Электролит, понятие, свойства и виды


Основные свойства

Обычная вода и многие другие вещества не способны проводить ток. Растворы становятся токопроводимыми, только если вещества могут распадаться на ионы. В отличие от металлов электролиты называют проводниками второго порядка. Ими могут выступать некоторые кристаллы и расплавы, например иодид серебра, диоксид циркония.
Основным свойством электролитов является возможность электролитической диссоциации, представляющей собой процесс распада молекул при взаимодействии с водой, другими растворителями. В результате распада появляются заряженные ионы.

В зависимости от типа образующихся ионов различают такие электролиты:

  • щелочные,
  • кислотные,
  • солевые.

В щелочных электропроводимость обеспечивается ионами ОН и металлов. В кислотных – ионами Н+, а также остатками оснований кислот. Процесс диссоциации зависит от таких факторов:

  • концентрации веществ,
  • выбора растворителя,
  • температуры.

В соответствии со свойствами электролитов их разделяют на сильные и слабые. К первым относятся:

  • растворимые соли,
  • сильные кислоты,
  • щелочи.

Если говорить об аккумуляторах, то для них важна плотность токопроводящих сред. Она определяет емкость батарей и срок их службы.

Chemicals-el.ru

Электролиты играют важную роль в науке и технике. Они участвуют в электрохимических и многих биологических процессах, являются средой для органического и неорганического синтеза и электрохимического производства.

Устройства с твердыми оксидными электролитами. Главное предназначение твердых оксидных электролитов виделось в создании топливных элементов — химических источников тока, в которых энергия газа непосредственно превращается в электрическую. Топливные элементы — близкие родственники гальванических элементов. Но те служат, пока в их электролите и электродах есть активные вещества, а топливные элементы могут работать сколь угодно долго, пока к ним подводится горючее. Систематические исследования твердых оксидных электролитов начались в Германии в начале 50-х годов, а с конца 50-х развернулись в СССР, США и Канаде. В нашей стране эти работы с самого начала вел Институт химии Уральского филиала АН СССР (Свердловск, ныне Екатеринбург), и школа высокотемпературной электрохимии твердых электролитов, созданная на Урале, стала уникальной по широте охвата проблемы и глубине ее изучения.

Конструкций, в основе которых лежат твердые оксидные электролиты, запатентовано очень много, но принцип их действия одинаков и довольно прост. Это пробирка с парой электродов на стенке, снаружи и внутри. Она помещена в нагреватель; внутрь пробирки и в пространство, ее окружающее, можно подводить газ. Посмотрим, какие функции могут выполнять такие устройства.

Потенциометрические датчики состава газа. Наверное, они наиболее просты. Электроды в разных газах приобретают разные потенциалы. Если, скажем, внутри пробирки находится чистый кислород, а снаружи — газ с неизвестной его концентрацией, то по разности потенциалов электродов можно эту концентрацию определить.

Потенциометрические датчики позволяют определять состав и более сложных газовых смесей, содержащих углекислый и угарный газы, водород и водяной пар. Если стерженек из твердого электролита с электродами на торцах нагрет неравномерно, он начнет терять кислород и между электродами возникнет разность потенциалов. По ее величине можно определить, например, состав выхлопных газов автомобильного двигателя. На Западе, где требования к чистоте выхлопных газов очень строги, такие датчики выпускаются миллионами. У нас же на такие «пустяки» пока не обращают внимания.

Кислородные датчики пока единственные устройства с твердыми оксидными электролитами, нашедшие практическое применение.

Кислородные насосы. Пусть во внешнее пространство пробирки подается воздух или газ, содержащий кислород. Если внешний электрод стал анодом, а внутренний — катодом, то из газа в пробирку пойдет чистый кислород. Подобные устройства — кислородные насосы — могут найти применение там, где потребление кислорода невелико или требуется его высокая чистота.

В медицине, например, используется и чистый кислород, и воздух с пониженным содержанием кислорода — так называемая «гипоксическая смесь», или «горный воздух». Электрохимические насосы наряду с мембранными оксигенаторами позволят решить массу проблем, особенно в медицинских учреждениях, удаленных от промышленных центров. В атмосфере с пониженным содержанием кислорода значительно дольше хранятся продукты питания, и устройства с кислородными насосами могут стать экономичней привычных холодильников.

