Вероятно, каждый читатель этой статьи обратил внимание на то, что большинство электрических приборов, работающих от бытовой сети, рассчитаны на напряжение 220 В/50 Гц. Отсюда вывод – именно такие параметры обеспечивает нам поставщик электроэнергии. К сожалению, это не совсем так. Мы можем предположить, что водопроводная вода совершенно чистая, однако опыт подсказывает, что в ней присутствуют примеси, ухудшающие вкус. Такие же «примеси», в виде дополнительных частот и импульсов, поступают к потребителю электроэнергии. Это и есть помехи в электросети.
Классификация помех
Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.
Причиной возникновения сетевых искажений являются:
- природные явления (гроза, ионизация воздуха сияниями и т.п.);
- техногенные влияния (аварии на линиях, коммутация мощных устройств и т. д.);
- электромагнитные волны природного и техногенного происхождения.
Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.
Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.
Рис. 1. Защитные импульсные фильтры
При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.
Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.
Литература
1.
2. Corcom Product Guide, General purpose RFI filters for high impedance loads at low current B Series, TE Connectivity, 1654001, 06/2011, p. 15
3. Corcom Product Guide, PC board mountable general purpose RFI filters EBP, EDP & EOP series, TE Connectivity, 1654001, 06/2011, p. 21
4. Corcom Product Guide, Compact and cost-effective dual stage RFI power line filters EMC Series, TE Connectivity, 1654001, 06/2011, p. 24
5. Corcom Product Guide, Single phase power line filter for frequency converters FC Series, 1654001, 06/2011, p. 30
6. Corcom Product Guide, General purpose RFI power line filters — ideal for high-impedance loads K Series, 1654001, 06/2011, p. 49
7. Corcom Product Guide, High performance RFI power line filters for switching power supplies T Series, 1654001, 06/2011, p. 80
8. Corcom Product Guide, Compact low-current 3-phase WYE RFI filters AYO Series, 1654001, 06/2011, p. 111.
Получение технической информации, заказ образцов, поставка — e-mail
Сетевые и сигнальные EMI/RFI-фильтры от TE Connectivity. От платы до промышленной установки
Компания TE Connectivity занимает лидирующие позиции в мире по разработке и производству сетевых фильтров для эффективного подавления электромагнитных и радиочастотных помех в электронике и промышленности. Модельный ряд включает в себя более 70 серий устройств для фильтрации как цепей питания от внешних и внутренних источников, так и сигнальных цепей в широчайшей сфере применений.
Фильтры имеют следующие варианты конструктивного исполнения: миниатюрные для установки на печатную плату; корпусные различных размеров и типов присоединения питающих линий и линий нагрузки; в виде готовых разъемов питания и коммуникационных разъемов сетевого и телефонного оборудования; индустриальные, выполненные в виде готовых промышленных шкафов.
Сетевые фильтры выпускаются для AC и DC приложений, одно- и трехфазных сетей, перекрывают диапазон рабочих токов 1…1200 А и напряжений 120/250/480 VAC, 48…130 VDC. Все устройства характеризуются низким падением напряжения — не более 1% от рабочего. Ток утечки, в зависимости от мощности и конструкции фильтра, составляет 0,2…8,0 мА. Усредненный частотный диапазон по сериям — 10 кГц…30 МГц. Серия AQ рассчитана на более широкий диапазон частот: 10 кГц…1 ГГц. Расширяя области применения своих устройств, TE Connectivity выпускает фильтры для цепей нагрузки с низким и высоким импедансом. Например, высокоимпедансные фильтры серий EP, H, Q, R и V для низкоимпедансных нагрузок и низкоимпедансные серии B, EC, ED, EF, G, K, N, Q, S, SK, T, W, X, Y и Z для высокоимпедансных нагрузок.
Коммуникационные разъемы со встроенными сигнальными фильтрами выпускаются в экранированном, спаренном и низкопрофильном исполнении.
Каждый фильтр производства TE Connectivity подвергается двойному тестированию: на этапе сборки и уже в виде готового изделия. Вся продукция соответствуют международным стандартам качества и безопасности.
•••
Источники помех
Искажать синусоиду переменного тока способны как природные явления, так и различные техногенное оборудование. В результате их действия происходят:
- кратковременные провалы напряжения;
- отклонения от номинальных частотных параметров;
- изменения гармоники электричества;
- колебания амплитуды тока;
- ВЧ шумы;
- импульсные всплески;
- синфазные помехи.
