Понятие трансформатор тока, назначение
Под трансформаторами тока (ТТ) подразумевают аппараты статичного типа с электромагнитным принципом с обмотками (две или больше) на металлическом стержне (магнитопроводе) с выводами для подключения в сеть и к измерительным приборам.
Для чего применяют ТТ:
- подсоединения измерителей, РЗиА (защитных реле), которые не выдержали бы первоначальной нагрузки. Происходит изолирование подключаемого и работающего узла от чрезмерных мощностей обслуживаемого оснащения;
- расширение пределов измерений;
- понижения тока по мощности и создание защиты;
- контроль в цепях с высокими величинами, например, в сварочном аппарате, где ток достигает 150–250 А;
- в любых других случаях, когда надо понизить ток.
ТТ работают с переменными, в крайнем случае с пульсирующими напряжением — если подключить к постоянному, то на выходе потенциал будет нулевым. Иногда встречается название «трансформатор постоянного тока», это значит, что в нем используются специальные выпрямители.
Где используются
ТТ широко применяются при транспортировке электроэнергии на большие расстояния, для распределения между приемниками. Они отличаются тем, что предназначены для выпрямительных, стабилизирующих, сигнальных, усиливающих, контрольных узлов, на станциях и объектах, производящих электричество. Именно поэтому к их точности и подключению требования чрезвычайно высокие — даже ничтожные отклонения значимые.
Где чаще всего и зачем применяют:
- в промышленной, производственной энергетике, в релейных узлах подстанций, распределительных конструкциях, мощных электроустановках;
- для замеров и в приборах, осуществляющих данную функцию. Ставят в узлы учета (коммерческого, бытового);
- для контроля высоких величин, при подсоединении учетных устройств, электросчетчиков.
Электрическая часть электростанций — Измерительные трансформаторы постоянного тока
Страница 63 из 111
Для подключения измерительных приборов, осциллографов, устройств защиты, регулирования и автоматики в преобразовательных установках и в линиях передачи постоянного тока высокого напряжения применяются измерительные трансформаторы постоянного напряжения (ТПН) и постоянного тока (ТПТ). По аналогии с измерительными трансформаторами переменного тока вторичный ток у ТПН должен быть строго пропорционален первичному напряжению в диапазоне (0,8—1,2) UH. Погрешности не должны быть больше нормированных при выходной мощности вторичной цепи 30—40 В-А. У ТПТ вторичный ток должен быть строго пропорционален первичному как в диапазоне (0,2—1,2) /„, так и при увеличении первичного тока до (5—6) /и, т. е. 10 %-ная кратность должна быть не менее 5—6 при выходной мощности вторичной цепи 50—60 В-А. В цепях постоянного тока надо считаться с дополнительными погрешностями, обусловленными как электромагнитным влиянием вторичной цепи трансформаторов на их первичную цепь, так и искажением формы вторичного тока из-за потерь в сердечниках. ТПН включается между фазой высокого напряжения и землей. Для уменьшения первичного тока до 0,01 А последовательно с первичной, обмоткой ТПН включается большое сопротивление. Первичная обмотка создает постоянный магнитный поток. Если ко вторичной цепи, состоящей из двух последовательно и встречно включенных вторичных обмоток на двух сердечниках из магнитно-мягкого материала с петлей намагничивания, близкой к прямоугольной, приложить синусоидальное напряжение, то в каждый полупериод переменный поток, создаваемый вторичным током, в одном из сердечников совпадает по направлению с постоянным потоком первичной обмотки, а в другом — имеет обратное направление. В том сердечнике, в котором направления совпадают, суммарный поток равен потоку насыщения и ЭДС равна нулю. В другом сердечнике переменный поток вычитается из постоянного, причем вторичный ток возникает мгновенно при переходе потока через нуль и сохраняется постоянным в течение всего, полупериода. Поток в этом