Блоки питания для ПК: принципы работы и основные узлы

Он есть в каждом компьютере, ноутбуке и приставке. Он не влияет на вашу частоту кадров и майнинг биткоинов. У него нет миллиардов транзисторов, и в его производстве не используются новейшие полупроводниковые техпроцессы. Звучит скучно? Ничуть! Без этой штуки наши компьютеры абсолютно ничего бы не сделали.

БП, они же блоки питания (англ. PSU, Power Supply Units), не взрывают заголовки журналов как новейшие процессоры, но это интереснейшие технологии, заслуживающие нашего внимания. Так что надевайте белые халаты, маски, перчатки и приступим к вскрытию нашего скромного парнишки – блока питания, разберём его на части и рассмотрим, чем занимается каждый его орган.

И да, совсем недавно мы разбирались как правильно выбрать Блок питания. Рекомендуем к прочтению.

Что это и с чем это едят?

Многие компьютерные компоненты имеют названия, требующие чуточку технических знаний, чтобы понять, что это и зачем (например, твердотельный накопитель), но в случае блока питания всё довольно очевидно. Это блок, обеспечивающий питание.

Но мы же не можем на этом поставить точку, с гордостью заявив «статья готова». Наш цикл статей посвящен внутреннему строению, и на операционном столе у нас лежит подопытный – Cooler Master G650M. Это довольно типичный представитель, с характеристиками, подобными десяткам других моделей, но у него есть одна особенность, встречающаяся не во всех блоках питания.


Официальное фото блока питания Cooler Master.

Это блок питания стандартного размера, соответствующий форм-фактору ATX 12V v2.31, поэтому он подходит для многих компьютерных корпусов.

Есть и другие форм-факторы – например, для малых корпусов, либо вовсе уникальные по спецзаказу. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами – они могут быть одинаковой ширины и высоты, но отличаться по длине.

Этот блок питания от Cisco специально спроектирован для серверных стоек

В маркировке PSU обычно указывается их основной параметр – максимально обеспечиваемая мощность. В случае с нашим Cooler Master, это 650 Вт. Позже мы поговорим, что это на самом деле значит, а пока лишь заметим, что есть и менее мощные БП, поскольку не всем компьютерам требуется именно столько, а некоторым достаточно даже на порядок меньше. Но всё-ж большинство настольных компьютеров обеспечены питанием в диапазоне от 400 до 600 Вт.

Блоки питания вроде нашего собираются в прямоугольных, зачастую неокрашенных, металлических корпусах, отчего бывают достаточно увесистые. У ноутбуков блок питания практически всегда внешний, в пластиковом корпусе, но его внутренности очень схожи с тем, что мы увидим у рассматриваемого нами БП.

Источник фотографииnix.ru
Большинство типичных блоков питания оснащены сетевым выключателем и кулером для активной терморегуляции, хотя в ней не все БП нуждаются. И не у всех из них есть вентиляционная решётка – у серверных версий, в частности, это редкость.

Ну что-ж, как вы можете видеть на фото выше, мы уже вооружены отверткой и готовы приступить к вскрытию нашего экземпляра.

Регулируемый импульсный стабилизатор

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Будет интересно➡ Как выбрать флюс для пайки микросхем

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.


КПД

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Немного теории

Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.

На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.

Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.

Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.

Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.

Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:

Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!

Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!

Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.

Официальное фото блока питания Cooler Master.
Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.

Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).


Источник фото
techspot.com
Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.

Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.

Фильтрация

Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.

Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.


Источник фото techspot.com

Вторая ступень фильтра более сложная, но в сущности делает то же самое.

Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.

Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.


Источник фото techspot.com

По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).

Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.

Что собой представляет блок питания и для чего служит

Блок питания (он же БП) – источник питания в системном блоке, который отвечает за обеспечение энергией остальных компонентов. От БП во многом зависит долговечность и стабильность работы всей системы. Помимо этого, компьютерный блок питания препятствует потере информации с персонального компьютера, предотвращая скачки энергии.

Уверен, известно каждому человеку мало-мальски знакомому с техникой, что персональный компьютер работает от розетки. Однако далеко не каждый пользователь в курсе, что компоненты системы не могут получать энергию напрямую. Вот так плавно мы подошли к самому интересному: для чего нужен блок питания в ПК. По двум причинам:

  • Во-первых, ток в электросети переменный, что очень «не нравится» компьютерам. Блок питания делает ток постоянным, исправляя положение;
  • Во-вторых, каждый компонент ПК, да и ноутбука, требует различного напряжения. И вновь на помощь приходит БП, выдавая процессору и видеокарте необходимый ток.

