Как выбрать систему заземления для частого дома — разновидности и критерии выбора


Разновидности конструкций

Применение неправильно подключённых электроприборов может быть небезопасным. Опасность состоит в том, что в процессе использования может случиться пробой, в результате которого напряжение перейдёт на корпус устройства. Это напряжение может как вывести из строя сам прибор, так и нанести человеку электротравму разной степени тяжести (вплоть до летального исхода). Для предотвращения подобных проблем могут быть использованы два вида заземления:

  • Естественное. К нему относятся массивные конструкции, постоянно находящиеся в земле. Роль естественных заземлителей отводится фундаментам зданий, водопроводным трубам, металлоконструкциям и шпунтам, хорошо закреплённым в грунте. Достоинство таких конструкций в том, что на обеспечение заземления с их помощью не требуется дополнительных затрат. Однако сопротивление естественного контура невозможно рассчитать.
  • Искусственное. Заземление такого рода создаётся специально из горизонтальных и вертикальных элементов (электродов), изготовленных из определённого материала и имеющих конкретный размер. В качестве основных элементов искусственного контура чаще всего выступают стальные детали, имеющие круглую или угловую форму. Качество такого заземления зависит от сопротивления, которым обладают искусственные заземлители. Определение сопротивления каждого электрода осуществляется по специальной формуле.

Во всех современных устройствах, работающих за счёт электроэнергии, предусмотрено заземление. Всё, что требуется сделать — просто обеспечить соединение с основной заземлительной системой.

Какой заземлитель эффективнее: естественный или искусственный?

Все новости

02.03.16 ,

Существует два вида заземления: искусственное и естественное. Роль естественного заземления выполняют части металлических конструкций объекта, постоянно находящиеся в земле: арматура фундамента, водопровод, обсадные трубы и т.д. Искусственное заземление — это отдельная самостоятельная конструкция, монтирующаяся в землю. Практически каждый подрядчик сталкивается с вопросом при установке заземления, какой заземлитель лучше: искусственный или естественный?

Для ответа на данный вопрос обратимся к нормативным документам, а именно к пунктам 1.7.54 и 1.7.109 “Правил Устройства Электроустановок” (ПУЭ). Здесь мы видим ответ: для заземления подойдут как естественные, так и искусственные заземлители. Давайте выясним, в каких случаях правильнее применить тот или иной способ? Разберем подробнее каждый из вариантов.

Вариант 1. Естественный заземлитель

Если вы решили использовать естественный заземлитель, то вам нужно знать о многих факторах: типе фундамента объекта, его материале, а также об агрессивности грунта. В разделе ПУЭ 1.7.109 изложены варианты конструкций объекта, которые можно применить в качестве заземлителя. Самым распространенным из них является фундамент. Различают несколько видов фундамента: ленточный, столбчатый, свайный и плитный. Выбор основы зависит от плотности грунта, сейсмической активности, рельефа поверхности, уровня грунтовых вод и глубины промерзания грунта. В качестве материала используют: арматуру, бетон, кирпич, дерево, бут, асбестоцементные или металлические трубы. Подробную информацию о фундаменте можно найти в нормативной документации (СНБ 5.01.01-99 Основания и фундаменты зданий и сооружений). Таким образом, при решении использования вашего фундамента в качестве заземлителя, нужно удостовериться, что он имеет электрически связанные металлические части.

Все элементы естественного заземлителя должны быть объединены в общий контур и контактировать с землей для отвода токов непосредственно или через бетон. Также, выбранный заземлитель должен удовлетворять требованиям ПУЭ касательно величины площади поперечного сечения проводника (Таблица 1.7.4). В процессе эксплуатации естественного заземлителя, нельзя допустить разрушение его структуры или нарушение работы устройств, связанных с ним.

Не допускаются в качестве заземлителя трубы канализации и центрального отопления, а также трубопроводы для горючих и взрывоопасных смесей. Трубы легко поддаются коррозии металла, разрывая при этом электрический контакт. Данный вид заземления безусловно более экономичный: не требует затрат на материалы, монтаж и демонтаж заземляющего устройства, но в ходе его длительной эксплуатации, ремонт поврежденных участков будет стоить не меньше, чем установка отдельного заземления.

