Принцип действия и схема трехфазного мостового выпрямителя


Описание выпрямителей


Трехфазный мостовой выпрямитель
Основное отличие устройств от своих однофазных аналогов проявляется в следующем:

  • первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер);
  • трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
  • в сравнении с однофазными образцами эти приборы имеют более сложное устройство.

Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.

В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.

Трехфазный выпрямитель

Мы рассматривали различные реализации однофазных двухполупериодных преобразователей, но подобные устройства используются и для трехфазных источников. Ниже, в качестве примера, показано устройство, созданное по схеме Ларионова.


Пример реализации схемы Ларионова Осциллограмма на выходе схемы Ларионова

Как показывает расположенный выше график, реализация мостовой схемы между парами фаз позволяет получить на выходе незначительные пульсации. Благодаря этому фильтрующую емкость можно существенно снизить, или вообще обойтись без нее.

Принцип действия


Принцип работы трехфазного выпрямителя
Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.

В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.

«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.

Однополупериодный многофазный выпрямитель


Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка;
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Двухполупериодный выпрямитель


Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.

Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.

Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.

Трехфазный двухполупериодный выпрямитель

В отечественной литературе ее называют трехфазной мостовой схемой или схемой Ларионова. Схема собирается на шести диодах (рис.12).

Нижнюю группу диодов называют катодной, а верхнюю – анодной. В мостовом выпрямителе одновременно открыты два диода: один из катодной и один из анодной группы. Каждый диод работает на протяжении одной трети периода, а пара диодов работает на протяжении одной шестой части периода, затем один из диодов этой пары заменяется другим.

Рисунок 12 – Схема трехфазного двухполупериодного выпрямителя

Принцип действия схемы можно пояснить при помощи временной диаграммы в первую шестую часть открыты диоды VD1 и VD5 и ток протекает фаза А – VD1- Rн- VD5 — фаза В. Во вторую шестую часть периода открыты диоды VD1 и VD6, ток протекает фаза А – VD1- Rн- VD6 — фаза С. В следующую шестую часть периода открыты диоды VD2 и VD6, ток протекает фаза В – VD2- Rн- VD6 — фаза С. Затем диод VD6 закрывается, а открывается диод VD4 и т.д.

Рисунок 13 — Временные диаграммы трехфазного двухполупериодного выпрямителя

Следует отметить, что ток через нагрузку все время протекает в одном и том же направлении. При этом пульсации выпрямленного тока меньше, чем во всех ранее рассмотренных схемах (рис.13)

Частота пульсаций выпрямленного тока в шесть раз выше частоты напряжения сети. Коэффициент пульсаций выпрямленного тока составляет. Это позволяет во многих случаях не использовать сглаживающий фильтр.

kп=0.057

Это позволяет во многих случаях не использовать сглаживающий фильтр. Постоянная составляющая которого определяется по формуле:

Так как каждый диод работает только треть периода, средний ток, протекающий в прямом направлении через диод, определяется по формуле:

Обратное напряжение на закрытых диодах почти совпадает по величине с постоянной составляющей напряжения на нагрузке, это является достоинством рассматриваемой схемы.

В трехфазном мостовом выпрямителе невысокие коэффициент пульсаций и обратное напряжение на диодах, нет вынужденного намагничивания сердечника трансформатора, отсутствует необходимость использования сглаживающих фильтров, поэтому схема нашла широкое применение. В частности, она используется в автомобильных генераторах.

Задачи.

1. Определите величину обратного напряжения на диоде в однофазном мостовом выпрямителе, если напряжение на нагрузке 200В.

2. Определите величину тока, протекающего через диод в трехфазном однополупериодном выпрямителе, если ток нагрузки 15А.

Вопросы

1. Дайте определение электронному выпрямителю.

2. Перечислите виды однофазных выпрямителей.

3. Какие выпрямители имеют самый большой коэффициент пульсаций?

4. В течение какого времени работает каждый диод в схемах однофазных двухполупериодных выпрямителей?

5. В течение какого времени работает каждый диод в схемах трехфазных выпрямителей?

6. Какой выпрямитель используют в автомобильных генераторах?

7. Какой из рассмотренных в лекции выпрямителей имеет самый низкий коэффициент пульсаций?