Преобразование

Как мы уже сказали, блоку питания нужно изменить напряжение переменного тока, которое в американских розетках обычно в районе 120 вольт (технически, это среднеквадратичные 120 вольт, но мы не будем так язык выламывать), получив на выходе постоянное напряжение 12, 5 и 3,3 вольт.

Первым делом осуществляется преобразование переменного тока в постоянный, и наш блок использует для этого выпрямительный мост. На фото ниже это плоский черный элемент, приклеенный к радиатору.


Источник фото techspot.com

Это еще одно место, где производитель блоков питания может сократить расходы, поскольку более дешевые выпрямители хуже справляются со своей задачей (например, сильнее греются). Теперь, если пиковое входное напряжение составляет 170 В (что имеет место для сети 120 В), то пройдя через выпрямительной мост, оно станет 170 В, но уже постоянного тока.

В таком виде оно поступает на следующую стадию, и в нашем блоке это активный модуль коррекции коэффициента мощности (APFC или Active PFC, Active Power Factor Correction converter). Этот узел также стабилизирует напряжение, сглаживая «провалы» за счет накапливающих конденсаторов; кроме того, он защищает от скачков выходной мощности.

Пассивные корректоры (PPFC или Passive PFC) выполняют по сути ту же работу. Они менее эффективны, но хороши для маломощных блоков питания.


Источник фото techspot.com

APFC на фото выше представлен в виде пары больших цилиндров слева – это конденсаторы, которые накапливают выровненный ток, прежде чем отправить его дальше по цепочке процессов в нашем блоке питания.

За APFC находится ШИМ, широтно-импульсный модулятор (PWM, Pulse Width Modulator). Его предназначение заключается в том, чтобы с помощью нескольких быстро переключающихся полевых транзисторов преобразовать постоянный ток обратно в переменный. Это нужно сделать потому, что на следующем шаге нас ждёт понижающий трансформатор. Эти устройства, основанные на электромагнитной индукции, состоят из двух обмоток с разным количеством витков на металлическом сердечнике, необходимых для понижения напряжения, и работают трансформаторы только с переменным током.

Частота переменного тока (скорость, с которой он изменяется; в герцах, Гц) значительно влияет на эффективность трансформатора – чем выше, тем лучше, поэтому частота исходного питания 50/60 Гц увеличивается примерно в тысячу раз. А чем эффективнее трансформатор, тем меньше его размер. Такой тип устройств, который использует эти сверхбыстрые частоты постоянного тока, называется импульсным источником питания (Switched Mode Power Supply, SMPS).

На фото ниже вы можете видеть 3 трансформатора – самый большой имеет на единственном выходе 12 вольт, а тот, что поменьше – 5 вольт (чуть поговорим ещё о нём позже). В других БП вы можете встретить один большой трансформатор сразу на все напряжения, то есть с несколькими выходами. А самый маленький трансформатор предназначен для защиты транзисторов ШИМ и подавления его помех.


| Источник фото techspot.com

Можно по-разному реализовать получение необходимых напряжений, защиту ШИМ, и так далее. Всё зависит от бюджетного сегмента и мощности устройства. Однако, всем одинаково необходимо снять напряжения с трансформаторов и снова выпрямить.

На фото ниже мы видим алюминиевый радиатор низковольтных диодов, выполняющих это выпрямление. А также, конкретно в этом PSU, мы видим небольшую дополнительную плату в центре фото – это узел модулей регулирования напряжения (VRM, Voltage Regulation Modules), обеспечивающий выходы 5 и 3,3 вольт.


Источник фото techspot.com

И тут нам стоит поговорить о том, что такое пульсация.

В идеальном мире, с идеальными блоками питания, переменный ток будет преобразован в абсолютно ровный, без малейших колебаний, постоянный ток. В действительности же, такой 100%-ой точности не достигается, и напряжение постоянного тока имеет хоть и незначительные, но колебания.

Этот эффект называется пульсирующим напряжением, и в наших блоках питания мы бы хотели, чтобы оно было как можно меньше. Cooler Master не предоставляет информации о величине пульсирующего напряжения в спецификации к нашему подопытному PSU, поэтому мы прибегли к сторонним результатам тестирования. Один из таких анализов был выполнен JonnyGuru.com, и они установили, что максимальное пульсирующее напряжение выхода +12 В – 0,042 В (42 милливольт).

График ниже демонстрирует отклонение фактически получаемого напряжения (синяя кривая; при этом её форма, конечно, не такая идеальная синусоида – ведь сама пульсация не постоянна) от требуемого ровного напряжения +12 В постоянного тока (красная прямая).

