Что такое конденсатор и его основные характеристики
Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.
Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение
Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:
- микрофарадах — мкФ это 10-6 фарада,
- нанофарадах — нФ это 10-9 фарада;
- пикофарадах — пФ это 10-12 фарада.
Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.
У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе
Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.
Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.
Параллельное и комбинированное соединение
Выделяются другие способы соединения, а именно комбинированное и параллельное подключение конденсаторов. Для них справедливы иные физические законы.
Параллельные конденсаторы
Энергия конденсатора
Напряжение всей группы при параллельном соединёнии конденсаторов равно вольтажу самого наименьшего из них. Т.е., если имеется цепь из трёх конденсаторов на 16, 25 и 50 В, то максимум, который на них можно подать, это 16 В. В такой схеме к каждой отдельной ёмкости будет приложено полное напряжение источника питания.
Ёмкость такой батареи складывается. Вызвано это виртуальным сложением площадей обкладок всех отдельных конденсаторов. На языке физики это выглядит так:
Cобщ.пар = С1 + С2 + … + Сn.
Зачем нужно такое соединение? Оно используется для увеличения ёмкости конденсаторов, например, в высоковольтной части сварочных инверторов и многих мощных блоках питания.
Дополнительная информация. Параллельное соединение позволяет снизить общее внутреннее сопротивление сборки, следовательно, и её нагрев. Тем самым можно увеличить срок службы ёмкости.
Комбинированное (смешанное) соединение наиболее сложное. В нём встречаются как последовательные, так и параллельные элементы. Расчёт параметров таких схем даётся с опытом. Для простоты его принято изучать по треугольнику, разбивая на более простые части.
Смешанное соединение
Из схемы очевидно, что конденсаторы C1 и C2 включены последовательно. Их общую ёмкость можно рассчитать по вышеописанной формуле – Cобщ.посл. Далее схема упрощается. Здесь уже имеются два параллельных конденсатора Cобщ.посл и C3. Вычисляется по вышестоящей формуле Cобщ.пар. В итоге сложный для восприятия элемент цепи превращается в один эквивалентный конденсатор. Данная методика описывает алгоритм упрощения, с помощью которого можно рассчитывать гораздо более сложные конденсаторные фигуры (квадрат, куб и т.п.).
Параллельное соединение конденсаторов
Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов. При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов. Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.
Напряжение при параллельном соединении
На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:
- ic — ток конденсатора
- C — Емкость конденсатора
- ΔVC/Δt – Скорость изменения напряжения
Будет интересно➡ Сколько стоят керамические конденсаторы?
При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:
Что он из себя представляет и как работает
В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.
Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток
На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
- Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
- Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.
Часто можно увидеть электролитические цилиндрические конденсаторы - Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
- Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
- Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
- Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
- В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Электрическая емкость
При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.
Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.
Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.
Как правильно соединять конденсаторы
Чтобы узнать, как подключить конденсатор правильно, нужно разобраться, к какому именно типу он относится. Данных электронных приборов существует огромное множество. Все конденсаторы подразделяются на две группы:
- полярные (электролитические) – подключая их, необходимо учитывать, где у детали плюсовой, а где минусовой контакт;
- неполярные (все остальные) – эти конденсаторы способны работать от переменного тока, у них не бывает положительных и отрицательных клемм.
Затем нужно учесть конструкцию электронного компонента. С этой точки зрения конденсаторы могут быть:
- Выводными. Подключаются к плате с помощью тонких медных ножек, покрытых (лужёных) для защиты слоем припоя.
- Для поверхностного монтажа (SMD). В основном применяются в компактной электронике. Очень миниатюрны, часто в поперечнике не превышают 1 мм.
Также важно принять во внимание рабочее напряжение конденсатора. Это особенно принципиально для электролитических приборов данного типа, ведь при превышении их номинального вольтажа они, вероятнее всего, взорвутся, разбрызгивая во все стороны кипящий электролит.
