Как лучше подключить лампочки последовательно или параллельно
При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель. Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например. Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.
Последовательное соединение
Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:
При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.
При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).
Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:
Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.
Лучше соединять параллельно
Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.
- Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
- Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
Параллельное включение
Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
Параллельное соединение
В цепях, соединенных параллельно, к каждому из элементов прикладывается полное напряжение источника питания. При этом ток, протекающий через каждую из ветвей, зависит только от ее сопротивления. Провода от каждого патрона соединены между собой обоими концами.
- если одна лампа перегорит – остальные продолжат выполнять свои функции;
- каждая из цепей светит в полный накал независимо от своей мощности, потому что к каждой приложено полное напряжение;
- можно вывести из светильника три, четыре и больше проводов (ноль и нужное количество фаз к выключателю) и включать нужное количество ламп или группу;
- работают энергосберегающие лампочки.
Чтобы включать свет по группам, соберите такую схему либо в корпусе светильника, либо в распределительной коробке.
Каждая из ламп включается своим выключателем, их в этом случае три, а включены две.
Законы смешанного соединения
Смешанное включение осветителей описывается следующим образом:
В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.
При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:
Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.
Типы ламп и схемы подключения
Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.
Люминесцентные лампы
Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:
Что такое параллельное подключение?
Под параллельным подключением в электротехнике следует понимать такой способ соединения электрических приборов, при котором каждый из них имеет аналогичное соединение полюсов по отношению к источнику питания или в электрической цепи.
Для этого рассмотрим пример параллельного включения лампочек накаливания:
Рис. 1. Параллельное подключение ламп к источнику
Как видите, здесь каждая лампа от Л1 до Л4 соединяется одним контактом к фазному выводу, а вторым, к нулевому. Или в таком же порядке для цепи постоянного тока – один контакт лампы к плюсу, а второй к минусу. Таким образом, получается, что все выводы фазы одинаковые и соединены в одну точку, также в одну точку подключены и нулевые выводы. С технической стороны параллельное подключение может производиться любым количеством ламп от двух и более.
Последовательное и параллельное соединение лампочек
Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:
- на каких схемах лампы соединены параллельно;
- на каких – последовательно;
- и в чем суть различных соединений ламп.
Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.
Люстра с большим числом лампочек
Электрическая цепь с последовательным соединением
Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.
Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.
Сделаем последовательное соединение лампочек:
- укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
- выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
- скручиваем концы двух выбранных проводов.
Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.
На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.
Чем слабее, тем ярче
При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.
Физические параметры
Важным этапом при подключении галогенных, светодиодных или люминесцентных светильников являются физические данные. Основным параметром для всех ламп можно считать омическое сопротивление, на основании которого и рассчитывается потребляемая мощность.
Для примера рассмотрим вариант подключения приборов освещения, как классической резистивной нагрузки:
Рис. 3. Параллельное включение резистивной нагрузки
Так те же нити накаливания представляют собой чисто резистивную нагрузку, поэтому мы их будем рассчитывать, как сумму резисторов R1 – R3. Для параллельных схем включения вычисление суммарного сопротивления всех устройств производится исходя из соотношения:
После преобразования выражение получит вид:
Аналогичным образом вычисление производится для включения люминесцентных и светодиодных светильников. Заметьте, что при расчетах в идеальных условиях сопротивлением соединительных проводов пренебрегают. Такой прием актуален и для большинства осветительных приборов, так как величина получается несоизмеримо меньше. Однако в случае расчета слаботочных ламп или светодиодов сопротивлением проводов не всегда можно пренебречь, поэтому они также участвуют в расчетах.
Преимущества и недостатки
В домашних и производственных целях параллельное подключение широко используется для решения различных задач. При выборе такого способа важно учитывать все за и против, поэтому дальше мы рассмотрим преимущества и недостатки для освещения люминесцентными, накаливания, светодиодными или другими типами ламп.
К преимуществам схемы следует отнести:
Недостатки такого способа подключения в большей части связаны с экономическими аспектами или аварийными режимами работы:
Правила параллельного и последовательного соединения ламп
В быту чаще всего пользуются параллельным подключением лампочек, но иногда более выгодно последовательное соединение.
В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше.
При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света.
Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы.
Практическое применение
Все соединения в электрических схемах подразделяются на последовательные и параллельные. На практике параллельная схема применяется для любого освещения у вас дома:
- точечных светильников;
- ламп в люстре;
- модулей в светодиодной ленте и т.д.
Не зависимо от конкретного вида подключения и применяемого оборудования, схема будет идентична. В некоторых ситуациях, чтобы подключить точечных светильник применяется блок питания или электронный трансформатор, в других монтаж люминесцентных ламп производится напрямую от сети, что показано на рисунке ниже:
Рис. 4. Подключение светильников по комнатам
Особенности и характеристики схем подключения ламп
Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов.
Параллельной
При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке. Напряжение на всех светильниках одинаковое, они горят с яркостью, установленной производителем. Перегорание отдельного элемента не влияет на функциональность остальных.
Справка! На практике при наличии нескольких источников света при параллельном соединении провода не скручиваются. Используется кабель, к которому подключаются все элементы.
Параллельное подключение может быть:
При использовании параллельной лучевой модели перегорание одного элемента не мешает работе остальных. Перед тем, как выбрать шлейфную модель, необходимо учесть, что нарушение одного соединения выведет из строя элементы, расположенные после него. Но проблема решается быстро за счет легкого определения проблемного места.
При подключении галогенных источников с трансформатором необходимо учесть, что они присоединяются к вторичной обмотке преобразователя через клеммные колодки.
Главный недостаток люминесцентных ламп – мерцание. От него избавляет пускорегулирующая аппаратура, но она стоит дорого. Для снижения пульсации применяется специальная схема для двух светильников со сдвигом фазы на одном из них. Две лампочки соединяются параллельно, к одной подключается конденсатор, сдвигающий фазу.
Правила параллельного соединения, схема
Все устройства, которые соединены параллельно или последовательно, функционируют по собственным правилам. Они базируются на основных законах электротехники и некоторых тонкостях.
Порой эти тонкости не являются очевидными для тех, кто мало разбирается в теме. Работая с той или иной схемой подключения, нужно учитывать:
- для последовательного соединения характерны одинаковые показатели тока на всех участках;
- в каждом конкретном виде соединений закон Ома приобретает собственное значение — в последовательном подключении напряжение соответствует напряжению на всех частях цепи;
- при параллельном соединении напряжение отдельных участков цепи не складывается — оно одинаково везде;
- сила тока при соединении параллельного типа соответствует общей силе тока всех ветвей цепи.
Последовательной
Для последовательного соединения двух ламп в патронах с проводами 2 из них скручиваются, остальные присоединяются к фазе и нулю. При подключении к напряжению ток проходит через одну нить накала, потом попадает на другую и встречает ноль. Ток при этом не меняется, напряжение понижается (делится по пополам, если лампы две). При соединении таким способом трех источников света напряжение на каждом будет примерно 70 В, светиться они будут лишь чуть-чуть.
Источник
Какая лампочка будет светить ярче и почему
Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.
Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.
Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.
Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.
При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.
Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.
Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.
1 of 2
Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.