Естественный заземлитель

Вариант 2. Искусственный заземлитель

Представляет собой совокупность электродов, установленных в земле и объединенных с электрооборудованием с помощью заземляющего проводника. В качестве материала электродов применяют омедненную сталь, оцинкованную сталь или черные металлы:

  1. Омедненная сталь — имеет наиболее высокую электропроводность и сцепление с различными материалами. Соединение меди и стали крепче, чем с цинком, поэтому омедненные стержни прочнее, чем оцинкованные. Медь менее электрохимически активная, чем цинк и сталь, что увеличивает срок службы до 100 лет.
  2. Оцинкованная сталь — коррозионностойкий материал с низким удельным сопротивлением. Электроды из данного металла имеют высокую устойчивость к кислотным средам со средним сроком службы 30 лет.
  3. Черные металлы — имеют высокую механическую прочность, но быстро разрушаются при эксплуатации в агрессивной среде грунта, образуя ржавчину и коррозию. И, как следствие, получаем высокое сопротивление растекания тока, представляющее опасность для жизни человека.

Размеры проводников должны соответствовать требованиям ГОСТ Р 50571.5.54-2013. Множество вариантов установки заземляющего устройства помогает обеспечить нужную площадь контакта поверхности заземлителя с грунтом, что в свою очередь позволяет влиять на значение сопротивления растеканию тока. Преимуществом искусственного заземлителя является то, что его можно установить глубоко в землю, где удельное сопротивление ниже за счет грунтовых вод, которые стекают вниз. Это обеспечивает стабильность итогового сопротивления.

Искусственный заземлитель

Подведем итоги: можно выбрать в качестве заземлителя любой из описанных выше вариантов, главное подойти к данному вопросу ответственно. Для безопасности вашего дома и продолжительного срока службы, выбирайте заземление с антикоррозионным покрытием, изготовленным в соответствии с нормативными правилами. Позвоните или напишите в наш Технический центр и мы подберем для вашего объекта нужный комплект заземления.
Смотрите также:

  • Заземление в частном доме
  • Что можно использовать в качестве естественного заземлителя?
  • Защита от молнии для частного дома и бани

[ Код новостного блока для вставки на Ваш сайт ] [ RSS лента для подписки на новости ]

Хотите получать избранные новости о молниезащите и заземлению раз в 3-4 недели? Зарегистрируйтесь и автоматически получайте email-рассылку с подборкой.

Все новости публикуются в наших группах в мессенджерах и в социальных сетях. [ Новостной канал в Telegram ]

Элементы искусственного контура

Несмотря на то что естественные и искусственные заземлители выполняют одинаковую функцию, заключающуюся в защите от поражения электрическим током, использование первых не всегда оказывается целесообразным. Установка искусственной конструкции необходима, когда:

  1. Она является единственно возможной.
  2. Естественный контур не выдерживает токовых нагрузок.

И в том, и в другом случае оптимальным решением является создание искусственной заземлительной системы с проведением предварительных расчётов. В процессе таких расчётов определяется форма, размер контура и материал, из которого будут выполнены электроды. В качестве основы для них обычно используют сталь, которая имеет покрытие:

  • Из цинка. Обеспечивает устойчивость к действию коррозии и кислотной среды. Детали из такого материала отличаются низким сопротивлением.
  • Из меди. Для стали и меди характерно хорошее сцепление, поэтому такие электроды обладают высокой прочностью и хорошо контактируют с другими материалами. Имеют отличную электропроводимость и долгий срок службы, обеспечивающийся за счёт низкой электрохимической активности металлов.

Ещё один вариант изготовления электродов (из чёрных металлов) обладает существенным недостатком, выражающимся в низкой устойчивости к коррозии и ржавчине. Из-за высокой прочности сопротивление растеканию тока возрастает, в результате этого создаётся очень опасная для человека ситуация.

Сопротивление искусственного заземлителя

Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.

Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.

Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.

Расположение электродов

Входящие в общую заземлительную конструкцию детали могут располагаться вертикально или горизонтально. При первом способе монтажа электроды закапываются в грунт на 70 см. При этом их длина не должна превышать 5 м, а диаметр должен находиться в диапазоне 10−16 мм.
Горизонтальный метод укладки предполагает углубление заземлителей на 50 см (в случае с пахотной землёй на — 1 м). Горизонтально расположенные стальные пруты диаметром более 1 см (либо стальные полосы толщиной более 4 мм) используются для связывания вертикально установленных элементов, стыки между ними фиксируются при помощи сварки. Такой метод показывает свою эффективность лишь при достаточной электропроводимости верхнего слоя грунта.