Важно! На крышке электролитического конденсатора имеются две насечки. Эти слабые места служат для мгновенной разгерметизации изделия в случае избыточного внутреннего давления. При ремонте и наладке оборудования следует избегать направленности насечек на лицо или одежду. При внештатной ситуации с их стороны может брызнуть горячий электролит.
Не менее критичен порог максимального напряжения и для прочих видов конденсаторов, особенно имеющих мелкие габариты и не способных длительно выдерживать перегрузки.
Последний, но не наименее важный фактор, который следует учесть при соединении конденсаторов, – это их ёмкость. Она измеряется в микрофарадах (в честь Майкла Фарадея). Это их главная характеристика, поэтому конденсаторы часто называют электрическими ёмкостями. В некоторых электронных устройствах этот параметр может существенно отклоняться как в меньшую, так и в большую сторону. В других – недопустимо погрешность и на 1 %.
Конструкция и принцип работы
И еще один очень важный момент. Расчет номинала конденсаторов Условные обозначения: Сп — пусковой, Ср — рабочий. Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.
В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью.
Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Для этого могут использоваться активные резисторы, катушки индуктивности и конденсаторы.
И один кончик пусковой обмотки, на один из рабочих. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Определение пар проводов относящихся к одной обмотке Вторая задача определение начала и конца обмоток несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Однако, в данном случае произойдет снижение частоты вращения.
На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.
Нет конденсатора нужного номинала: что делать
Очень часто начинающие домашние мастера, обнаружив поломку прибора, стараются самостоятельно обнаружить причину. Увидев сгоревшую деталь, они стараются найти подобную, а если это не удаётся, несут прибор в ремонт. На самом деле, не обязательно, чтобы показатели совпадали. Можно использовать конденсаторы меньшего номинала, соединив их в цепь. Главное – сделать это правильно. При этом достигается сразу 3 цели – поломка устранена, приобретён опыт, сэкономлены средства семейного бюджета.
Попробуем разобраться, какие способы соединения существуют и на какие задачи рассчитаны последовательное и параллельное соединение конденсаторов. Часто без соединения конденсаторов в батарею не обойтись. Главное – сделать это правильно
Как подключать конденсаторы
В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.
В схеме может быть последовательное и параллельное соединение конденсаторов
Параллельное подключение конденсаторов
При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).
Соединение конденсаторов в батарею: способы выполнения
Существует 3 способа соединения, каждый из которых преследует свою определённую цель:
- Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
- Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
- Смешанное – увеличивается как ёмкость, так и напряжение.
Теперь рассмотрим каждый из способов более подробно.
Параллельное соединение: схемы, правила
На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + … + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = … = Vn.
Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто. Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать.
Последовательное соединение: способ, используемый реже
При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ +…+ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + … + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.
Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:
- напряжение: 150 + 150 + 150 = 450 В;
- ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.
Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.
Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.
Смешанное соединение конденсаторов: схема, причины необходимости применения
Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю.
Составим алгоритм вычислений.
- всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
- высчитываем номиналы;
- вычисляем общие показатели, как при последовательном включении.
Параллельное и последовательное соединение конденсаторов
Элементы цепи могут быть подключены двумя способами:
Проиллюстрируем данные подключения на примере двух конденсаторов (рис. 1).
последовательное соединение конденсаторов
Рис. 1. Последовательное соединение конденсаторов
Логическая зарядка конденсаторов происходит как показано на рис.1. Приходя из цепи, электрон останавливается на левой обкладке (пластине) конденсатора. При этом, благодаря своему электрическому полю (электризация через влияние), он выбивает другой электрон с правой обкладки, уходящий дальше в цепь (рис. 1.1). Этот образовавшийся электрон приходит на левую обкладку следующего конденсатора, соединённого последовательно. И всё повторяется снова. Таким образом, в результате «прохождения» через последовательную цепь конденсаторов «одного» электрона, мы получаем заряженную систему с одинаковыми по значению зарядами на каждом из конденсаторов (рис. 1.2).