Остановимся вкратце на основных источниках, вызывающих перечисленные отклонения.
Провалы напряжения.
Данное явление является следствием работы коммутационных устройств в энергосистемах. Это случается при возникновении КЗ на линиях, в результате запусков мощных электромоторов и в других случаях, связанных с изменениями мощности нагрузки. Наличие таких кратковременных помех является неизбежностью при срабатывании защитной автоматики, и они не могут быть устранены поставщиком электроэнергии.
Изменения частотных характеристик.
Отклонение от заданной частоты происходит в результате значительного изменения тока нагрузки. В случае если уровень потребляемой энергии превосходит мощность генерируемых установок, происходит замедление вращения генератора, что ведёт к падению частоты. При заниженной нагрузке возрастает частота генерации.
Автоматика регулирует распределение мощностей, вплоть до отключения нагрузок, однако частотные помехи в сети всё-таки присутствуют.
Гармоники.
Источником данного вида искажений является наличие в сетях оборудования с нелинейной вольтамперной характеристикой:
- преобразовательные и выпрямительные подстанции;
- дуговые печи;
- трансформаторы;
- сварочные аппараты;
- телевизоры;
- циклоконвертеры и многие другие.
Причиной гармонических искажений могут быть электродвигатели, особенно если они установлены в конце длинной линии.
Отклонение напряжения
Изменения стабильности потенциала происходит в результате периодических скачков потребляемого максимального тока. Источником изменения нагрузок являются устройства, регулирующие напряжение, например, трансформаторы с РПН.
График, иллюстрирующий кратковременное перенапряжение показан на рисунке 2 (Фрагмент А – изображает импульсный всплеск).
Рис. 2. Перенапряжение в сети
ВЧ помехи.
Создаются влиянием устройств работающих, в высокочастотном диапазоне. ВЧ помехи, вызванные действием приборов, генерирующих сигналы с высоким диапазоном частот, распространяются эфирно или через линии сети.
Импульсы напряжения.
Распространённые источники: коммутационные приборы в сетях и грозовые явления.
Несимметрия трехфазной системы.
Причиной таких помех часто являются мощные однофазные нагрузки как бытовые, так и промышленные. Они вызывают сдвиги углов между фазами и амплитудные несоответствия. Путём отключения питания мощных токопотребляющих устройств можно устранить проблему.
Фильтры серии EMC
Фильтры этой серии (рисунок 10) — компактные и эффективные двухступенчатые силовые фильтры радиочастотного диапазона. Обладают рядом преимуществ: высоким коэффициентом ослабления синфазных помех в области низких частот, высоким коэффициентом ослабления противофазных помех, компактными размерами. Серия EMC ориентирована на применение в устройствах с импульсными источниками питания.
Рис. 10. Внешний вид фильтров серии EMC
Основные технические характеристики приведены в таблице 4.
Таблица 4. Основные электрические параметры сетевых фильтров серии EMC
Номинальные токи фильтра, А | Максимальный ток утечки, мА | Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) | ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) | «проводник-корпус» | «проводник-проводник» | ||||
3; 6; 10 | 0,21 | 0,43 | 0,1…30 | 2250 | 1450 | ~250 | 3…30 |
15; 20; 30 | 0,73 | 1,52 |
Электрическая схема фильтра серии EMC приведена на рисунке 11.
Рис. 11. Электрическая схема двухступенчатых фильтров серии EMC
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 12.
Рис. 12. Ослабление сигнала помехи фильтрами серии EMC
Способы защиты
К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.
Пример подавления помех показан на рисунке 3.
Рис. 3. График, иллюстрирующий фильтрацию тока
Эффективными являются следующие внешние устройства:
- стабилизаторы напряжения;
- ИПБ;
- преобразователи частоты;
- регулируемые трансформаторы;
- сетевые фильтры и фильтрующие каскады (принципиальная схема простого фильтра изображена на рисунке 4).
Схема сетевого фильтра
Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.
Использование стабилизаторов напряжений оправдано в случаях наличия регулярных провалов напряжений в домашней сети. При стабильно заниженном или завышенном токе лучше пользоваться трансформатором.
Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.
Рисунок 5. ИБП
В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.