Правила устройства электроустановок обязывают обеспечить заземление для электрооборудования бытового и промышленного назначения. Чётких требований относительно того, как электроды должны располагаться в грунте, не существует. В каждом конкретном случае это определяется индивидуально.​

Электрическая безопасность, созданная с помощью искусственных заземлителей, реализуется с помощью уменьшения разности потенциалов и отвода блуждающего тока. Ток утечки возникает вследствие взаимодействия заземляющего элемента и фазного кабеля. Одновременно обеспечивается бесперебойное и эффективное функционирование электротехники.

Чем отличаются вертикальные и горизонтальные заземлители

Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.

Стандартные показатели заглубления:

  1. Верхний конец вертикально заложенных в грунт заземляющих элементов углубляется на 0,7 м. Укладываются на дно горизонтально, по периметру фундамента. Диаметр электродов — от десяти до шестнадцати мм, длина — до 5 м.
  2. Горизонтальные элементы заземляющего устройства углубляются в грунт на 0,5 м. Если земля пахотная, прокладывать их необходимо на глубину не меньше 1 м. Рациональность их применения обоснована лишь при хорошей электропроводимости верхнего слоя почвы. Такой вид электродов может использоваться для связи вертикальных заземляющих элементов. Соединения выполняются при помощи сварки. Применяется или сталь округлой формы диаметром более 10 мм, или стальные полосы толщиной больше 4 мм.

Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.

Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.

Особенности установки

Для того чтобы искусственная заземлительная конструкция эффективно выполняла защитную функцию, она должна быть правильно установлена с применением техники и специального оборудования. При укладке двух горизонтальных электродов от заземляемой части установки их необходимо располагать в противоположном направлении. Если количество заземлителей больше двух, их монтаж требуется проводить под наклоном в 90−120 градусов. Таким образом удастся достичь улучшенного показателя сопротивляемости деталей.
В процессе установки происходит распределение электрических потенциалов. Наличие существенной разницы показателей на поверхности земли и внутри неё повлечёт за собой возникновение опасных напряжений. С целью предотвращения такой ситуации и выравнивания параметров применяется искусственный заземлительный элемент в виде сетки, когда горизонтальные электроды располагаются вдоль и поперёк, а места их пересечений фиксируются сваркой.

При таком способе укладки необходимо избегать слишком близкого расположения электродов друг к другу. Иначе возникнет экранирование, которое существенно уменьшит эффективность заземлителей.

Заземлители искусственного типа должны иметь естественный цвет, их нельзя окрашивать, поскольку это приведёт к образованию изоляционного слоя. Он ограничит протекание электричества в грунт. Покрывать битумной краской разрешается только места соединения проводников, обработанные сваркой. Такое покрытие защитит элементы от раннего разрушения.

Самой простой и эффективной (с точки зрения монтажа и эксплуатации) считается установка круглой заземлительной конструкции. Она имеет низкую себестоимость, поскольку для её изготовления требуется минимальное количество материалов. Коррозийная устойчивость круглого контура значительно выше, чем контуров другой формы.

Измерение сопротивления

Завершающим этапом монтажа конструкции является измерение сопротивления, которым обладают электроды. Этот параметр является главной качественной характеристикой работы заземлительного контура искусственного типа. Он зависит от таких факторов, как площадь электродов и удельное электрическое сопротивление грунта.
Удельное сопротивление показывает уровень электропроводности грунта, выступающего в роли проводника. В разных почвах оно разное, на его величину оказывает влияние влажность, температура, состав и плотность грунта, а также наличие в нём солей, кислотных и щелочных остатков.

Проверка сопротивления установленного контура происходит с применением специальной техники. Если система содержит разветвления, то сначала делают замеры на отдельных участках магистрали и сравнивают их с показателями на участке, связанном с заземлителем. После этого снимают показания между заземляемыми электроустановками и соотносят их с показателями на ранее проверенных участках.

Виды заземлителей

Если проводимость у последнего низкая, приходится усложнять конструкцию заземлителя.

Есть еще сложности: среда грунта оказывает на электроды корродирующее воздействие, в некоторых случаях металл «вымывается» в результате электролиза.

Все это побуждает разрабатывать самые разные конструкции заземлителей.