Кроме того, напряжение на последовательно соединённой батареи конденсаторов есть сумма напряжений на каждом из элементов (аналог последовательного сопротивления проводников).
Рис. 2. Последовательное соединение конденсаторов
Часть задач школьной физики касается поиска общей электроёмкости участка цепи, логика такого поиска: найти такую электроёмкость, которым можно заменить цепь, чтобы параметры напряжения и заряда остались неизменными (рис. 2). Пусть заряд на обоих конденсаторах — (помним, что они одинаковы), электроёмкости — , и соответствующие напряжения — и .
- где — напряжение на первом конденсаторе,
- — электроёмкость первого конденсатора,
- — заряд конденсатора.
- где — напряжение на втором конденсаторе,
- — электроёмкость второго конденсатора,
- — заряд конденсатора.
- где — напряжение полной цепи,
- — электроёмкость общего конденсатора,
- — заряд общего конденсатора.
Памятуя о том, что конденсаторы соединены последовательно, получаем:
Или в общем виде:
- где — электроёмкость последовательно соединённых конденсаторов,
- — сумма обратных емкостей.
Для цепи из двух последовательных соединений:
параллельное соединение конденсаторов
Рис. 3. Параллельное соединение конденсаторов
Параллельное подключение конденсаторов представлено на рисунке 3. При внесении электрона в систему, у него есть выбор: пойти на верхний или нижний конденсатор. При большом количестве электронов заполнение обкладок конденсатора происходит прямо пропорционально электроёмкости конденсаторов.
Рис. 4. Параллельное соединение конденсаторов. Поиск полной электроёмкости
Опять попробуем решить задачу по поиску полной ёмкости конденсаторов (рис. 4). Помним, что при параллельном подключении напряжения на элементах одинаковы, тогда:
- где — заряд на первом конденсаторе,
- — электроёмкость первого конденсатора,
- — напряжение на первом конденсаторе.
- где — заряд на втором конденсаторе,
- — электроёмкость второго конденсатора,
- — напряжение на втором конденсаторе.
- где — заряд на общем конденсаторе,
- — электроёмкость полного конденсатора,
- — напряжение на общем конденсаторе.
С учётом того, что , получим:
Или в общем виде:
- где — электроёмкость параллельно соединённых конденсаторов,
- — сумма электроёмкостей последовательно соединённой цепи.
Вывод: в задачах, в которых присутствует цепь, необходимо рассмотреть, какое конкретно соединение рассматривается, а потом использовать соответствующую логику рассуждений:
- для последовательного соединения заряды всех конденсаторов одинаковы: .
- напряжение во всей цепи есть сумма напряжений на каждом из элементов: ,
- полная электроёмкость цепи конденсаторов, соединённых последовательно равна: .
- заряд системы конденсаторов есть сумма зарядов на каждом из них: ,
Советуем изучить Проверка напряжения в розетке
Ток при последовательном соединении конденсаторов
Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.
Конденсатор и постоянный ток
Маркировка танталовых smd конденсаторов
Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.
Конденсатор и переменный ток
При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.
Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом. Несоблюдение правила однажды приведёт к неприятному удару током.
Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:
I = 2pfCU.
Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.
Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.
Фильтр на основе ёмкости
Смешанное соединение конденсаторов
Смешанное соединение (последовательно-параллельное) конденсаторов применяют тогда, когда необходимо увеличить емкость и рабочее напряжение батареи конденсаторов.
Рассмотрим смешанное соединение конденсаторов на нижеприведенных примерах.
Энергия конденсаторов
где Q
— заряд конденсатора или конденсаторов, к которым приложено напряжение
U; С
— электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение
U.
Таким образом, конденсаторы служат для накопления и сохранения электрического поля и его энергии.