Электролизеры. Теперь к внешнему электроду — катоду — подводят водяной пар или углекислый газ. На катоде будет происходить разложение пара или углекислого газа, а на аноде в обоих случаях выделяется кислород. Уникальная способность этого высокотемпературного электролизера одновременно разлагать водяной пар и углекислый газ позволяет создать систему жизнеобеспечения, скажем, на космических объектах.

Теплоэлектрогенераторы. Человек сделал первый шаг к независимости от природы, научившись сохранять огонь, поистине универсальный источник энергии. Костер давал тепло и свет, на нем готовили пищу, он расходовал ровно столько топлива, сколько было необходимо. Костер тысячелетиями оставался главной энергетической установкой человека, и неудивительно, что мы испытываем какую-то ностальгию по очагу с горящими дровами.

Еще в конце прошлого века свет давали свечи и керосиновые лампы, а тепло — печи. Лишь немногим более ста лет назад на человека начало работать электричество, которое могло давать свет, тепло, механическую работу. Одно время казалось, что достаточно подвести к жилищу только электрическую энергию, а уж там преобразовывать ее во что угодно. Но сказала свое слово экономика: кпд электростанции менее 40%, потери при передаче и обратном превращении электричества в другие виды энергии тоже значительны. Ясно, что там, где нужно только тепло, его целесообразно получать прямо из топлива. И не случайно сегодня обсуждается простая идея: вернуть «очаг» в дом в виде электрохимического генератора с топливным элементом, преобразующим энергию топлива в электричество и тепло.

Страницы: 1

Смотрите также

Элементы d-блока периодической системы …
Теоретическое изучение возможности изомеризации карбенов в четырех- или шестичленные гетероциклы …

Реакции присоединения молекул НХ с кислым атомом водорода к ненасыщенным соединениям Реакции присоединения различных молекул НХ (Х – ОН, Cl, ОАс, CN) к ненасыщенным молекулам (олефины, диены, алкины, нитрилы, альдегиды, кетоны и др.) занимают важное место в промышленном орга …

Возможности для применения

В основном применение электролитов распространено в промышленности. С их помощью изготавливают источники тока разного назначения. Это могут быть автомобильные аккумуляторы и различные виды батарей. Для них используются щелочные вещества, проводящие ток.

Аналитическая практика предполагает использование ионометров и рН-метров, которые заполнены солевыми веществами, проводящими ток. Приборы применяют для измерения кислотности среды, концентрации определенных веществ.

Если говорить об электрохимической индустрии, то многие растворы для гальванирования металлов создаются на основе веществ, способных к диссоциации. Также они применяются в биологии и медицине. Многие диагностические методы построены на анализе кислотно-щелочного и водно-солевого балансов. Применение электролитов довольно разнообразно, как и их составы.

К достоинствам аккумуляторов, построенных на щелочных веществах, способных к диссоциации, относят:

  • длительный срок службы;
  • надежность;
  • меньшее количество токсичных веществ, выделяемых в процессе работы;
  • возможность использования в широком температурном диапазоне;
  • неприхотливость;
  • меньшая масса в сравнении с кислотными.

Такие аккумуляторы используются в электропоездах, локомотивах, электропогрузчиках и другой спецтехнике.
Если говорить об автомобильной индустрии, в ней являются востребованными кислотные аккумуляторы. К их непосредственным преимуществам относятся:

  • простое и отработанное обслуживание;
  • низкий саморазряд;
  • приемлемая стоимость;
  • способность давать высокий ток при старте.

Применение электролитов. Кислотные и щелочные электролиты

В прошлой статье рассказывалось об основных свойствах электролитов и технике безопасности при работе с ними. Сейчас речь пойдет о видах электролитов и их применении.

Основное применение электролитов — в промышленности: производство источников тока, батарей (гальванических элементов), аккумуляторов, электролитических конденсаторов.

• В аналитической практике используются рН-метры и ионометры с электродами, заполненными солевыми электролитами. С их помощью измеряют не только уровень кислотности среды, но и содержание и концентрацию определенных элементов в веществах.

• В электрохимической индустрии электролиты — основа растворов для гальванирования металлов: хромирования, кадмирования, цинкования, золочения, фосфатирования и пр. С помощью электролитов проводят травление металлов.

• В медицине и биологии тоже имеют дело с электролитами. Диагностика многих заболеваний связана с определением характера водно-солевого и кислотно-щелочного баланса в организме.