Естественные, искусственные заземлители

Естественными заземлителями называют конструкции, у которых отведение электричества в грунт не является основной функцией. Например:

  • Фундаменты, сооруженные из железобетона.
  • Подземные инженерные сети: трубопроводы, оболочка и броня кабелей.
  • Рельсы железной дороги и прочие коммуникации наземной прокладки.

Использование ж/б фундаментов в качестве заземлителей допускается при следующих условиях:

  1. Влажность грунта — не менее 3%. В сухой почве бетон обладает высоким сопротивлением.
  2. Отсутствует гидроизоляция (битумное покрытие допускается).
  3. Монолитная конструкция. Можно использовать и сборные, но для этого необходимо соединить электросваркой арматуру соседних блоков. Также поступают со свайным фундаментом: арматуру свай приваривают к арматуре ростверка.

Заземлитель ЗР 10/630 УХЛ3

Применение естественных заземлителей позволяет значительно удешевить устройство заземления.

Если это невозможно, используют заземлители искусственные — специальные конструкции, нацеленные только на обеспечение электроконтакта с высокой проводимостью между заземленным элементом и грунтом.

Искусственный заземлитель, состоящий из нескольких соединенных между собой электродов, называют сложным. Если он смонтирован вокруг объекта, то применяют название «контур заземления».

В основном электроды изготавливают из стали:

  • черной (низкоуглеродистой – Ст.0, Ст.3 и пр.);
  • нержавеющей;
  • черной с покрытием из меди, алюминия или цинка.

Электроды из «черной» стали в расчете на коррозию делают более крупными, но они все равно стоят дешевле нержавеющих или с покрытием. Однако, у них есть важный недостаток: при появлении ржавчины на поверхностном слое его сопротивление возрастает.

Горизонтальные, вертикальные заземлители

Если проводимость поверхностного слоя грунта высока и имеется достаточно свободного места, электроды искусственного заземлителя укладывают горизонтально в неглубоких траншеях. На пахотных землях глубина закладки составляет 1 м, на прочих — 0,5 м.

Достоинство метода: минимальная доля ручного труда.

На каменистых и вечномерзлых грунтах горизонтальная закладка — единственно возможный вариант. Если проводимость поверхностного слоя грунта невысока, что бывает довольно часто, применяют электролитический заземлитель. Это согнутая Г-образно труба с отверстиями в стенке, заполненная минеральной солью.

При растворении солей в грунтовой влаге образуется электролит, что дает двойной эффект:

  • повышается проводимость грунта;
  • снижается температура замерзания (промерзший грунт обладает высоким сопротивлением).

В засушливый период через выведенную наружу короткую часть в заземлитель наливают воду. В соль добавляют вещества, тормозящие их вымывание весной.

Засыпку периодически обновляют.

В подавляющем большинстве случаев поверхностный грунт обладает рядом недостатков:

  • слабая проводимость — из-за низких: плотности и влажности;
  • неравномерное растекание тока — из-за низкой и нестабильно распределенной плотности;
  • значительное содержание воздуха, способствующего коррозии;
  • температурные перепады;
  • промерзание.

Плотные и влажные глубинные слои этих недостатков лишены, потому чаще электроды размещают вертикально. Термин «вертикально» условен: проводники могут располагаться под углом до 45 градусов.

Разновидности вертикальных заземлителей

Распространены следующие виды вертикальных заземлителей:

  • традиционный;
  • модульный;
  • гибкий;
  • бесконтактный;
  • для засушливых регионов.

Традиционный

Самый простой вариант. Отрезки стального проката длиной до 5 м вколачивают в землю кувалдой или специальным электроинструментом.

Для изготовления электродов используются:

  • уголок: минимальная толщина полки — 4 мм;
  • полоса: минимальная толщина — 4 мм, минимальное сечение — 48 кв. мм;
  • труба: минимальная толщина стенки — 3,5 мм;
  • прут: минимальный диаметр — 10 мм, оцинкованного — 6 мм.

Минимальное сечение электродов и подводящих шин для заземлителей молниезащиты составляет 160 кв. мм.

Круглые электроды наиболее предпочтительны, поскольку:

  • при том же сечении имеют меньшую площадь поверхности, потому меньше ржавеют;
  • легче вбиваются в грунт;
  • требуют в 1,5 раза меньших затрат стали и обходятся в 1,75 раза дешевле прочих разновидностей.