15.Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник
сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)
Рисунок 5- Схема электрическая
6.СХЕМЫ ЗАМЕЩЕНИЯ
Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.
На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.
1.Схемы замещения элементов электрических цепей
На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).
Приr= 0 внутреннее падение напряженияUо = 0, поэтому
напряжение на зажимах источника при любом токе равно
ЭДС: U=E=
const.
В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14,а),
где вместо ЭДС
Е
источник характеризуется его током короткого замыканияIK, а вместо внутреннего сопротивления в расчет вводится внутренняя проводимость
g=1/r.
Советуем изучить Самодельная телевизионная антенна: для dvb и аналогового сигнала
Возможность такой замены можно доказать, разделив равенство (3.1) на r:
Ur =
Er—I,
где Ur =
Io
—некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;
Er =IK
— ток короткого замыкания источника;
Вводя новые обозначения, получим равенство IK =
Io+I,
которому удовлетворяет эквивалентная схема рис. 3.14,
а.
В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):
I=Iк=const.
Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.
Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.
Законы последовательного и параллельного соединения проводников
Для детального понимания на практике обоих типов соединений, приведем формулы, объясняющие законы данных типов соединений. Расчет мощности при параллельном и последовательном типе соединения отличается.
При последовательной схеме имеется одинаковая сила тока во всех проводниках:
I = I1 = I2.
Согласно закону Ома, данные типы соединений проводников в разных случаях объясняются иначе. Так, в случае последовательной схемы, напряжения равны друг другу:
U1 = IR1, U2 = IR2.
Помимо этого, общее напряжение равно сумме напряжений отдельно взятых проводников:
U = U1 + U2 = I(R1 + R2) = IR.
Полное сопротивление электроцепи рассчитывается как сумма активных сопротивлений всех проводников, вне зависимости от их числа.
В случае параллельной схемы совокупное напряжение цепи аналогично напряжению отдельных элементов:
U1 = U2 = U.
А совокупная сила электротока рассчитывается как сумма токов, которые имеются по всем проводникам, расположенным параллельно:
I = I1 + I2.
Чтобы обеспечить максимальную эффективность электрических сетей, необходимо понимать суть обоих типов соединений и применять их целесообразно, используя законы и рассчитывая рациональность практической реализации.
Смешанное соединение проводников
Последовательная и параллельная схема соединения сопротивления могут сочетаться в одной электросхеме при необходимости. К примеру, допускается подключение параллельных резисторов по последовательной схеме к другому резистору или их группе, такое тип считается комбинированным или смешанным.
В таком случае совокупное сопротивление рассчитывается посредством получения сумм значений для параллельного соединения в системе и для последовательного. Сначала необходимо рассчитывать эквивалентные сопротивления резисторов в последовательной схеме, а затем элементов параллельного. Последовательное соединение считается приоритетным, причем схемы такого комбинированного типа часто используются в бытовой технике и приборах.
Итак, рассматривая типы подключений проводников в электроцепях и основываясь на законах их функционирования, можно полностью понять суть организации схем большинства бытовых электроприборов. При параллельном и последовательном соединениях расчет показателей сопротивления и силы тока отличается. Зная принципы расчета и формулы, можно грамотно использовать каждый тип организации цепей для подключения элементов оптимальным способом и с максимальной эффективностью.
Смешанное подключение
Но, стоит учитывать, что для соединения различных конденсаторов необходимо учитывать напряжение сети. Для каждого полупроводника этот показатель будет отличаться в зависимости от емкости элемента. Отсюда следует, что отдельные группы полупроводниковых двухполюсников малой емкости будут при зарядке становиться больше, и наоборот, электроемкость большого размера будет нуждаться в меньшем заряде.