сердечнике изменяется по синусоиде, индуцированная им ЭДС во вторичной обмотке должна быть равна приложенному синусоидальному напряжению. В следующий полупериод роли сердечников меняются, в результате ток вторичной цепи имеет форму чередующихся положительных и отрицательных полуволн. В цепь выпрямленного вторичного напряжения включаются обмотки измерительных устройств. Переходные режимы в ТПН протекают при первичных напряжениях, не превышающих номинальное. Отношение числа витков первичной и вторичной обмоток равно 50, вторичный ток при этом равен 0,5 А. На рис. 6-27 показана схема подключения ТПН к шинам преобразовательного моста высокого напряжения на подстанции передачи постоянного тока. Рис. 6-28. Внешний вид ТПН типа НПТ-400 (ДС 40/400 и магнитная система) На рис. 6-28 изображена конструкция ТПН типа НПТ-400 наружной установки Московского электрозавода имени В. В. Куйбышева, состоящая из магнитной системы, установленной на стальном основании, дополнительного сопротивления типа ДС 40/400 и шкафа питания, содержащего два питающих трансформатора 380/220/50 В и два выпрямительных моста. ТПТ работают также при взаимном уравновешивании переменных намагничивающих сил в сердечниках. У ТПТ с одним сердечником вторичный ток имеет несимметричную форму и непригоден для измерений и защиты. Рис. 6-27. Схема ТПН с последовательно уединенными вторичными обмотками Применение по аналогии с ТПН двух сердечников с двумя последовательно и встречно включенными вторичными обмотками дает переменный ток во вторичной цепи, который выпрямляется выпрямителем мостовой схемы. В цепи выпрямленного тока включаются обмотки приборов и устройств систем управления и защиты.
Рис. 6-2У. Схема соединения ТПТ-300 и двух блоков ТПП-0,5 Для изоляции включаемых приборов и аппаратов от вторичной цепи основного ТПТ или для измерения вторичного тока приборы нагрузки включаются через дополнительный промежуточный трансформатор тока, который может быть выполнен в общем блоке конструкции трансформатора. На рис. 6-29 показана схема соединений выпускаемого ПО «Электроаппарат» в Ленинграде измерительного трансформатора постоянного тока типа ТПТ-300, сконструированного в сочетании с двумя блоками типа ТПП-0,5. В ТПТ предусмотрена двухступенчатая трансформация тока 1000/25 в основной конструкции и 25/1 в дополнительных трансформаторах тока, встроенных в блоки. Таким образом, каждый блок ТПП-0,5 состоит из питающего трансформатора 380/220/32 В и дополнительного трансформатора тока с коэффициентом трансформации 25/1. На вторичной обмотке каждого питающего трансформатора имеется две отпайки на 31 и 32 В, используемые для компенсации небольшой неидентичности магнитных характеристик сердечников ТПТ. Нагрузка подключается через выпрямительные схемы к измерительным выводам вторичных обмоток дополнительных трансформаторов тока. Общий вид конструкции ТПТ типа ТПТН-400 па 1000/1 изображен на рис. 6-30. Измерительные ТПТ большой точности могут применяться и в цепях низкого напряжения установок металлургической и химической промышленности при первичном постоянном токе до 100 кА. В перспективных установках высокого напряжения, в которых ток будет более 10 кА, а напряжение выше 800 кВ, вероятно, придется отказаться от обычных электромагнитных способов измерения и использовать предлагаемые новые методы измерений, а именно — фотооптический метод, метод, основанный на эффекте Холла, и метод ядерного магнитного резонанса.
Рис. 6-30. Конструкция ТПТ типа ТПТН-400 1 — вводы первичной обмотки; 2 — силикагелевый влагопоглотитель; 3 — расширитель; 4 — маслоуказатель; 5 — Покрышка — фарфор; 6 — масло; 7 — первичная обмотка; 8 — тороидальные сердечники с вторичными обмотками; 9 — стальной сварной корпус; 10 — коробка с семью вторичными выводами (шесть от двух вторичных цепей со средними точками и один — заземление последней обкладки кабельно-конденсаторной изоляции); 11 — кран для слива масла.