Модульный (наращиваемый)

Используются круглые стержни, снабженные конструктивными элементами для прочного соединения. По мере погружения в грунт электрод наращивается, что позволяет достигать любой глубины.

  1. Высокая эффективность, обусловленная значительной глубиной погружения: чтобы обеспечить сопротивление в 2 Ома достаточно 1-го электрода длиной 12 м, тогда как 3-метровых для этого требуется 15 м и более.
  2. Компактность: заземлитель занимает мало места на поверхности участка.
  3. Долговечность: модули имеют коррозионноустойчивое медное или цинковое покрытие.
  • диаметр: 12 – 25 мм;
  • длина: 1,2 – 5 м.

Применяются разные способы соединения секций:

  • резьбовыми муфтами;
  • резьбовое без муфты (стержни навинчиваются один на другой);
  • муфтой без резьбы;
  • фрикционный метод: один стержень заклинивается в другом.

При выборе модульного заземлителя внимание обращают на характеристики покрытия:

  • толщина;
  • адгезия: подразумевается сила сцепления покрытия с основным материалом, препятствующая его соскальзыванию в процессе внедрения в грунт.


Электрод изготовлен в виде тонкостенной трубы из нержавеющей стали (толщина стенки составляет 1 – 2 мм) с находящимся внутри сердечником из полужесткого пластичного материала.
Он хорошо переносит процесс забивания, но при попадании на препятствие в грунте (камень и пр.) изгибается и обходит его. Наконечник делают закругленным, чтобы он лучше соскальзывал с препятствия.

Стандартный диаметр стальной трубы — 15 мм. Диаметр «начинки» из пластичного материала больше, за счет чего она после запрессовывания в трубу удерживает последнюю от смятия.

Какие требования предъявляются к искусственным заземлителям

Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.


Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.

Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:

  • диаметр стального арматурного прута не менее 10 мм;
  • диаметр оцинкованного прута не менее 6 мм;
  • в уголках толщина стенок от 4 мм;
  • при использовании полосовой стали ее толщина должна быть не менее 4 мм;
  • в молниезащитных заземлителях сечение берется от 155 мм2;
  • толщина стенок отбракованных труб не менее 3,5мм.

Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.

Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.


Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.

При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.

Проверка цепи между заземлителями и заземленными элементами

Контроль заземления включает следующие этапы:

  1. Осмотр проводников и соединений на предмет обрыва.
  2. Замер переходного сопротивления в разъемных соединениях. Максимально допустимое значение — 0,05 Ом.
  3. Проверка наличия цепи специальными приборами.

Существует несколько их разновидностей:

Приборы отличаются диапазоном показателей, уровнем помехоустойчивости, областью применения, частотой измерительного тока и прочими параметрами.

Проверка электроцепи заземленный объект – заземлитель осуществляется после:

Для некоторых электроустановок предписывается проверять наличие цепи с определенной периодичностью (точные сроки указаны в нормативных документах).

От правильности выбора и эксплуатации заземлителя зависит безопасность персонала, работающего с электроустановкой. К настоящему моменту разработаны конструкции для любых условий, эффективно работающие даже в грунтах с самой низкой проводимостью.

Естественные заземлители, заземляющие контуры и заземляющие проводники

Чтобы получить заземляющие устройства с малым сопротивлением, широко используются так называемые естественные заземли : водопроводные и иные трубы, проложенные в земле, металлические конструкции хорошо связанные с землей и т. п. Такие естественные заземлители могут иметь сопротивление порядка долей ома и не требуют специальных затрат на их устройство. Поэтому они должны быть использованы в первую очередь.

В тех случаях, когда такие естественные заземлители отсутствуют, для заземляющих устройств приходится устраивать искусственные заземлители в виде заземляющих контуров , представляющих собой ряды забитых в землю уголков или труб, соединенных стальными полосами.

Общее сопротивление растеканию заземляющего контура определяется сопротивлением растеканию отдельных заземлителей по известному закону электротехники (как сумма проводимостей параллельно включенных проводников). Однако при контурных заземлителях приходится считаться с явлением так называемого взаимоэкранирования заземлителей. Это явление приводит к увеличению сопротивления растеканию заземлителей, размещенных в заземляющем контуре, по сравнению с отдельными заземлителями (уголок, полоса и т. п.) примерно в 1,5 и даже до 5 — 6 раз (для особо сложных контуров). Чем ближе находятся заземлители один от другого, тем в большей степени взаимоэкранирование влияет на общее сопротивление растеканию. Поэтому отдельные заземлители нужно располагать с расстояниями между ними не менее 2,5 и до 5 м.