Кислотные и щелочные электролиты

Чаще всего мы сталкиваемся с электролитами в аккумуляторах, работающих в различных транспортных средствах. Без них автомобили, электровозы, локомотивы и т.п. просто не способны функционировать. Используются в них кислотные и щелочные электролиты. Оба типа имеют свои достоинства и недостатки.

Щелочной электролит — это раствор щелочи в воде. Как правило, используют гидроокись натрия, калия, лития или их комбинации.

Достоинства: • долгий срок службы; • высокая надежность; • способны работать в широком диапазоне температур; • при работе выделяется меньше токсичных газов; • неприхотливы в эксплуатации, требуют меньшего обслуживания, чем кислотные; • щелочные аккумуляторы меньше весят, не содержат свинец, не боятся тряски, сильных токов и коротких замыканий. К сожалению, есть и недостатки: • щелочные аккумуляторы дороже стоят; • у них меньший к.п.д., меньшая величина э.д.с. (электродвижущая сила); • не способны дать стартовый ток, необходимый для запуска двигателя автомобиля.

Щелочные электролиты преимущественно используются в электропогрузчиках и в шахтных электровозах, в локомотивах и электропоездах.

В автомобильной индустрии востребованы в основном кислотные аккумуляторы. Кислотный электролит — это раствор концентрированной серной кислоты в воде.

Достоинства аккумуляторов с кислотным электролитом: • малый саморазряд; • высокий к.п.д. и величина э.д.с.; • простые, хорошо отработанные технологии обслуживания; • способны выдавать высокий стартовый ток; • гораздо дешевле щелочных. К недостаткам можно отнести: • большой вес; • чувствительны к низким температурам — электролит может замерзнуть и вывести из строя весь аккумулятор; • неэкологичны; • требуют регулярного обслуживания.

Это важно: нельзя менять тип электролита в аккумуляторе. Щелочные заправляют только щелочью, кислотные — только кислотой. В нашем магазине можно недорого купить щелочные электролиты следующих видов: • твердый калиево-литиевый; • жидкий калиево-литиевый, плотность 1,27 • жидкий калиево-литиевый, плотность 1,41

Щелочной электролит калиево-литиевый, твердый

Сплав гидроокиси лития и калия. Представляет собой порошкообразный или гранулированный продукт. Применяется для изготовления жидких электролитов с нужными характеристиками.

Щелочной электролит калиево-литиевый, жидкий, плотность 1,41

Состоит из гидроокиси калия, лития и дистиллированной воды. Представляет собой прозрачную жидкость с легким желтым оттенком. Применяется для заправки щелочных аккумуляторов, как правило, в электропогрузчиках и в шахтных электровозах. Может эксплуатироваться в широком температурном диапазоне: от -40 до +40°С.

Щелочной электролит калиево-литиевый, жидкий, плотность 1,27

Раствор, приготовленный из гидроокиси калия, гидроокиси лития и дистиллированной воды. Прозрачный, без запаха, с легким желтым оттенком. Применяется для заполнения щелочных аккумуляторов в горной и автомобильной индустрии. Рекомендуется для применения в условиях температуры окружающего воздуха от -30 °С.

Основные меры предосторожности

Все популярные вещества, способные проводить ток, созданы на основе щелочи или серной кислоты. Они могут стать причиной ожога, поэтому при обращении с ними важно предпринимать меры предосторожности. Среди правил обращения с такими опасными веществами главными являются следующие:

  • наличие в помещении нейтрализующих веществ, воды, аптечки;
  • для нейтрализации кислотного ожога необходим раствор соды, используется одна чайная ложка на стакан воды;
  • для нейтрализации щелочных ожогов применяется раствор борной кислоты, берется чайная ложка на стакан воды;
  • если агрессивное вещество попало в глаза, для его нейтрализации применяются растворы в два раза слабее;
  • если произошел ожог, сначала используется нейтрализующее вещество, а потом вода.

Важно при работе соблюдать все правила техники безопасности, чтобы избежать ожогов. Основные из них:

  • кислоту необходимо наливать в воду и ни в коем случае не наоборот;
  • при работе с твердой щелочью ее необходимо опускать в воду при помощи щипцов;
  • хранение в одном помещении или работа одновременно с кислотными и щелочными веществами запрещена.

