлагаемые блоки управления подходят только для электродвигателей и мотор-редукторов серий (регулируемые однофазные двигатели со встроенным тахогенератором) и YF (двигатель со встроенным тормозом и тахогенератором), для серии YS (такие же мотор-редукторы без тахогенератора) контроллеры не подходят, для как и для всех вариантов моторов с трехфазным питанием (с тормозом или без тормоза).
Для управления трехфазными двигателями и мотор-редукторами рекомендуем рассмотреть серию частотных преобразователей T13 с однофазным входом и трехфазным выходом.