Как защитить домашние приборы от помех
На сегодняшний день существует несколько действенных способов по борьбе с различными физическими отклонениями в работе электросети:
- стабилизатор напряжения;
- источник бесперебойного питания;
- сетевые фильтры.
Стабилизатор напряжения позволяет контролировать уровень напряжение в сети и, если произойдет резкий дисбаланс, устройство прекратит подачу электричества к потребителю. Сам стабилизатор подключается между источником напряжения и самим потребителем электроэнергии.
Стабилизатор – эффективный способ по защите бытовых приспособлений. Устройство прекращает подачу электроэнергии к потребителю в случае скачка напряжения в сети и, возобновляет подачу, когда напряжение нормализуется.
Правда такой способ борьбы с помехами не всегда подходит в качестве основного. Например, при работе с компьютером пользователю важно, чтобы все несохраненные текстовые данные не исчезли. В таком случае лучше всего использовать ИБП – источник бесперебойного питания. ИБП включает в себя обычный аккумулятор, который продолжает поддерживать компьютер в работоспособном состоянии еще некоторое время после случившихся помех и последующих перепадов напряжения.
Более дешевый способ придать домашней технике устойчивости перед помехами – сетевые фильтры. Они также хорошо справляются со своей задачей и применяют их чаще всего во время подключения крупной бытовой техники: холодильника, стиральной машины.
Методы измерения
Можно ли увидеть сетевые искажения?
С помощью приборов можно не только увидеть наличие помех, но и оценить их величину и определить природу появления. Существуют специальные высокоточные приборы для измерения различных отклонений в сетях. Наиболее распространённым из них является обычный осциллограф.
У прибора имеется дисплей (экран), на котором отображается осциллограмма измеряемого тока. Оперируя различными режимами осциллографа можно с высокой точностью определять характер и уровень шумов.
Пример осциллограммы показан на рисунке 6.
Рисунок 6. Осциллограмма сетевого тока
На осциллограмме видно как основной сигнал окружают паразитные токи, которые необходимо отсекать. Анализируя характер искажений можно выбрать способ их подавления. Часто бывает достаточно применить сетевой фильтр для того, чтобы избавиться от типичных помех, влияющих на работу устройств.
ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг
Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600…700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1… 1 мкс) и амплитудой до 3…5А и более.
Поэтому ИБП служит источником интенсивных помех, спектр которых простирается от 16…20 кГц до десятков мегагерц. Эти помехи распространяются в питающую сеть переменного тока и в нагрузку блока питания, создавая интерференционные полосы на экранах телевизоров, мониторов, снижая отношение сигнал-шум в трактах записи-воспроизведения видеозаписывающей аппаратуры и т.д. Величина этих паразитных сигналов зависит от частоты преобразования, качества входных и выходных фильтрующих цепей, а на частотах свыше 1 МГц — от конструкции и монтажной схемы преобразователя.
Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники.
Однако, импульсные блоки питания, независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.
Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.
Рис.1 Возникновение несимметричной помехи
Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора RL, сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).
Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1… 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.
Рис.2 Возникновение паразитной помехи
Симметричная помеха возникает следующим образом. В преобразователе ключевой транзистор, как правило, устанавливается таким образом, чтобы обеспечивался хороший тепловой контакт между его корпусом и шасси БП (радиатором). С целью обеспечения максимальной теплопередачи толщина электрической изоляции между коллектором или стоком ключевого транзистора и шасси делается как можно меньше. В результате между стоком или коллектором транзистора и шасси образуется паразитная емкость Ср (рис.2). Когда транзисторный ключ замыкается или размыкается, возникает ток помехи, протекающий от переключателя через паразитную емкость Ср, RL и С, а затем через заземление обратно к шасси. Этот ток довольно мал, поскольку паразитная емкость невелика (ее типичное значение меньше 10 пф). В то же время, используемый в преобразователе LC фильтр совершенно неэффективен против этого вида тока помехи, поскольку он протекает не через фильтр, а в обход его.
Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.
Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.
В качестве дополнительных мер подавления помех в импульсных БП применяются следующие:
уменьшение паразитных емкостных связей между цепями первичного (сетевого) напряжения и вторичными цепями; выбор оптимальных режимов переключения транзисторов и диодов, предотвращающих резкие перепады напряжения; сокращение площади контуров, охватываемых цепями, по которым протекают большие импульсные токи. Важное значение имеет конструкция импульсного трансформатора ИБП. Первичную обмотку, как правило, разбивают на две равные секции, одна из которых наматывается в первых слоях катушки, а другая — в последних. Таким образом, все остальные области располагаются между этими секциями. Кроме того, первичные и вторичные обмотки обычно разделяются внутренним экраном. Достаточно эффективным является применение общего экрана в виде короткозамкнутого витка из медной фольги, охватывающего импульсный трансформатор.
Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.
Рис.3 Типовая схема сетевого фильтра и выпрямителя
Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5…С8, установленные параллельно диодам Д1…Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.
Типовые часто задаваемые вопросы от читателей
Как найти и устранить источник помех в электрической цепи, приводящий к невозможности использовать powerline?
Чтобы вычислить причину плохого сигнала, вам необходимо проанализировать работу powerline адаптера в другой линии или проверить уже подключенные устройства. Для начала проверьте уровень сигнала в сети роутера, возможно ресурсов вашего маршрутизатора недостаточно для перераспределения сети интернет между таким количеством пользователей. Если предоставляемого лимита достаточно для всех комнат и приемников в них, проверьте работу линий, по которым осуществляется передача данных powerline адаптерами.
Следующий вопрос – тип линии, к которой подключен powerline адаптер. Производитель не рекомендует использовать для этого удлинители, отдавая предпочтение стационарной проводке. Но, для проверки существующих линий рекомендую вам временно использовать удлинитель, если сигнал улучшиться, вполне вероятно, что причина в проводке. Если нет, проверьте бытовое электрооборудование, выступающее наиболее мощным источником электромагнитных помех.
К таковым относятся: кондиционеры, стиральные машины, холодильники, зарядные устройства для мобильных телефонов, блоки питания электроприборов.
По возможности powerline адаптер следует перенести как можно дальше от таких приборов, дабы они не вносили свои коррективы в качество передаваемого сигнала. Если такой возможности нет, подключите источники помех к электрической цепи через «сетевой фильтр», который поможет снизить вносимые искажения.
Еще один момент, на который следует обратить внимание – допустимое расстояние между powerline адаптерами. Оно де должно превышать установленную норму, иначе никакие ухищрения не помогут вам добиться должного качества сигнала.
Типичные помехи
Источников помех, способных вызвать сбой или отказ устройства, существует бесчисленное множество. Однако наиболее часто встречаются следующие помехи:
● наносекундные помехи, которые, как правило, бывают вызваны срабатыванием механических контактов выключателей и реле. В зарубежной литературе этот вид помех называется EFT — Electric Fast Transients; ● микросекундные помехи, связанные с работой реактивных элементов в цепях мощных нагрузок (зарядка конденсаторов, а также отдача энергии, накопленной в обмотках моторов, соленоидов и пр.). В зарубежной литературе этот вид помех называется surge; ● помехи от электростатических разрядов; в основном это помехи, возникающие при касании «наэлектризованным» человеком различных электрических цепей. В зарубежной литературе этот вид помех называется ESD — Electrostatic Discharge; ● помехи, вызванные работой близко расположенных радиопередатчиков; ● помехи от мощных природных или искусственных источников энергии, прежде всего от грозовых разрядов. Существуют российские и международные стандарты, оговаривающие требования к электромагнитной совместимости (ЭМС). Стандарты аккумулируют многолетний инженерный опыт. Однако сами по себе стандарты являются тяжело усваиваемым материалом, малопригодным для непосредственного руководства при проектировании или анализе поведения устройств. Стандарты разработаны таким образом, чтобы при испытании устройств достаточно аккуратно имитировать реальные помехи. Целесообразно все помехи разделить на три абстрактных типа: ● наносекундные помехи (НП); ● мощные помехи (МП); ● радиочастотные помехи (РП). Практически все реальные помехи могут быть представлены как комбинации этих трех абстрактных. Например, EFT помехи — это пачки наносекундных помех НП, а ESD — это комбинация одиночной НП и одиночной МП. Поэтому если устройство устойчиво ко всем трем абстрактным типам помех, то с высокой степенью вероятности оно будет устойчиво и к реальным помехам, независимо от их происхождения. Вопрос устойчивости к МП в большой степени является вопросом обеспечения надежности, пожара и электробезопасности. Устойчивость к МП и РП в данной статье не рассматривается. Наносекундные помехи Этот тип помех является причиной большинства сбоев. При всем своем разнообразии наносекундные помехи обладают некоторыми общими свойствами: ● одиночная НП — это почти