Если при выполнении работ предполагается кипение вещества, оно будет сопровождаться выделением взрывоопасного и горючего газа – водорода. Соответственно, в помещении необходимо предусмотреть его отвод, взрывобезопасную проводку, защитить все электроприборы.

Хранение опасных веществ организовывают в пластиковых емкостях. Для работы с ними подходит фарфоровая, керамическая и стеклянная посуда.

Билет 39. Применение электролиза в технике

Электролиз находит широкое применение в технике.

Очистка или рафинирование металлов. Процесс происходит в электролитической ванне. Анодом служит металл, подлежащий очистке, катодом — тонкая пластинка из чистого металла, а электролитом — раствор соли данного металла, например, при рафинировании меди — раствор медного купороса. В загрязненных металлах могут содержаться ценные примеси. Так, в меди часто содержится никель и серебро. Для того чтобы на катоде выделялся только чистый металл, необходимо учитывать, что выделение каждого вещества начинается лишь при некоторой определенной разности потенциалов между электродами, называемой «потенциалом разложения». При надлежащем ее выборе из раствора медного купороса на катоде выделяется чистая медь, а примеси выпадают в виде осадка или переходят в раствор.

Электрометаллургия. Некоторые металлы, например, алюминий, получают методом электролиза из расплавленной руды. Электролитической ванной и одновременно катодом служит железный ящик с угольным полом, а анодом — угольные стержни. Температура руды (около 900 °С) поддерживается протекающим в ней током. Расплавленный алюминий опускается на дно ящика, откуда его через особое отверстие выпускают в формы для отливки.

Гальваностегия — электролитический способ покрытия металлических изделий слоем благородного или другого металла (золота, платины), не поддающегося окислению. Например, при никелировании предмета он сам служит катодом, кусок никеля — анодом. Пропуская через электролитическую ванну в течение некоторого времени электрический ток, покрывают предмет слоем никеля нужной толщины.

Гальванопластика, или электролитическое осаждение металла на поверхности предмета для воспроизведения его формы, была изобретена в 1837 г. русским ученым Б. С. Якоби, предложившим использовать электролиз для получения металлических отпечатков рельефных предметов (медалей, монет и др.). С предмета снимают слепок из воска или вырезают выпуклое изображение на деревянной доске и делают его проводящим, покрывая слоем графита. Затем опускают слепок или доску в качестве катода в электролит. Анодом служит кусок металла, используемого для осаждения. Этим способом изготовляют, например, типографские клише.

Электролитическим путем получают тяжелую воду (D2O), в которой атомы водорода заменены атомами его изотопа — дейтерия (D) с атомной массой 2.

Электролитическая диссоциация (ионизация):

Процесс распада молекул в растворе или расплаве электролита на ионы называется электролитической диссоциацией (или ионизацией). Процесс диссоциации носит обратимый характер. Одновременно с процессами диссоциации в растворах или расплавах электролита протекают и процессы ассоциации ионов в молекулы. При неизменных внешних условиях (температура, концентрация и др.) устанавливается динамическое равновесие между диссоциациями (распадами) и ассоциациями. Это означает, что определенное количество молекул электролита распадается на ионы и такое же количество молекул образуется вновь из ионов. Поэтому в растворах или расплавах электролита всегда диссоциирована определённая доля молекул вещества.

Уравнение диссоциации молекулы электролита (КA) на катион (К+) и анион (А—) в общем виде записывается так:

КА ↔ K+ + A—.

Для конкретных химических соединений уравнение диссоциации выглядит следующим образом:

H ↔ H+ + NO3—,

Ba(OH)2 ↔ Ba2+ + 2OH—,

Na(NO3)2 ↔ Na2+ + 2NO3—.

Число положительных и отрицательных ионов электролита в растворе или расплаве может быть разным, но суммарный заряд катионов всегда равен суммарному заряду анионов, поэтому раствор (или расплав) в целом электрически нейтрален.

Процесс диссоциации электролитов в воде легче всего происходит у соединений с ионной связью (солей, щелочей), которые при растворении образуют гидратированные ионы. Как правило, соединения с ионной связью (соли и щелочи) диссоциируют полностью. Соединения с сильнополярной ковалентной связью диссоциируют частично. При растворении вещества с сильнополярной ковалентной связью (например, хлороводород HCl) диполи воды ориентируются у соответствующих полюсов растворяемой молекулы, поляризую связь и превращая ее в ионную с последующей гидратацией ионов.