- Назад
- Вперед
В чем разница между трансформаторами тока и напряжения
Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.
Трансформаторы | |
Тока (ТТ) | Напряжения (ТН, силовые) |
Принцип действия трансформатора тока необходимо отличать: у ТТ нет узкого диапазона номинала вторички и ее ток зависит от такового (измеряемого) первичных витков, поэтому первая всегда замыкается при подсоединенной нагрузке. Монтаж трансформаторов напряжения отличается и по этому пункту. Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал. Основное отличие: функционирует как источник тока со значением защищаемого участка. Данная величина почти независима от нагрузок на вторичке. | Как работает трансформатор напряжения: при переходе между катушками (всегда много витков) меняются характеристики именно питания под параметры потребителя. То есть изоляция и защита тут на втором месте, имеют другую природу. Нагрузка может варьироваться в пределах возможностей изделия. |
Цель — изолирование измерителей от высоких мощностей, для контроля, измерений электросетей. | Трансформаторы напряжения назначение режим работы и принцип действия имеют иные, чем ТТ. Цель — преобразование мощности для питания нагрузок разного номинала. Напряжение, продуцируемое электростанциями чрезвычайно высокое. Для подвода энергии применяют понижающие модели, а при передаче на большие расстояния (когда возможны потери) — повышающие. |
На ЭУ, станциях, где подведена чрезвычайно мощная сеть до такой степени, что требуется дополнительная изоляция даже для замеров. | Для чего нужен трансформатор напряжения: эксплуатация бытовых и подобных электроустройств. Для «подгонки» под приемники энергии, благодаря чему возможно везде пользоваться универсальной сетью. Напряжение изменяется под потребности потребителя, становится подходящим для любой техники. |
Встроен почти в каждый бытовой прибор, есть в общедомовых сетях. |
Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.
Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.
Подключение амперметров через трансформаторы тока
Для учета активной энергии в сетях переменного тока с разным количеством фаз используют индукционные или электронные амперметры, которые обеспечивают точность измерений, соответствующие классу устройства. С увеличение сопротивления он будет уменьшаться.
Он снимает показания с потребителя энергии. Такая схема обеспечивает оптимальный вариант замеров, так как общее сопротивление цепи минимально. Однако существуют более сложные схемы, конструктивная особенность зависит от целей и задачей учета.
Однофазная цепь
Эта сеть является самой простой с точки зрения обслуживания и замеров показателей. Поскольку она имеет всего один силовой кабель, по которому проходит напряжение. Амперметр подсоединяют к нему, дополнительно в цепь включают нагрузку в качестве потребителя. Сила всегда измеряется последовательно. Один щуп идет на вывод трансформатора, другой на контакт силового объекта.
Поскольку сопротивление незначительно, то точность показаний всегда близко к реальным значениям. Напряжение во вторичной обмотке должен быть меньше предельных значений прибора. Максимальный показатель рассчитывают по сечению провода, количеству витков и сопротивлению цепи.
Трехфазная
Трехфазная сеть содержит три силовых кабеля и один нулевой, по которым проходит напряжение. Схема подключения трансформатора к такой цепи отличается от одинарных цепей. Часто бывает достаточно проверить одну жилу и затем сложить показания, поскольку они идентичны друг другу. Но для полноты и точности измерений, достаточно снять показания со двух контактов.
Для того чтобы проверить напряжение сети необходимо использовать два трансформатора и амперметра. Они подключаются параллельно друг другу и последовательно относительно нагрузки. Каждый прибор снимает одно линейное значение, в сумме они равны третьему с обратным знаком.