дельта-функция, у нее чрезвычайно широкий спектр (до единиц гигагерц); ● НП имеет ничтожную энергию, в отличие от МП она, как правило, не «выжигает» радиоэлектронные устройства, а вызывает обратимый сбой; ● сбиваться могут только устройства, обладающие памятью, такие как микропроцессоры, счетчики и пр. Для чисто комбинационных цифровых узлов понятие «сбой» теряет смысл, так как они автоматически возвращаются в нужное состояние по окончании НП. Заметим, что аналоговые цепи тоже могут обладать «памятью» в виде емкостей или индуктивностей. Чтобы лучше представить себе этот тип помех, полезно обратиться к стандарту МЭК 61000-4-4 (ГОСТ Р 51317.4.4-99). В нем сказано, что EFT помехи должны имитироваться пачками треугольных импульсов. Длительность переднего фронта у каждого импульса — 5 нс, длительность импульса — 50 нс на уровне 50 %. Внутреннее сопротивление генератора импульсов составляет 50 Ом, генератор должен быть заземлен. Амплитуда НП-импульсов зависит от того, к какому классу по помехоустойчивости должно относиться испытуемое устройство, а также от того, куда подаются импульсы при испытании (табл. 1).
Возможны испытания и более жесткие, чем указаны в таблице, если это требуется по условиям эксплуатации прибора. Однако в подавляющем большинстве случаев перечисленных в таблице степеней жесткости достаточно. Самые легкие испытания применяются к бытовой технике, самые жесткие — к промышленным и бортовым устройствам. В линии питания и заземления тестовые НП импульсы инжектируются непосредственно, без развязки. С учетом достаточно низкого сопротивления генератора сигналов, величины импульсных токов, протекающих в цепи общего провода, могут достигать огромных величин. Импульсные токи НП, протекающие по общему проводу устройства, создают заметное падение напряжения между различными точками этого провода, что может вызвать сбой. В сигнальные цепи тестовые НП импульсы инжектируются через «емкостные клещи», куда по очереди закладываются все провода, приходящие к устройству. Емкость связи невелика — единицы пикофарад, но для НП импульсов даже сравнительно малые емкости не являются серьезным препятствием, настолько широк их спектр. НП, приходящая в устройство по сигнальным цепям, рано или поздно попадает на общий провод («землю») и далее проходит теми же путями, что и НП, инжектированная в цепь общего провода. Поскольку согласно стандарту, амплитуда сигнальной НП вдвое меньше, чем земляной, попавшая в общий провод сигнальная НП в дальнейшем уже не может вызвать эффекта худшего, чем земляная НП. Однако до того как сигнальная НП попадет на общий провод, она может вызвать сбой непосредственно в цепях, связанных с данным сигналом.
Стандарт оговаривает, что испытуемое устройство должно находиться на изолирующей подставке на расстоянии 100 мм от сплошной заземленной поверхности. Это немаловажное требование, так как между устройством и этой поверхностью образуется емкостная связь, иногда одного этого достаточно для сбоя. На рис. 1 условно показано некое устройство, состоящее из узлов 1—4. Узлы 1 и 2 не подключены к внешним цепям, но они могут сбиваться из-за падения напряжения на внутреннем общем проводе, вызванном прохождением тока помехи IGND (на рис. 1 показана помеха, инжектируемая в линию заземления). Узлы 3 и 4 подключены к внешним устройствам, поэтому помимо упомянутых сбоев они дополнительно подвержены сбоям из-за токов помех I1 и I2, проходящих через их терминалы. Два типа проверок, оговоренных стандартом (со стороны заземления и со стороны сигналов), взаимодополняют друг друга. На рис. 1 можно выделить три составляющих помехоустойчивости устройства к НП, рассматриваемые далее более подробно: ● внутренний общий провод («земля») устройства; ● барьеры; ● емкостные связи.
Внутренний общий провод устройства. В момент прохождения НП по внутреннему общему проводу создается заметная разность напряжений между различными его точками («перекосы»). Например, если узлы 1 и 2 (рис. 1) являются цифровыми, собранными на микросхемах ТТЛШ, то разность напряжений примерно в 1 В между точками «а» и «б» способна вызвать сбой. Основную роль в создании падения напряжения играет не резистивная, а индуктивная составляющая цепи общего провода. За счет огромной крутизны фронтов НП даже мизерных индуктивностей общего провода или даже слоев в печатных платах бывает достаточно для сбоя. Рассмотрим эквивалентную схему на рис. 2.