Тема 8 Сглаживающие фильтры

План

1. Назначение и характеристика сглаживающих фильтров

2. Принцип действия простейшего емкостного фильтра

3. Принцип действия простейшего индуктивного фильтра

4. Виды и схемы сглаживающих фильтров

Мостовые устройства


Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.

Принцип действия трехфазного мостового выпрямителя проще всего представить так:

  • при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
  • в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
  • в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.

Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).

Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.

Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.

Трехфазный мостовой выпрямитель (схема Ларионова)

Трехфазный мостовой выпрямитель (рис. 2.2, а

) можно рассматривать как со­единение двух трехфазных выпрямителей с нулевым выводом, у одного из которых диоды VD1, VD3, VD5 образуют катодную группу, а у другого диоды VD2, VD4, VD6 обра­зуют анодную группу. Трансформаторы у этих выпрямителей совмещены в один. При работе мостовой схемы ток проводят всегда два диода; один в анодной, а другой – в ка­тодной группе.

В любой момент времени в катодной группе будет открыт тот диод, по­тенциал которого по отношению к средней точке трансформатора выше (более поло­жительный) потенциала анода других диодов. В анодной группе проводит тот диод, по­тенциал, которого ниже (более отрицателен) по отношению к потенциалам катодов других диодов.

Например, в момент времени θ = θ1 (рис. 2.2, б

) в катодной группе про­водит диод VD1, в анодной – VD6.

Переход тока с диода на диод в обоих группах происходит в точках естественной коммутации К1, К2, К3,…, А1, А2, А3 и т.д. Порядок вступления диодов в работу соответствует их номерам (см. рис. 2.2, б

). Таким образом, по отношению к нулевой точке трансформатора потенциал общих катодов из­меряется по верхней огибающей, а потенциал общих анодов – по нижней огибающей кривых фазных напряжений ua, ub, uc.

Мгновенное выпрямленное напряжение ud (рис. 2.2, г

мостового выпрямителя равно разности потенциалов катодной и анодной групп и соответствует ординатам, за­ключенным между верхней и нижней огибающими (рис. 2.2,
б
). Из рис. 2.2,
в
видно, что пульсации выпрямленного напряжении ud и тока id (см. рис. 2.2,
a
, при активной нагрузке ключ К замкнут) происходят с шестикратной частотой по отношению к частоте сети.

Форма выпрямленного тока и тока через диод показана на рис. 2.2, в, г

, при ак­тивной нагрузке выпрямителя rв и работе выпрямителя на обмотку возбуждения (см. рис. 2.2
в
, штриховая линия). Обратное напряжение имеет форму, как в нулевой схеме, но в два раза меньшей амплитуды.

Ток в каждой фазе вторичной обмотки трансформатора протекает дважды за пе­риод в противоположных направлениях. В связи с этим в мостовой схеме отсутствует вынужденное подмагничивание сердечника трансформатора. Форма первичного тока находится из условия компенсации магнитодвижущих сил (МДС) первичной и вторичной обмоток (см. рис. 2.2, д

) при соединении первичной обмотки в звезду. Выпрямитель при этом на­гружен на обмотку возбуждения. Расчетные соотношения для мостовой схемы нахо­дятся из общих формул (2.1 – 2.8), при m = 6. Численные значения соответствующих ве­личин приведены в таблице 1.1.

При сравнительном анализе трехфазной нулевой и мостовой схем можно сделать те же выводы, что и для соответствующих однофазных схем.

Улучшение гармонического состава кривых выпрямленного напряжения и сете­вого тока достигается в многофазных схемах выпрямления, используемых для машин большой мощности. На практике широко применяют двенадцатифазные схемы вы­прямления (m = 12), образованные последовательным или параллельным соединением двух мостовых выпрямителей.

Особенности трехфазного моста и варианты его построения


Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».

Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.

В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.

Сравнение однофазных и трехфазных устройств


При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Расчет трехфазного выпрямителя также будет сложнее, так как в этом случае учитываются векторные составляющие действующих токов и напряжений. Это объясняется тем, что в цепях 380 Вольт фазные параметры смещены относительно друга на 120 градусов.

Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.