С промежуточным трансформатором
Когда измеряемые показания превышают предельные значения измерительного инструмента, то используют параллельную схему подключения из двух трансформаторов. Ее называют промежуточной, поскольку второй снимает нагрузки с первого, в каждом протекает половины от номинального тока. На первый блок подается сетевое напряжение. Контакты вторичной катушки соединяются со вторым трансформатором, который, в свою очередь, понижает его напряжение до необходимых значений.
С выключателем амперметров
Во время эксплуатации силового оборудования возникает необходимость в обслуживании измерительных приборов. Он требуют проверки точности и калибровки. Поэтому для таких случаев разработали схемы с отключением устройств учета.
Трехфазная цепь с тремя амперметрами
С целью получения точных результатов измерений сетей с несколькими силовыми жилами используют количество амперметров, равное числу проводов. Для тестирования применяют два трансформатора, подключенных параллельно другу друга, каждый к своей фазе. На основные катушки подают номинальное напряжение.
Амперметры включают в сеть параллельно, контакты замыкаются на вторых выводах второстепенной обмотки. Общее значение двух приборов равно показателю третьего с противоположным показателем. Результат соответствует правилу, когда сумма трех линейных значений тока равна нулю.
Разновидности
Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.
Фактор разделения | Виды |
Назначение |
|
Конструкция | В обмоточных первичка включена последовательно в измеряемый проводник. В тороидальных вместо нее — линия сети (в отверстии ТТ), а в стержневых в ее роли — кабель цепи, что эквивалентно 1 витку. |
Монтаж |
|
Количество витков |
|
Изоляция |
|
Ступени | Одна или больше (каскадные) |
Под какой номинал | До 1 кВ и выше (например, для тока 10 кВ) |
Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.
Защитные ТТ
Трансформаторы защитные обычно релейного типа, «следят», чтобы проводящий манипуляции, влезающий в электросети электростанции, не получил смертельный удар. Внутри электросистем, создающих, транспортирующих, распределяющих энергию, для корректной работы присутствуют опасные значения. Но любое оборудование требует проверки, починки, обслуживания, поэтому оставляют «окно» безопасности в виде ТТ для специалистов-ремонтников.
Измерительные ТТ
Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.
Классификация и выбор
Особенности применения и срабатывания разных защит трансформатора
По конструкции и исполнению трансформаторы тока используемые в измерительных цепях делятся на:
- Встроенные. Первичная обмотка у них служит элементом для другого устройства. Они устанавливаются на вводах и имеют только вторичную обмотку. Функцию первичной обмотки выполняет другой токоведущий элемент линейного ввода. Конструктивно это магнитопровод кольцевого типа, а его обмотки имеют отпайки, соответствующие разным коэффициентам трансформации;
- Опорные. Предназначенные для монтажа и установки на опорной ровной плоскости;
- Проходной. По своей структуре это тот же встроенный, только вот находиться он может снаружи другого электрического устройства;
- Шинный. Первичной обмоткой служит одна или несколько шин включенных в одну фазу. Их изоляция рассчитывается с запасом, что бы он мог выдержать даже многократное увеличение напряжения;
- Втулочный. Это одновременно и проходной, и шинный трансформатор тока;
- Разъемный. Его магнитопровод состоит из разборных элементов;
- Переносной. Это устройство электрики называют токоизмерительные клещи. Они являются переносным и удобным измерительным трансформатором тока, у которого магнитная система размыкается и замыкается уже вокруг того провода в котором и нужно измерять значение тока.
При выборе трансформатора тока стоит знать главное, что при протекании по первичной обмотке номинального тока в его вторичной обмотке, которая замкнута на измерительный прибор, будет обязательно 5 А. То есть если нужно проводить измерение токовых цепей где его расчётная рабочая величина будет примерно равна 200 А. Значит, при установке измерительного трансформатора 200/5, прибор будет постоянно показывать верхние приделы измерения, это неудобно. Нужно чтобы рабочие пределы были примерно в середине шкалы, поэтому в этом конкретном случае нужно выбирать трансформатор тока 400/5. Это значит что при 200 А номинального тока оборудования на вторичной обмотке будет 2,5 А и прибор будет показывать эту величину с запасом в сторону увеличения или уменьшения. То есть и при изменениях в контролируемой цепи будет видно насколько данное электрооборудование вышло из нормального режима работы.