Гидратированные ионы устойчивы. Они беспорядочно передвигаются в растворе. Однако под действием электрического тока их движение приобретает направленный характер.

Растворы электролитов обладают способностью проводить электрический ток вследствие движения ионов. Если в раствор или расплав электролита опустить электроды и на электроды подать электрический ток, то под действием электрического тока ионы приобретут направленное движение: положительно заряженные ионы (катионы) будут двигаться к катоду (отрицательному электроду), отрицательно заряженные (анионы) – к аноду (положительному электроду). Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами. Направленное движение катионов и анионов в растворе или расплаве электролита в противоположных направлениях равносильно электрическому току.

Для измерения количественной характеристики электролитической диссоциации введено понятие степень диссоциации.

Степень диссоциации (α) — это отношение числа молекул, диссоциировавших на ионы (n), к общему числу молекул (N) в растворе электролита.

α = n / N.

Степень диссоциации выражается в долях или процентах.

Степень диссоциации (т.е. полнота диссоциации) электролита зависит от многих факторов: от природы электролита, температуры, концентрации и вида растворителя. Так, один и тот же электролит при разной температуре или при одинаковой температуре, но в разных растворителях, будет диссоциирован в разной степени. Так, диссоциация происходит только в полярном растворителе, в частности, в воде. Соли и щелочи диссоциируются полностью. С увеличением концентрации ионизация электролита идет труднее, и наоборот. Повышение температуры способствует повышению степени диссоциации, и наоборот.

Мерой способности электролитов распадаться на ионы в растворах может служить константа электролитической диссоциации (константа ионизации) (Кд).

Константа диссоциации (Кд) – это отношение произведения концентрации диссоциированных ионов к концентрации недиссоциированных молекул электролита.

Константу диссоциации можно выразить уравнением:

Кд = (K+ ∙ A−) / KA.

где:

KA – концентрация недиссоциированного соединения в растворе;

K+ – концентрация катионов в растворе;

A− – концентрация анионов в растворе.

Константа диссоциации (Кд) показывает во сколько раз скорость диссоциации больше скорости ассоциации. Чем больше константа диссоциации, тем сильнее электролит. Константа диссоциации зависит от природы электролита и растворителя, температуры и не зависит от концентрации раствора.

Электролит (определение и понятие):

Электролит – вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или вследствие движения ионов в кристаллических решётках твёрдых электролитов.

Электролиты – вещества, расплавы или растворы которых проводят электрический ток.

Электролиты – вещества, подвергающиеся в растворах или расплавах электролитической диссоциации и проводящие электрический ток за счет движения ионов. Таким образом, движение электрического тока в электролитах обусловлено ионной проводимостью.

Электролиты – это проводники второго рода, вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.

К электролитам относятся вещества с ионной или сильнополярной ковалентной связью. К электролитам относятся растворы солей, оснований и кислот, а также вода. Кроме того, некоторые газы ведут себя как электролиты в условиях высокой температуры или низкого давления. Некоторые кристаллы (например, иодид серебра, диоксид циркония) также являются твердыми электролитами.

Соответственно неэлектролиты – вещества, расплавы и водные растворы которых не проводят электрический ток. К неэлектролитам относятся вещества с неполярной и малополярной ковалентной связью. К неэлектролитам относятся газы (двухатомные газы, благородные газы и др.), твердые вещества и органические вещества (спирты, эфиры, бензол, бензин, сахарозу и пр.).

Способность растворов или расплавов электролитов проводить электрический ток объясняется тем, что молекулы электролитов при растворении в воде или других растворителях (например, этаноле, жидком аммиаке, жидком сернистом ангидриде) либо при расплавлении распадаются на электрически положительно и отрицательно заряженные частицы — ионы. Величина заряда иона численно равна валентности атома или группы атомов, образующих ион.

Положительно заряженные ионы называют катионами, отрицательно заряженные – анионами. Катионы образуют атомы водорода Н+, металлов: К+, Na+, Са2+, Fe3+ и некоторые группы атомов, например группа аммония NH4+. Анионы образуют атомы и группы атомов, являющиеся кислотными остатками, например Cl—, NO3—, SO42—, CO32—.

Ионы могут состоять из одного атома – тогда они именуются простыми ионами (Na+, Mg2+, Аl3+ и т.д.) или из нескольких атомов – тогда они именуются сложными ионами (NО3—, SO42— , РО43— и т.д.).

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных — Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]