Это отклонение, по большей части, лежит на совести конденсаторов во всём PSU. Некачественные, дешёвые конденсаторы приводят к увеличению этой не нужной нам пульсации. Если она слишком большая, то некоторые электронные узлы компьютера, наиболее чувствительные к качеству питания, могут начать работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт это нормально. Не супер, но и не плохо.

Но на получении приемлемых выходных напряжений дело ещё не заканчивается. Необходимо обеспечить управление выходами, чтобы питание на каждом из них было всегда полноценным и стабильным, независимо от мощности нагрузок на других выходах.

Источник фото techspot.com
Микросхема, которую вы видите на этом фото, называется супервизор (supervisor) и она следит за тем, чтобы на выводах не оказалось слишком высокого или низкого напряжения и тока. Работает бесхитростно – просто отключает блок питания при возникновении таких проблем.

Более дорогие PSU могут оснащаться ЦПОС, цифровым процессором обработки сигналов (DSP, Digital Signal Processor), который не только мониторит напряжения, но и может отрегулировать их при необходимости, а также отправлять подробные данные о состоянии БП на компьютер, его использующий. Для рядового пользователя эта функция достаточно спорная, но для серверов и рабочих станций – весьма желательная.

Расчёт мощности блока питания

Для того чтобы БП работал надежно и обеспечивал удобную работу за компьютером, необходимо при подборе этого компонента заранее рассчитать оптимальную мощность. Для того чтобы определить её правильно, в интернете на специализированных ресурсах можно найти калькулятор для расчёта мощности блока питания. Однако такой вариант не для всех является оптимальным. Многие используют простую математику при определении нужной характеристики. Сам способ заключается в том, чтобы подсчитать суммарное энергопотребление компонентов, которые присутствуют в системном блоке.

Сложив все значения, можно получить мощность БП, который обеспечит стабильную работу «машины». При выборе блока питания следует знать, что максимальная мощность у выбранного устройства должна быть больше суммарного энергопотребления всех компонентов, входящих в состав системы.

Обычно потребляемая мощность у компонентов, присутствующих в составе ПК, следующая:

  • процессор. Он потребляет 50-120 Вт. Следует понимать, что чем более мощный чип стоит в вашем компьютере, тем больше будет потребление энергии;
  • материнская плата. Она расходует 15-30 Вт. Её энергопотребление возрастает с увеличением функций;
  • видеокарта. Она требует 60-300 Вт;
  • оперативная память. Расход энергии у этого компонента составляет 15-60 Вт.
  • жёсткий диск. Он потребляет энергию в таком же количестве, что и оперативная память. Однако здесь всё зависит от его характеристик, а также нагрузки, приходящейся на него.
  • CD-DVD привод. Этот компонент системного блока расходует 10-25 Вт. Здесь всё зависит от максимальной скорости вращения дисков, а также режима работы;
  • звуковая карта. Этот элемент системного блока требует энергии в количестве 5-50 Вт;
  • вентиляторы. Для работы одного кулера требуется 1-2 Вт. Здесь всё зависит от скорости вращения, а также количества вентиляторов и их габаритов.

Выходы

Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.

Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.

Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.


Официальное фото блока питания Cooler Master.

Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.

Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.

Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.

Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.

Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.

Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.

Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.

Источник фотографии nix.ru
Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.

Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.

Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.

Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.

На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.

На что обращать внимание при выборе

В начале нашей статьи мы говорили, что большинство блоков питания имеют в названии значение своей максимальной мощности. Простым языком, электрическая мощность – это напряжение, умноженное на силу тока (например, 12 вольт x 20 ампер = 240 ватт). И хотя такое утверждение не совсем технически точное, для наших целей оно удовлетворительное.

Как и на большинстве моделей, на нашем блоке питания есть шильдик, содержащий основную информацию о том, сколько мощности может обеспечить каждая линия напряжения.

Источник фотографии nix.ru
Здесь мы видим, что суммарная максимальная мощность всех +12 В линий составляет 624 Вт. Приплюсовав все остальные мощности, мы в итоге получим 760 Вт, а не 650. Что тут не так? А дело просто в том, что линии +5 В (кроме дежурной) и +3,3 В создаются через VRM, используя одну из линий +12 В.

Ну и конечно, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность в 650 Вт – это максимум, который блок питания может обеспечить в целом по всем линиям. То есть, если у вас на линиях +12 В висит нагрузка в 600 Вт, то на все остальные линии у вас остается всего 50 Вт. К счастью, большинство оборудования в любом случае бо́льшую часть мощности берёт от линий 12 В, поэтому проблема неправильно подобранного БП встречается редко.

Правее от таблицы со спецификациями мощности на шильдике присутствует значок «80 Plus Bronze». Это рейтинг эффективности, используемый в отрасли в соответствии с требованиями к производителям блоков питания. Эффективность также отражает величину общей нагрузки, которую блок питания способен обслуживать.