Вот основные величины, на которые стоит обратить внимание при выборе измерительных трансформаторов тока:
- Номинальное и максимальное напряжение в первичной обмотке;
- Номинальное значение первичного тока;
- Частота переменного тока;
- Класс точности, для цепей измерения и защиты он разный.
Устройство и принцип работы
В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.
Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.
Устройство, схема трансформатора тока:
- две (реже больше) обмотки на магнитопроводе из электростали:
- первичная (включаемая в сеть). Это любая токопроводящая жила;
- вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
- выводы, клеммы.
Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.
Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.
Работа ТТ поэтапно на примере схемы
Трансформатор тока как устроен, принцип работы поэтапно:
- Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
- Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
- Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
- Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
- На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).
Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении. Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ.
Преобразователи для измерения напряжения
Используются такие аппараты для понижения напряжения в первичном контуре от 6 кВ и выше, до 100 В во вторичной обмотке. Они способны преобразовывать эти показания в первичном контуре в стандартный электрический ток и обеспечивать защиту подключенных электроприборов от перегрузок.
Кроме этого, такие агрегаты обеспечивают обслуживающему персоналу безопасную работу. Эта техника взаимодействует с переменным и постоянным током, а по своему функционированию она приближается к режиму холостого хода, так как не происходит передачи мощности. По своим функциональным действиям эти аппараты практически ничем не отличаются от силовых трансформаторов. Различают несколько их видов:
- Заземляемый аппарат — представляет собой преобразователь с одной фазой, находящейся под напряжением и заземленным одним концом первичного контура. В трехфазных агрегатах заземляется нейтральный провод первичной катушки.
- Трансформаторы без заземления — все части первичной катушки, в том числе и контакты, изолированы от соединения с землей до рекомендуемого уровня, соответствующего классу напряжения.
- Емкостные аппараты — в конструкцию включены конденсаторы, обеспечивающие понижение напряжения.
- Каскадные трансформаторы — первичный контур обладает несколькими частями, соединяющимися со вторичным контуром связующими и выравнивающими обмотками.
А также существуют аппараты как с одним вторичным контуром, так и с двумя: основным и дополнительным.
Важность коэффициента трансформации, класса точности, погрешности
Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).
Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.
Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.
Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.
Монтаж, подключение, опасные факторы
При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.
На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.
По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.
Как подключается ТТ
Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.
Полная звезда:
- самая распространенная, защита одно- и многофазных систем от КЗ;
- три ТТ соединяются в звезду.
Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.
Неполная звезда:
- защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
- для маломощных приемников с другими вариантами защиты.
Схема «треугольник и звезда» — для дифференциальной защиты.
Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.
ТТИ подсоединяются простым последовательным подключением первичных витков изделия.
Монтаж
Монтаж трансформаторов тока:
- Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
- Отключают ЭУ;
- Убедится в обесточивании, зафиксировать заземления.
- Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
- Выставляются таблички, ограждения.
- Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.
ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.
Расчет
Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.
Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:
- при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
- проверяют первичный ток на термо- и электродинамическую стойкость;
- есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.
Правила, как выбрать трансформатор тока в общих чертах:
- номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
- первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
- оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
- оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.
Проверка после расчета
Правила:
- после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
- по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
- макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
- если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.
Разновидности конструкций
Измерительные токовые трансформаторы выпускаются различных типов. Все они имеют одно и то же назначение, но отличаются составными элементами и принципом действия. Каждая разновидность применяется для достижения определённых целей, что позволяет выбирать оптимальный вариант для каждого случая.