Коэффициенты, учитывающие увеличение сопротивления растеканию в результате взаимоэкранирования, называются коэффициентами использования заземлителей. Все части заземляющего контура при протекании через него тока замыкания на землю получают примерно одинаковый потенциал. Поэтому заземляющие контуры способствуют выравниванию потенциалов на занимаемой ими площади . В ряде случаев (например, в установках напряжением 110 кВ и выше, лабораторных высоковольтных установках и др.) они специально для этой цели устраиваются в виде достаточно частой сетки из полос (помимо труб или уголков).

Выполнение сетей заземления облегчается при использовании в качестве заземляющих проводников стальных конструкций различного назначения. Будем называть их условно естественными проводниками.

В качестве естественных проводников могут служить:

а) металлические конструкции зданий (фермы, колонны и т. п.),

б) металлические конструкции производственного назначения (подкрановые пути, каркасы распределительных устройств, галереи, площадки, шахты лифтов, подъемников и т. п.),

в) металлические трубопроводы всех назначений — водопровод, канализация, теплофикация и т. п. (исключая трубопроводы для горючих и взрывоопасных смесей),

г) стальные трубы электропроводок,

д) свинцовые и алюминиевые оболочки (но не броня) кабелей.

Они могут служить единственными заземляющими проводниками , если удовлетворяют требованиям ПУЭ в отношении сечения или проводимости (сопротивления).

В качестве заземляющих проводников в первую очередь применяется сталь. Для осветительных установок и в других случаях, когда применение стали конструктивно неудобно или проводимость недостаточна, используются медь или алюминий.

Заземляющие проводники разделяются на основные (магистральные) и ответвления от них к отдельным электроприемникам.

Заземляющие проводники должны иметь минимальные размеры, приведенные в ПУЭ.

В электроустановках напряжением до 1 000 В с изолированной нейтралью допустимая нагрузка на магистральные заземляющие проводники в соответствии с требованием ПУЭ должна быть не менее 50% допустимой длительной нагрузки на фазный провод наиболее мощной линии данного участка сети, а допустимая нагрузка на ответвления заземляющих проводников к отдельным электроприемникам — не менее 1/3 допустимой нагрузки фазных проводов, питающих эти электроприемники.

Для заземляющих проводников при напряжении как до так и выше 1 000 В не требуются сечения больше 100 мм — для стали, 35 мм2 — для алюминия и 25 мм2 — для меди.

Таким образом, выбор проводников для заземления оборудования достаточно прост, поскольку допустимая нагрузка на различные проводники может быть получена из таблиц ПУЭ или электротехнических справочников.

В цепь однофазного замыкания в сети с заземленной нейтралью входят сопротивления: обмоток (и магнитной цепи) трансформатора, фазного провода, нулевого провода (зануляющего проводника). Трансформатор и фазный провод выбираются по нагрузке и другим факторам, не относящимся к системе зануления.

Использование фундамента

При создании контура необходимо знать, как происходит соединение железобетонных элементов здания. Например, фундамент чаще всего соединяется с остальными элементами путем сваривания арматуры. Если фундамент выполнен из свай, соединение арматуры фундаментных блоков с ними или свай с ростверком можно осуществить при помощи электросварки. Стоит обратить внимание на то, что такой способ не подходит для соединения каркасов из металла и пространственных колонн. Их соединение выполняют при помощи точечной сварки.


В качестве заземлителя не всегда можно использовать фундамент из железобетона. Применять такой контур можно лишь в случаях, когда влажность почвы не ниже 3 %. При меньшей влажности сопротивление фундамента будет слишком высоким, что не позволит применить его для устройства контура.

Фундамент подходит в качестве заземляющего контура, если находится в слабоагрессивной среде. Например, к такому воздействию относится наличие грунтовых вод с низкой жесткостью. Хорошо подходят фундаменты, не имеющие гидроизоляции, либо поверхность которых защищена битумом. При этом нельзя применять фундамент из железобетона, находящийся в непосредственном контакте с агрессивной средой. Такое воздействие приведет к коррозии его элементов. Существуют конструкции, в которые включена напрягаемая арматура, они также не подходят для создания естественного заземляющего контура.