ТРЕХФАЗНЫЙ МОСТОВОЙ УПРАВЛЯЕМЫЙ ВЫПРЯМИТЕЛЬ

ТРЕХФАЗНЫЙ МОСТОВОЙ УПРАВЛЯЕМЫЙ ВЫПРЯМИТЕЛЬ

Такие УВ наиболее широко распространены в области средних и больших мощностей, что связано с их высокими энергетическими и эксплуатационными характеристиками. Вентили схемы (рис. 4) образуют две группы: катодную (VD1,
VD3,VD5)
и анодную, и нагрузка оказывается подключенной к двум фазам вторичной обмотки трансформатора. Можно также считать, что нагрузка получает питание от двух последовательно включенных нулевых трехфазных схем выпрямления.

Особенностью схемы управления таким УВ является то, что она должна обеспечивать подачу сигналов управления при включении схемы, а также в некоторых других случаях — одновременно на два тиристора из разных групп. Приработа УВ на активную и индуктивную нагрузку одинакова

и полностью совпадает с режимом неуправляемого выпрямителя; при имеют место различия.

На рис. 5 показаны диаграммы работы трехфазного мостового УВ на активную нагрузку при. Как видно из диаграмм, при

кривыенепрерывны (уголотсчитывается от точки пересечения

фазных напряжений). По мере увеличениязначения уменьшаются по закону

где

Рис. 4. Трехфазный мостовой УВ

Рис. 5. Диаграммы работы трехфазного мостового УВ на активную нагрузку

при различных углах регулирования

Уголявляется критическим и при дальнейшем его увеличении в

кривыхипоявляются паузы, т. е. наступает режим работы УВ с прерывистым выпрямленным током (при активной нагрузке!). Для обеспечения этого режима на управляющие электроды тиристоров следует подавать либо сдвоенные импульсы с интервалом, либо удлиненные шириной не менее(показано на диаграмме для). Например, для

того чтобы открыть тиристор VD1

в моменти обеспечить цепь тока, необходимо подать такой же сигнал на
VD6.
После того как разность мгновенных напряженийстанет равной нулю, оба тиристора

закроются, а в момент времени t3

должен вступить в работу
VD2,
который откроется только при наличии повторного управляющего сигнала на
VD1
или при длительности его более

Для режима прерывистых токов

При работе трехфазного мостового УВ на индуктивную нагрузку режим работы существенно изменяется (рис. 6). Так, ток в нагрузке остается (при данном) неизменным, каждый тиристор работает 1/3 периода, но переход тока с одного тиристора на другой происходит не в момент равенства фазных напряжений, а со сдвигом на угол а.Токи во вторичных, a следовательно, и в первичных обмотках представляют собой прямоугольные импульсы длительностью 1/3 периода одного и столько же другого направления. Сигналы управления подаются на тиристоры в соответствии с графиком 6, б, но при запуске схемы необходимо выполнить условие одновременной подачи сигнала на оба тиристора. С увеличением уменьшаются средние значенияно припереходс кривой

одного линейного напряжения на кривую другого происходит в пределах положительной полярности участков этих линейных напряжений, поэтому кривыеи его среднее значение одинаковы при активной и индуктивной нагрузках.

Рис. 6. Диаграмма работы трехфазного мостового УВ на индуктивную нагрузку.

При в кривой(на рис. 7, показаны кривые линейных напряжений, так как именно они формируют напряжение на нагрузке) появляются участки с отрицательным напряжением, происходит более интенсивное снижениеПриэти площадки равны между собой и

. Поэтому для индуктивной нагрузки, а регулировочная характеристика трехфазной мостовой схемы имеет вид, показанный на рис. 8 (кривая а).

Рис. 7. Диаграммы работы трехфазного мостового УВ при различных углах

регулирования

Рис. 8. Регулировочные характеристики трехфазного УВ

На диаграмме (рис. 6, г) показан график изменения прямого и обратного напряжения на одном из вентилей. Эти напряжения не могут превышать, т.е. определяются линейным напряжением вторичной

обмотки трансформатора. Следует отметить, что в принципе данная схема может применяться без специального трансформатора, получая питание непосредственно от сети.

При работа схемы возможна, но уже в инверторном режиме,

когда происходит преобразование энергии источника постоянного тока,

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]