Схема: смешанное соединение конденсаторов
Существует также смешанное соединение двух и более конденсаторов. Здесь электрическая энергия распределяется одновременно при помощи параллельного и последовательного подключения электролитических элементов в цепь. Эта схема имеет несколько участков с различным подключением конденсирующих двухполюсников. Иными словами, на одном цепь параллельно включена, на другом – последовательно. Такая электрическая схема имеет ряд достоинств сравнительно с традиционными:
- Можно использовать для любых целей: подключения электродвигателя, станочного оборудования, радиотехнических приборов;
- Простой расчет. Для монтажа вся схема разбивается на отдельные участки цепи, которые рассчитываются по отдельности;
- Свойства компонентов не изменяются независимо от изменений электромагнитного поля, силы тока. Это очень важно при работе с разноименными двухполюсниками. Ёмкость постоянна при постоянном напряжении, но, при этом, потенциал пропорционален заряду;
- Если требуется собрать несколько неполярных полупроводниковых двухполюсников из полярных, то нужно взять несколько однополюсных двухполюсника и соединить их встречно-параллельным способом (в треугольник). Минус к минусу, а плюс к плюсу. Таким образом, за счет увеличения емкости изменяется принцип работы двухполюсного полупроводника.
Как проверить качество соединения конденсаторов в цепи
Самый идеальный случай, когда у нас на руках имеется соответствующего типа вольтметр. Он стоит в пределах одной тысячи рублей.
Это не так много, учитывая, что вкупе мы получаем прибор для измерения сопротивлений, постоянного и переменного напряжения, токов.
Гнездо под измерение конденсатор (см. фото слева) представляет собой две узкие щели, куда должны вставляться ножки.
По нашим наблюдениям нет разницы, какой стороной вставлять электролитический конденсатор. Хотя лучше все же руководствоваться инструкцией по эксплуатации.
Ззатем как-то нужно промаркировать их, либо разложить по нарисованной на бумаге схеме, где уже проставлять все цифры (кстати, так обычно и делается во всей китайской технике).
Затем следует вычислить по формулам, какое именно значение должно получиться и проверить это тестером. Не получается? Значит, качество контактов плохое – меньше применяйте скруток.
СОЕДИНЕНИЯ КОНДЕНСАТОРОВ
Если необходимо увеличить общую емкость конденсаторов, то их соединяют между собой параллельно (рис. 9, а
). При этом способе соединения общая площадь пластин увеличивается по сравнению с площадью пластины каждого конденсатора. Общая емкость конденсаторов, соединенных параллельно, равна сумме емкостей отдельных конденсаторов и вычисляется по формуле Собщ=С1 + С2+С3+
(10)
Это можно подтвердить следующим образом.
Соединенные параллельно конденсаторы находятся под одним и тем же напряжением, равным U вольт, а общий заряд этих конденсаторов равен q кулонов. При этом каждый конденсатор соответственно получает заряд q 1 , q 2 , q 3, и т. д. Следовательно,
q общ = q 1 + q 2 + q 3 +
Из формулы (8) вытекает, что заряд
q общ = С общ U (11)
а заряды q 1 = С 1 U; q 2 = С 2 U; q 3 = С 3 U.
Подставив эти выражения в формулу (11), получим:
С общ U= С 1 U + С 2 U + С 3 U.
Разделив левую и правую части этого равенства на равную для всех конденсаторов величину U, после сокращения найдем:
С общ = С 1 + С 2 + С 3
Пример
. Три конденсатора емкостью С 1 =2 мкф ; C 2 =0,1 мкф и C 3 =0,5 мкф соединены параллельно.
Вычислить их общую емкость.
С общ = С 1 + С 2 + С 3 =2+00,1+0,5=2,6 мкф.
Общую емкость конденсаторов, имеющих одинаковую емкость и соединенных параллельно, можно вычислить по формуле
С общ = Сn, (12)
где С — емкость одного конденсатора,
n — число конденсаторов.
Пример.
Пять конденсаторов емкостью 2 мкф каждый соединены параллельно. Определить их общую емкость.