При внимательном осмотре здания можно решить, подходит его фундамент или другие элементы для создания заземления или нет. Стоит отметить, что большинство бетонных конструкций таким требования отвечают, поэтому никакой необходимости создавать искусственное заземление не возникает. Благодаря этой особенности бетонных сооружений не придется производить большие затраты на провода. Все они будут находиться внутри здания, что позволит сэкономить на их длине, и это значительно снизит расходы на материалы.

Заземление электроустановок до 1000В по ПУЭ 7

Требования к заземлению электроустановок до 1000В приведены в разделе 1.7 ПУЭ 7 (Правила устройства электроустановок в седьмой редакции).

Раздел 1.7 «Заземление и защитные меры электробезопасности» содержит общие требования к заземлению электроустановок и защите людей и животных от поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

Выделим положения данного раздела, которые касаются заземления электроустановок до 1000 В.

Электроустановки до 1000 В в отношении мер электробезопасности разделяются на:

  • электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;
  • электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

Виды заземления и их назначение

Рассмотрим виды заземления в электроустановках с их основными чертами в таблице.

Типы и подтипы заземленияОсобенности
TNпопулярнейший тип заземляющей системы, являющий собой комплекс из штырей, вертикально вбитых в землю до водоносного горизонта на глубину свыше 2,5 м; штыри объединены кабелем (полосой) в общий заземляющий контур для жилого здания; альтернативное название — глухозаземленная нейтраль, т. е. ноль совмещен с землей по всей длине
TN-Cдешевый, но устаревший вариант с высоким риском опасности: рабочий нуль N одновременно является защитным проводом PE, поэтому при обрыве N-проводника весь потенциал перейдет на электрическое оборудование, что может привести к возгоранию или поражению током
TN-Sв новых строительных проектах принимают эту подсистему, поскольку она наиболее надежная, и в тоже время дорогая (требует дополнительного проводника от подстанции к энергопотребителю); конструктивно в TN-S входят отдельный фазный провод, нейтраль N и защитный проводник PE (последние два проводника — отдельные компоненты, начиная с подстанции с глухозаземленной нейтралью)
TN-C-Sэто комплекс плюсов описанных выше подсистем; очень просто реализуется при реконструкции старых видов заземления нейтрали; конструктивно состоит из системы TN-C (до главного распределительного щита), а дальше нейтральный провод PEN расходится на N-проводник и защитный PE; и уже дальше организовывается подсистема TN-S; минус — образуется полное напряжение в системе при обрыве PEN-шины, проблема решается установкой защитных реле напряжения
TTэлектропитание идет по фазным проводам от источников с глухозаземленной нейтралью, заземление обустраивается прямо у потребителя; в обязательном порядке требуется подключение УЗО
ITIT-система не использует глухозаземленную нейтраль, нуль источника подключается через спецустройство с большим внутренним сопротивлением, у потребителя при этом устанавливается дополнительно устройство ноля и защитного заземления (см. главу 1.7 ПУЭ); метод заземления IT создает минимальные помехи

Кратко резюмируем виды заземления и их назначение:

  • IT-система снабжения подходит для специальных лабораторий;
  • TT-система актуальна для подключения временных объектов или мобильных сооружений, к примеру, на стройке;
  • подсистема TN-C-S чаще всего выбирается при реконструкции старых зданий;
  • TN-S — при проектировании новых строительных объектов;
  • TN-C обнаруживается преимущественно в старом жилом фонде и в настоящее время не используется ввиду высоких рисков пожарной опасности и удара электрическим током;
  • TN-система оптимально пригодна для жилых домов (обращайте внимание на современные подсистемы из этой категории).

Не пользуйтесь трубами водопровода, отопления, газа в качестве защитного заземления! Так же как и части оградительных конструкций из металла, они провоцируют при аварийной ситуации появление полного напряжения 220V на своих элементах, что несет угрозу здоровью и жизни человека и животных.

Основные термины

п.1.7.5. Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.

п.1.7.6. Изолированная нейтраль — нейтраль трансформатора или генератора, неприсоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

1.7.15. Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.

1.7.17. Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

1.7.18. Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.

1.7.19. Заземляющее устройство — совокупность заземлителя и заземляющих проводников.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]