20%, 50% и 100% – процент нагрузки по отношению к максимальной мощности для стандартных систем

Если наш Cooler Master нагрузить ровно на половину его максимальной мощности, то есть на 325 Вт, то его ожидаемый КПД будет в пределах 80-85% в зависимости от напряжения в сети (115/230 В).

Это означает фактическую нагрузку блока питания на сеть от 382 до 406 Вт. Более высокий рейтинг 80 PLUS не означает, что блок питания даст вам больше энергии, он просто более экономичный – меньше энергии теряет на всех этапах фильтрации, выпрямления и преобразования.

Также обратите внимание, что максимальная эффективность достигается в диапазоне между 50 и 100% нагрузки. Некоторые производители предоставляют графики, показывающие, какой КПД можно ожидать от их устройства при различных нагрузках и напряжениях в сети.


Официальное изображение Cooler Master.

График эффективности для блока питания Cooler Master V1300 Platinum. Вертикальная шкала – эффективность (КПД), горизонтальная – % нагрузки по отношению к максимальной мощности.

Иногда полезно обращать внимание на эту информацию, особенно если собираетесь раскошелиться на киловаттный блок питания. Если ваш компьютер будет потреблять близко к этому пределу мощности, то КПД блока питания будет несколько снижен.

Вы можете наткнуться на некие «одноканальные» и «многоканальные» (либо комбинированные – снабжённые переключателем) блоки питания. Термин «канал» в данном случае – просто другое слово для определенного напряжения, выдаваемого PSU. Наш Cooler Master имеет один канал 12 В и всевозможные разъёмы питания, обеспечивающие +12 В линии от этого канала. Многоканальный блок питания имеет две или более систем, обеспечивающих линии 12 вольт, однако существует большая разница в том, как это реализовано.

Многоканальные блоки питания широко применяются для серверов или дата-центров в целях отказоустойчивости – при выходе из строя одного из каналов, работоспособность системы не нарушится. Для обычных компьютеров тоже могут предлагаться многоканальные PSU, но скорее всего, вы столкнетесь с псевдо-многоканальностью, когда производитель просто разделит единственный канал на два или три якобы независимых канала. Например, наш подопытный выдает до 52 ампер по линии +12В, что эквивалентно 624 Вт электроэнергии. Дешевая «многоканальная» версия такого БП будет иметь в спецификации якобы два канала +12 В, но на самом деле это лишь два полуканала, каждый из которых будет обеспечивать только 26 А (или 312 Вт).

Хороший блок питания для настольного компьютера, использующий качественные компоненты, вовсе не требует многоканальности на +12 В, так что не беспокойтесь об этом!

Блоки питания для ПК: принципы работы и основные узлы

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера мало кто обращает внимание на марку предустановленного в системе БП. Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК. Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Структура типичного блока питания

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр [1], в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения [2]. В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц. Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности. Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор [3] преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600–700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой [4].

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе [5]. Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

Типичная информационная наклейка БП. Основная задача – информирование пользователя о максимально допустимых токах по линиям питания, максимальных долговременной и кратковременной мощностях, итоговой комбинированной мощности, которую способен отдать БПКонструкция модульных разъемов блоков питания может быть самой разной. Их применение допускает отключение силовых кабелей, не востребованных в отдельно взятом системном блоке

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель [6] сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений. Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей. Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Кроме силовых узлов в блоке есть дополнительные – сигнальные. Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах [7], и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме [9]. Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

Кожух блока питания с установленным 120-миллиметровым вентилятором. Часто для формирования необходимого воздушного потока используются специальные вставки-направляющие

Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания. В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался. Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами [8]. При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания. Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них – двухрядный – служит для питания материнской платы. Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора. Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V). Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»). Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 – для последовательных портов RS-232 на плате.

На данном рисунке показана распиновка контактов блоков питания, традиционно используемых в современных ПК

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей. Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В. Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10–15 А, а видеокарты до 20–25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500–700 Вт. Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15–25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания. Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

Качественное тестирование современных блоков питания можно провести лишь на специализированных стендах. На фото показана электронная начинка одного из них. Для теплового рассеивания больших мощностей применяется массивный радиатор, обдуваемый скоростными вентиляторами

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току. Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. Простая математика: 240 ВА/12 В = 20 А. Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18–20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя. Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, – не более чем умелая маркетинговая уловка для непосвященных.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования. Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой. Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Краткий словарь терминов

Суммарная мощность
– долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит

– устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель

– свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод

– электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.

Трансформатор

– элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX

– международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации

– импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF)

– соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC)

– импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC)

– пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]