С общ = Сn =2·5=10 мкф.
Конденсаторы соединяют последовательно (рис. 9, б), когда рабочее напряжение установки превышает напряжение, на которое рассчитана изоляция одного конденсатора. В этом случае правую пластину первого конденсатора соединяют с левой пластиной второго, правую пластину второго — с левой пластиной третьего и т. д. Общая емкость конденсаторов при таком соединении уменьшается. Величина, обратная общей емкости конденсаторов, соединенных последовательно , равна сумме обратных величин емкостей отдельных конденсаторов:
Это можно подтвердить следующим образом. Общее напряжение на конденсаторах U общ а на каждом конденсаторе U 1 , U 2 , U 3 , тогда
U общ = U 1 +U 2 + U 3 .
Из Формулы (8) следует, что напряжение
U общ = (14)
а напряжение
Подставив эти выражения в формулу (14), получим:
Разделим левую и правую части этого равенства на величину q и после сокращения найдем:
Пример. Три конденсатора С1=2 мкф, С2=4 мкф и С3=8 мкф соединены последовательно. Определить их общую емкость.
Если последовательно соединены конденсаторы, имеющие одинаковую емкость, то их общую емкость можно вычислить по формуле
Пример.
Четыре конденсатора емкостью 1000 пф каждый соединены последовательно. Определить их общую емкость. Решение.
Если последовательно соединены два конденсатора различной емкости, то их общую емкость можно найти по формуле
Пример.
Два конденсатора С 1 =200 пф
и С 2 =300 пф соединены последовательно. Вычислить их общую емкость.
Как видно из приведенных примеров, общая емкость конденсаторов, соединенных последовательно, всегда меньше наименьшей емкости, входящей в соединение.
Конденсаторы выбирают по емкости и рабочему напряжению которое подается на его пластины при включении в схему. При напряжении, превышающем допустимое, происходит пробой диэлектрика в конденсаторе. Это напряжение называется пробивным. Пробой диэлектрика сопровождается электрическим разрядом — искрой с характерным треском. Конденсатор с пробитым диэлектриком не пригоден для применения.
Каждый диэлектрик обладает определенной электрической прочностью, т. е. способностью противостоять пробою. Электрическая прочность (табл. 2) измеряется обычно в (в/см
) и определяется по формуле
где U — напряжение, в
d — толщина диэлектрика, см.
Многие, собирая тот или иной прибор, часто задумываются о том, как соединить конденсаторы параллельным или последовательным соединением. Далеко не каждый номинал выпускается промышленностью, поэтому задача обеспечить конструкцию связкой ёмкостей встречается тут и там. При параллельном включении номиналы складываются, а при последовательном используется более сложная формула. А ещё конденсаторы бывают подстроечными, такие совершенно точно включаются в цепи, где требуется обеспечить нужные резонансные характеристики. В этом случае также требуется решить указанную выше задачу. Проблема ещё в том, что часто сборка какого-нибудь индукционного нагревателя идёт буквально на коленках, железа целая кипа, колодок под рукой нет, а паять лень – что делать?
Последовательное соединение конденсаторов.
Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последовательным (рисунок 3).
Рисунок 2. Последовательное соединение конденсаторов.
При последовательном соединении все конденсаторы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заряжаются через влияние. При этом заряд пластины 2 будет равен по величине и противоположен по знаку заряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пластины 2 и т. д.
Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.
Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.
Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.
Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряжения, существующего на всей группе конденсаторов. Напряжение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединенных последовательно, меньше емкости самого малого конденсатора в группе.
Для вычисления общей емкости при последовательном соединении конденсаторов удобнее всего пользоваться следующей формулой:
Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:
Сравнение различных вариантов
Емкость | Напряжение | |
Параллельное | Увеличивается | Не изменяется |
Последовательное | Уменьшается | Увеличивается |
Смешанное | Изменяется | Увеличивается |
Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.
Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.