Источник помехи — генератор треугольных импульсов U GEN . Фронт нарастания помехи — 5 нс, длительность по уровню 50 % равна 50 нс (рис. 3), сопротивление источника помехи R GEN равно 50 Ом, как оговорено стандартом. Амплитуда импульса помехи — 1 кВ, что соответствует сравнительно «мягким» испытаниям согласно табл. 1.
Конденсатор C CPL представляет собой емкость связи, L W — индуктивность проводов, подключенных к устройству. Для схемы на рис. 1 емкость связи C CPL состоит из параллельно включенных C X 1, C X 2 плюс, возможно, емкости, привносимые внешними устройствами. Индуктивность L W представляет суммарную индуктивность всех проводников на пути помехи, за исключением индуктивности общего провода на рассматриваемом участке (в нашем случае на участке «а»—«б» рис. 1), которая обозначена как L GND . Предположим, что индуктивность общего провода L GND равна 10 нГн, а индуктивность остальных цепей — 100 нГн. Для ориентировки отметим, что печатный проводник шириной 5 мм и длиной 10 мм имеет индуктивность более 10 нГн, проводник шириной 0,35 мм и длиной 10 мм — примерно 17 нГн. Квадратная площадка размерами 25×25 мм имеет индуктивность более 20 нГн. На рис. 4 показана форма падения напряжения на L GND для следующих случаев: 1. С CPL = 10 пФ, L W = 100 нГн. 2. С CPL = 100 пФ, L W = 100 нГн. 3. С CPL = 0,1 мкФ, L W = 100 нГн. 4. С CPL = 0,1 мкФ, L W = 0.
При прохождении помехи на индуктивности внутреннего общего провода устройства создается падение напряжения, достаточное для сбоя. Увидеть такую помеху при помощи запоминающего осциллографа весьма затруднительно по ряду причин, в том числе по причине ограниченной скорости большинства современных запоминающих осциллографов. Из этого следует, что даже сплошной слой общего провода не спасет устройство на рис. 1 от сбоев, и в нем «перекосы» при прохождении НП могут достигать десятков вольт. Устойчивость устройства к воздействию НП не может быть достигнута только за счет утолщения проводников общего провода, заливки свободных мест печатной платы проводником общего провода или использования многослойных плат. За счет одних только «толстых» общих проводников можно получить выигрыш в помехоустойчивости примерно в 1,5…3 раза, что на фоне сигналов помех, показанных на рис. 4, совершенно недостаточно. Развязка внешних сигналов при помощи оптронов тоже считается хорошим средством повышения помехоустойчивости, но на самом деле не является надежной защитой от НП. Типичная емкость оптрона — 0,5 пФ, при подстановке этого значения в качестве C CPL падение напряжения на индуктивности L GND в схеме на рис. 2 уменьшается до 4 В, что все равно достаточно для сбоя. Если устройство имеет несколько линий ввода/вывода, развязанных оптронами, то емкость CCPL будет соответственно больше. Радикального уменьшения напряжения помех на внутреннем общем проводе устройства можно достичь, если правильно скомпоновать устройство и выбрать оптимальную точку заземления. Например, вполне очевидно, что по внутреннему общему проводу устройства на рис. 5 токи помех на участке «а»—«в» вообще не текут, соответственно, не возникает причин для сбоя узлов 1 и 2. В устройстве на рис. 5 внутренний общий провод устройства разделен на две части: «чистую» («а»—«в») и «грязную» («в»—«г»). По «чистой» части токи помех не протекают, к ней можно присоединять все узлы, потенциально чувствительные к помехам (узлы 1 и 2). Токи помех текут только по «грязной» части, с которой можно связывать только узлы, нечувствительные к помехам (узлы 3 и 4). Реальная картина вряд ли будет такой простой, как на рис. 5.
Паразитную емкость Сх очень редко удается сосредоточить только в «грязной» части, частично она существует и в «чистой» левой. За счет этой емкости полностью избавиться от токов помех в «чистой» части общего провода не удается.
Алексей Кузнецов, г. Аделаида, Австралия.