Катушечного типа
Этот вид измерительных трансформаторов считается наиболее простым по конструкции. Свою популярность он приобрёл ещё в советские времена, когда не было более качественных и эффективных устройств. Состоит катушечный прибор из следующих элементов:
- защитный корпус;
- вторичная и первичная обмотка;
- клеммная колодка;
- контакты;
- восьмёрочная или петлевая обмотка.
Такие трансформаторы имеют небольшие размеры и приемлемую цену, которая обусловлена возможностью механизации обмоточных работ. Несмотря на это, приборы имеют несколько значимых недостатков, которые снижают их популярность среди потребителей.
К ним относят:
- низкое разрядное напряжение, которое становится следствием слабой катушечной изоляции;
- возможность использования только при небольших номинальных напряжениях (не более 3 кВ);
- способность работать только при пониженных требованиях к электрической прочности.
Проходной трансформатор
Эти устройства считаются наиболее часто используемыми. Они нашли широкое применение в различных распределительных приборах, рассчитанных на напряжение от 6 до 35 кВ. Их устройство не отличается особой сложностью.
Конструкция состоит из таких частей:
- литой эпоксидный корпус;
- магнитопровод;
- первичная обмотка;
- вторичная обмотка.
Трансформаторы этого типа ценятся за то, что дают возможность в закрытых распределительных устройствах сэкономить проходной изолятор. Среди других преимуществ прибора выделяют такие:
- малые габариты;
- высокая электродинамическая стойкость.
Стержневое устройство
Стержневые трансформаторы часто называют одновитковыми. Главная их особенность — увеличение точности при повышении силы тока и уменьшение — при понижении. Она обусловлена тем, что первичная обмотка только один раз проходит через отверстие сердечника, что приводит к численному равенству количества ампер-витков и номинального тока.
Устройство состоит из следующих деталей:
- железный магнитопровод (сердечник);
- стержень проходного изолятора;
- вторичная и первичная обмотка.
В стержневых трансформаторах токах сердечники могут иметь круглую или прямоугольную форму. От этого будет зависеть длина магнитного пути, которая должна иметь определённое значение для каждого конкретного случая. В большинстве ситуаций специалисты рекомендуют использовать круглые сердечники, которые снизят магнитные потери и увеличат эффективность устройства.
Шинный прибор
Шинные трансформаторы представляют собой изделия, в конструкцию которых входят сердечники со вторичной обмоткой, а первичная — отсутствует. В главной изоляции прибора предусмотрено специальное отверстие, через которое пропускается шина распределительного устройства, выполняющая роль первичной обмотки.
Эта разновидность трансформатора очень похожа на стержневую. Лишь при малых показаниях напряжения через отверстие в сердечнике прокладывают несколько витков проводника, что даёт возможность получить многовитковую конструкцию прибора.
Основными преимуществами шинного трансформатора считаются:
- простота конструкции;
- лёгкость проведения монтажных, ремонтных и профилактических работ;
- возможность использовать устройство не только при малых номинальных токах, но и при высоких (более 2 тыс. ампер);
- высокая электродинамическая стойкость, обусловленная устойчивостью шинной конструкции.
Самостоятельная сборка ТТ
Создание ТТ своими руками — отдельная тема, так как для процедуры потребуются широкое описание расчетов с формулами, но упрощенно процесс выглядит как наматывание рассчитанного количества витков медной проволоки на стержень (железо, сталь).
В основе лежит известный принцип. Токи на первичке и вторичке обозначают соотношением. Например, 100/5: величина на первой в 20 раз превышает таковую на второй, то есть, когда на ней есть 100 А, то на другой будет 5 А. Изделие 500/5 понижает 500 А до 5 А (на вторичных витках). Указанные величины зависят от соотношения количества витков.
Монтаж однофазного прибора
Автоматический выключатель слева , УЗО и дифференциальный автомат Подключить УЗО и автомат не сложнее, чем установить счетчик, но некоторые вопросы все же требуют разъяснения. Если, к примеру, розетки и освещение заведены на разные автоматы, то при коротком замыкании, скажем, в электроплитке сработает лишь автомат, отвечающий за розетки.
Монтаж однофазного прибора Проводник силовой цепи работает в качестве первичной обвивки в однофазных трансформаторах, номинальное значение силы тока достигает и более ампер. Кроме всего прочего, обязательно присутствует замыкание на вторичную обмотку на разные, подключенные друг за другом приборы. Разрыв вторичной цепи вызывает потерю компенсирующего действия электромагнитной индукции от тока, проходящего по вторичным виткам.
Правильное распределение контактов и чередование фазных зажимов А, В и С контролируется фазометром.
Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Другие системы подсоединения Упрощенной схемой считается подключение по типу конфигурации звезды. Видите, очень выгодно.
Рассмотрим некоторые особенности измерительных приборов. Другое дело, что автоматом можно обесточить линию, расположенную за ним, вручную.
Подключение трансформатора тока к счетчику
Если в вашем доме стоит очень мощное оборудование, а потребляемый им ток имеет большие значения, то подобрать подходящий электросчетчик не удастся — счетчиков для таких мощностей просто не существует в природе. На подвижный диск из алюминия воздействует электромагнитное поле, заставляя его вращаться. Как быть, если в вашем доме однофазная сеть, но ток потребления слишком велик для электросчетчика?
Если значение тока не превышает ти Ампер, что случается крайне редко, допускается прямое подсоединение счетчика в контролируемую цепь. При такой схеме подключения одна сторона вторичных обмоток измерительных трансформаторов соединяется между собой перемычками и объединяется с нейтралью.
То есть ток, который прибор может не только посчитать, но и долговременно через себя пропускать. Подключение Л1, Л2 осуществляется кабелем, рассчитанным на соответствующие нагрузки. Установка и схема подключения трехфазного счетчика через трансформаторы тока
Поверка
Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока. Разные типы и модели имеют свою периодичность поверочных мер.
Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):
- ТТИ-А — 5;
- ТОП — 8;
- ТШП — 16;
- ТОЛ-10 — 8;
- ТПЛ-10 — 8.
Узнать сроки можно из таких источников:
- паспорт изделия. Самый простой способ, так как данная информация в технической документации на такой товар обязательная. Если оригинальные бумаги утеряны, то можно направить запрос производителю. Примерные данные можно узнать из интернета — в сети есть сканы и образцы паспортов;
- у завода-изготовителя;
- в сертификате предыдущей процедуры;
- ГОСТ 7746-2015.
Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.
Основная цель поверки — определить погрешность. По непригодным изделиям гасят клеймо, вносят запись в паспорт, выдают извещение о непригодности, аннулируют предыдущие свидетельства.
При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.
Применение
Измерительные блоки применяют в схемах учета электроэнергии. Одну из обмоток с низким коэффициентом погрешности используют для того, чтобы подключить средства измерения. Приборы контролируют рабочие параметры сети и позволяют избежать перегрузок сети.
Если при измерении электрического тока Вы используете амперметр с пределом 1, 5 или даже 10А, а нагрузка будет составлять значение больше этой предельной величины амперметра, то Вам может помочь измерительный трансформатор тока с необходимым коэффициентом.
Напомню, что амперметр включается в электрическую цепь последовательно. А как же будет подключаться амперметр при использовании трансформатора тока?
В общем случае на тт будут два измерительных вывода для подключения амперметра. Подключение же первичного тока к тт происходит последовательно, но имеет особенности в зависимости от типа аппарата, о чем и поговорим ниже.
Где купить
Чтобы максимально быстро приобрести трансформатор, можно посетить ближайший специализированный магазин. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Трехфазный трансформатор тока 0,5 класса CT5, 50-600А | Трансформатор тока тороидальный DM-20 от 50A до 300A | KCT-36 раздельный трансформатор тока 100-600А |
Трансформатор тока CT для амперметра 0-100А | Трансформатор тока 75-250мА | Трансформатор тока прецизионный 5А/5мА |